1
|
Chen K, Cai A, Li TT. Covalent Organic Framework-Semiconductor-Based Heterostructures for Photocatalytic Applications. CHEMSUSCHEM 2023; 16:e202300021. [PMID: 36799094 DOI: 10.1002/cssc.202300021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/20/2023]
Abstract
Photocatalysis is a promising and sustainable technology in the fields of energy conversion/storage and environment purification; however, the utilization of individual component as photocatalyst is generally restricted due to the low catalytic activity deriving from the rapid recombination of photogenerated electrons/holes. Covalent organic framework (COF)-semiconductor-based composite photocatalysts with synergistic effects provide a feasible route to achieve high-performance photocatalytic reactions with more active sites, strong light utilization ability, and high stability. In recent years, significant progress has been made in the rational design and preparation of the COF-semiconductors-based heterostructures for photocatalytic water splitting, carbon dioxide (CO2 ) reduction, and dye/pollutant degradation. In this Review, the synthetic strategies of COF-semiconductor-based heterostructures are first introduced, which includes the rational design of the morphology, connection modes, and type of heterojunctions. The performance of COF-semiconductor-based heterostructures in different photocatalytic reactions are comprehensively reviewed. The structure-activity relationship and the synergistic effects within the heterostructures are discussed, and the photocatalytic mechanism and the role of COFs during the photocatalytic process are also presented. Finally, an outlook and challenges of realizing COF-semiconductor-based heterostructures with simple synthesis methods, diverse functions, high performance, and well-defined reaction mechanisms are provided.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Anqi Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
2
|
Wang G, Wu Y, Li Z, Lou Z, Chen Q, Li Y, Wang D, Mao J. Engineering a Copper Single-Atom Electron Bridge to Achieve Efficient Photocatalytic CO 2 Conversion. Angew Chem Int Ed Engl 2023; 62:e202218460. [PMID: 36749548 DOI: 10.1002/anie.202218460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2 RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N-Cu1 -S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2 RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g-1 h-1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N-Cu1 -S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2 RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yan Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zhujie Li
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, P. R. China
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, P. R. China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yifan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
3
|
Xie S, Deng C, Huang Q, Zhang C, Chen C, Zhao J, Sheng H. Facilitated Photocatalytic CO 2 Reduction in Aerobic Environment on a Copper-Porphyrin Metal-Organic Framework. Angew Chem Int Ed Engl 2023; 62:e202216717. [PMID: 36597591 DOI: 10.1002/anie.202216717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Herein, we fabricated a π-π stacking hybrid photocatalyst by combining two two-dimensional (2D) materials: g-C3 N4 and a Cu-porphyrin metal-organic framework (MOF). After an aerobic photocatalytic pretreatment, this hybrid catalyst exhibited an unprecedented ability to photocatalytically reduce CO2 to CO and CH4 under the typical level (20 %) of O2 in the air. Intriguingly, the presence of O2 did not suppress CO2 reduction; instead, a fivefold increase compared with that in the absence of O2 was observed. Structural analysis indicated that during aerobic pretreatment, the Cu node in the 2D-MOF moiety was hydroxylated by the hydroxyl generated from the reduction of O2 . Then the formed hydroxylated Cu node maintained its structure during aerobic CO2 reduction, whereas it underwent structural alteration and was reductively devitalized in the absence of O2 . Theoretical calculations further demonstrated that CO2 reduction, instead of O2 reduction, occurred preferentially on the hydroxylated Cu node.
Collapse
Affiliation(s)
- Shijie Xie
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chaoyuan Deng
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qing Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Sheng
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
4
|
Engelhardt TB, Schmitz‐Stöwe S, Schwarz T, Stöwe K. Investigation of Photocatalyst Composites for Pollutant Degradation in a Microslit Reactor Utilizing High Throughput Screening Techniques. ChemistryOpen 2022; 11:e202200180. [PMID: 36385481 PMCID: PMC9668610 DOI: 10.1002/open.202200180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
The high-throughput screening investigations on TiO2 based photocatalyst composites presented here have been carried out in a 60-fold parallel photoreactor. Additional catalyst testing was performed in a microslit reactor system with immobilized catalysts. For further enhancing the photocatalytic activity of TiO2 (P25), composites of P25 and, for example, Bi2 O3 , CeO2 , g-C3 N4 , WO3 or ZnO were formulated in different nominal molar ratios. The catalysts' performances were assessed by their conversion of 17α-ethinyl estradiol (EE2) in aqueous solutions, determined by LC-MS. Findings show rapid EE2 conversions in short residence times. The extensive testing of catalysts led to the conclusion that the photocatalytic conversion is rather a function of residence time than a function of the materials utilized. This makes adequate process development seem more important than material development. The novelty of this contribution lies in the unique combination of testing a wide range of composite catalysts in a unique microreactor geometry.
