1
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
2
|
Kennedy ADW, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Visible-Light Switching of Metallosupramolecular Assemblies. Chemistry 2022; 28:e202104461. [PMID: 35102616 PMCID: PMC9302685 DOI: 10.1002/chem.202104461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.
Collapse
Affiliation(s)
| | - Ray G. DiNardi
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Lucy L. Fillbrook
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - William A. Donald
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Jonathon E. Beves
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
3
|
Chang X, Wang Z, Wang G, Liu T, Lin S, Fang Y. Perylene Bisimide-Cored Supramolecular Coordination Complexes: Interplay between Ensembles, Excited State Processes, and Aggregation Behaviors. Chemistry 2021; 27:14876-14885. [PMID: 34462989 DOI: 10.1002/chem.202101970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Manipulating the optical properties of fluorescent species is challenging owing to complicated and tedious synthetic works. Herein, the photophysical properties of perylene bisimide (PBI) were effectively tuned by varying the geometrical arrangement of PBI moieties within supramolecular coordination complexes (SCCs), where a PBI-based dicycle (2) and a trigonal prism (3) were generated via using a typical 90° Pt(II) reagent, cis-(PEt3 )2 Pt(OTf)2 -based coordination-driven self-assembly approach. The ligand, an ortho-tetrapyridiyl-PBI (1), exhibits a moderate fluorescence quantum yield (∼13 %) and efficient inter-system crossing (ISC). 2, however, is much more emissive with a fluorescence quantum yield of ∼41 %, and the relevant ISC process is significantly hindered. The fluorescence quantum yield of 3 is merely ∼6 % due to the observed symmetry-breaking charge separation (SB-CS), which turns to triplet state upon charge recombination. Interestingly, 3 could be fully transformed into 2 by simply adding a suitable amount of a 90° Pt(II)-based neutral triangle. Moreover, 2 tends to form discrete dimers both in crystal and solution states, but 3 does not show the property. Therefore, controlling geometrical arrangement of fluorophores through coordination-driven self-assembly could be taken as another effective way to tune their excited state relaxation pathways and construct high-performance optical molecular materials, which generally have to be prepared via organic synthesis.
Collapse
Affiliation(s)
- Xingmao Chang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Simin Lin
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
4
|
Affiliation(s)
- Edmundo G. Percástegui
- Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria Ciudad de México 04510 México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carretera Toluca-Atlacomulco km 14.5, Toluca Estado de México 50200 México
| |
Collapse
|
5
|
Hu X, Han M, Shao L, Zhang C, Zhang L, Kelley SP, Zhang C, Lin J, Dalgarno SJ, Atwood DA, Feng S, Atwood JL. Self‐Assembly of a Semiconductive and Photoactive Heterobimetallic Metal–Organic Capsule. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiangquan Hu
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| | - Meirong Han
- Key Laboratory of Chemical Biology Molecular Engineering of Ministry of Education Institute of Molecular Science Shanxi University Taiyuan 030006 China
| | - Li Shao
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| | - Chen Zhang
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| | - Le Zhang
- Department of Chemistry University of Texas Austin TX 78712 USA
| | - Steven P. Kelley
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| | - Chi Zhang
- Department of Mechanical and Aerospace Engineering University of Missouri Columbia MO 65211 USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering University of Missouri Columbia MO 65211 USA
| | - Scott J. Dalgarno
- Institute of Chemical Sciences Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - David A. Atwood
- Department of Chemistry University of Kentucky Lexington KY 40506 USA
| | - Sisi Feng
- Key Laboratory of Chemical Biology Molecular Engineering of Ministry of Education Institute of Molecular Science Shanxi University Taiyuan 030006 China
| | - Jerry L. Atwood
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| |
Collapse
|
6
|
Hu X, Han M, Shao L, Zhang C, Zhang L, Kelley SP, Zhang C, Lin J, Dalgarno SJ, Atwood DA, Feng S, Atwood JL. Self‐Assembly of a Semiconductive and Photoactive Heterobimetallic Metal–Organic Capsule. Angew Chem Int Ed Engl 2021; 60:10516-10520. [DOI: 10.1002/anie.202016077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Xiangquan Hu
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| | - Meirong Han
- Key Laboratory of Chemical Biology Molecular Engineering of Ministry of Education Institute of Molecular Science Shanxi University Taiyuan 030006 China
| | - Li Shao
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| | - Chen Zhang
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| | - Le Zhang
- Department of Chemistry University of Texas Austin TX 78712 USA
| | - Steven P. Kelley
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| | - Chi Zhang
- Department of Mechanical and Aerospace Engineering University of Missouri Columbia MO 65211 USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering University of Missouri Columbia MO 65211 USA
| | - Scott J. Dalgarno
- Institute of Chemical Sciences Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - David A. Atwood
- Department of Chemistry University of Kentucky Lexington KY 40506 USA
| | - Sisi Feng
- Key Laboratory of Chemical Biology Molecular Engineering of Ministry of Education Institute of Molecular Science Shanxi University Taiyuan 030006 China
| | - Jerry L. Atwood
- Department of Chemistry University of Missouri 601 S. College Ave. Columbia MO 65211 USA
| |
Collapse
|
7
|
Abstract
Although many impressive metallo-supramolecular architectures have been reported, they tend towards high symmetry structures and avoid extraneous functionality to ensure high fidelity in the self-assembly process. This minimalist approach, however, limits the range of accessible structures and thus their potential applications. Herein is described the synthesis of a family of ditopic ligands wherein the ligand scaffolds are both low symmetry and incorporate exohedral functional moieties. Key to this design is the use of CuI -catalysed azide-alkyne cycloaddition (CuAAC) chemistry, as the triazole is capable of acting as both a coordinating heterocycle and a tether between the ligand framework and functional unit simultaneously. A common precursor was used to generate ligands with various functionalities, allowing control of electronic properties whilst maintaining the core structure of the resultant cis-Pd2 L4 nanocage assemblies. The isostructural nature of the scaffold frameworks enabled formation of combinatorial libraries from the self-assembly of ligand mixtures, generating a statistical mixture of multi-functional, low symmetry architectures.
Collapse
Affiliation(s)
- James E. M. Lewis
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub, 82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
8
|
Hardy M, Engeser M, Lützen A. A heterobimetallic tetrahedron from a linear platinum(II)-bis(acetylide) metalloligand. Beilstein J Org Chem 2020; 16:2701-2708. [PMID: 33214795 PMCID: PMC7653331 DOI: 10.3762/bjoc.16.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
Employing 4-ethynylaniline as a simple organic ligand we were able to prepare the stable trans-bis(acetylide)platinum(II) complex [Pt(L1)2(PBu3)2] as a linear metalloligand. The reaction of this metalloligand with iron(II) cations and pyridine-2-carbaldehyde according to the subcomponent self-assembly approach yielded decanuclear heterobimetallic tetrahedron [Fe4Pt6(L2)12](OTf)8. Thus, combination of these two design concepts - the subcomponent self-assembly strategy and the complex-as-a-ligand approach - ensured a fast and easy synthesis of large heterobimetallic coordination cages of tetrahedral shape with a diameter of more than 3 nm as a mixture of all three possible T-, S 4- and C 3-symmetric diastereomers. The new complexes were characterized by NMR and UV-vis spectroscopy and ESI mass spectrometry. Using GFN2-xTB we generated energy-minimized models of the diastereomers of this cage that further corroborated the results from analytical findings.
Collapse
Affiliation(s)
- Matthias Hardy
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Marianne Engeser
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Arne Lützen
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
9
|
Lehr M, Paschelke T, Trumpf E, Vogt A, Näther C, Sönnichsen FD, McConnell AJ. A Paramagnetic NMR Spectroscopy Toolbox for the Characterisation of Paramagnetic/Spin-Crossover Coordination Complexes and Metal-Organic Cages. Angew Chem Int Ed Engl 2020; 59:19344-19351. [PMID: 33448544 PMCID: PMC7590057 DOI: 10.1002/anie.202008439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 12/14/2022]
Abstract
The large paramagnetic shifts and short relaxation times resulting from the presence of a paramagnetic centre complicate NMR data acquisition and interpretation in solution. As a result, NMR analysis of paramagnetic complexes is limited in comparison to diamagnetic compounds and often relies on theoretical models. We report a toolbox of 1D (1H, proton-coupled 13C, selective 1H-decoupling 13C, steady-state NOE) and 2D (COSY, NOESY, HMQC) paramagnetic NMR methods that enables unprecedented structural characterisation and in some cases, provides more structural information than would be observable for a diamagnetic analogue. We demonstrate the toolbox's broad versatility for fields from coordination chemistry and spin-crossover complexes to supramolecular chemistry through the characterisation of CoII and high-spin FeII mononuclear complexes as well as a Co4L6 cage.
Collapse
Affiliation(s)
- Marc Lehr
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Tobias Paschelke
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Eicke Trumpf
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Anna‐Marlene Vogt
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Christian Näther
- Institute of Inorganic ChemistryChristian-Albrechts-Universität zu KielMax-Eyth-Straße 2Kiel24118Germany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Anna J. McConnell
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| |
Collapse
|
10
|
Hardy M, Lützen A. Better Together: Functional Heterobimetallic Macrocyclic and Cage-like Assemblies. Chemistry 2020; 26:13332-13346. [PMID: 32297380 PMCID: PMC7693062 DOI: 10.1002/chem.202001602] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Metallosupramolecular chemistry has attracted the interest of generations of researches due to the versatile properties and functionalities of oligonuclear coordination complexes. Quite a number of different discrete cages were investigated, mostly consisting of only one type of ligand and one type of metal cation. Looking for ever more complex structures, heterobimetallic complexes became more and more attractive, as they give access to new structural motifs and functions. In the last years substantial success has been made in the design and synthesis of cages consisting of more than one type of metal cations, and a rapidly growing number of functional materials has appeared in the literature. This Minireview describes recent developments in the field of discrete heterometallic macrocycles and cages focusing on functional materials that have been used as host‐systems or as magnetic, photo‐active, redox‐active, and even catalytically active materials.
Collapse
Affiliation(s)
- Matthias Hardy
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| |
Collapse
|
11
|
Lehr M, Paschelke T, Trumpf E, Vogt A, Näther C, Sönnichsen FD, McConnell AJ. Ein Methodenrepertoire für die paramagnetische NMR‐Spektroskopie zur Charakterisierung von paramagnetischen/Spin‐Crossover‐ Komplexen und Metall‐organischen Käfigverbindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marc Lehr
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Tobias Paschelke
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Eicke Trumpf
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Anna‐Marlene Vogt
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Christian Näther
- Institut für Anorganische Chemie Christian-Albrechts-Universität zu Kiel Max-Eyth-Straße 2 Kiel 24118 Deutschland
| | - Frank D. Sönnichsen
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Anna J. McConnell
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| |
Collapse
|
12
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020; 59:11101-11107. [DOI: 10.1002/anie.202003220] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
13
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|