Collapse
Affiliation(s)
- Tony B. Engelhardt
- Institute of ChemistryFaculty of Natural SciencesUniversity of Technology ChemnitzStraße der Nationen 6209111ChemnitzGermany
| | - Sabine Schmitz‐Stöwe
- Institute of ChemistryFaculty of Natural SciencesUniversity of Technology ChemnitzStraße der Nationen 6209111ChemnitzGermany
| | - Thomas Schwarz
- Institute of ChemistryFaculty of Natural SciencesUniversity of Technology ChemnitzStraße der Nationen 6209111ChemnitzGermany
| | - Klaus Stöwe
- Institute of ChemistryFaculty of Natural SciencesUniversity of Technology ChemnitzStraße der Nationen 6209111ChemnitzGermany
| |
Collapse
|
5
|
Ai L, Ng SF, Ong WJ. A Prospective Life Cycle Assessment of Electrochemical CO 2 Reduction to Selective Formic Acid and Ethylene. CHEMSUSCHEM 2022; 15:e202200857. [PMID: 35781794 DOI: 10.1002/cssc.202200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Converting CO2 into valuable C1 -C2 chemicals through electrochemical CO2 reduction (ECR) has potential to remedy the ever-increasing climate problems owing to the intensification of industrial activity. In this work, cradle-to-gate life cycle assessment (LCA) was performed to quantify the environmental impacts of formic acid (FA) and ethylene production through ECR benchmarked with the conventional processes. At the midpoint level, global warming potential (GWP) effects of FA and ethylene production through ECR recorded 5.6 and 1.6-times that of the conventional process, respectively. Although ECR currently has limited environmental benefits, the incorporation of hydropower has vast potential after evaluating four sustainable electricity sources, namely hydropower, wind, solar, and biomass. Notably, ECR to FA recorded a 24 % reduction in petrochemical usage. For ethylene production, human health damage, ecosystem damage, and petrochemical use were reduced by 67, 94, and 110 %, respectively. Sensitivity analysis indicated that a sustainable energy supply chain for ECR will accelerate the development of a circular economy.
Collapse
Affiliation(s)
- Ling Ai
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, P. R. China
| |
Collapse
|
6
|
Han W, Liu Y, Yan X, Jiang Y, Zhang J, Gu Z. Integrating Light‐Harvesting Ruthenium(II)‐based Units into Three‐Dimensional Metal Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202208791. [DOI: 10.1002/anie.202208791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wang‐Kang Han
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| | - Yuqin Jiang
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhi‐Guo Gu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| |
Collapse
|
7
|
Han WK, Liu Y, Yan X, Jiang Y, Zhang J, Gu ZG. Integrating Light‐Harvesting Ruthenium(II)‐based Units into Three‐Dimensional Metal Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wang-Kang Han
- Jiangnan University School of Chemical and Material Engineering CHINA
| | - Yong Liu
- Jiangnan University School of Chemical and Material Engineering CHINA
| | - Xiaodong Yan
- Jiangnan University School of Chemical and Material Engineering CHINA
| | - Yuqin Jiang
- Henan Normal University School of Chemical and Material Engineering CHINA
| | - Jiangwei Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis CHINA
| | - Zhi-Guo Gu
- Jiangnan University School of Chemical and Material Engineering, 1800 Lihu Road 214122 Wuxi CHINA
| |
Collapse
|
8
|
Zhang X, Zhang S, Cui X, Zhou W, Cao W, Cheng D, Sun Y. Recent Advances in TiO2-based Photoanodes for Photoelectrochemical Water Splitting. Chem Asian J 2022; 17:e202200668. [PMID: 35925726 DOI: 10.1002/asia.202200668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Indexed: 11/12/2022]
Abstract
Photoelectrochemical (PEC) water splitting has attracted a great attention in the past several decades which holds great promise to address global energy and environmental issues by converting solar energy into hydrogen. However, its low solar-to-hydrogen (STH) conversion efficiency remains a bottleneck for practical application. Developing efficient photoelectrocatalysts with high stability and high STH conversion efficiency is one of the key challenges. As a typical n-type semiconductor, titanium dioxide (TiO 2 ) exhibits high PEC water splitting performance, especially high chemical and photo stability. But, TiO 2 has also disadvantages such as wide band gap and fast electron-hole recombination rate, which seriously hinder its PEC performance. This review focuses on recent development in TiO 2 -based photoanodes as well as some key fundamentals. The corresponding mechanisms and key factors for high STH, and controllable synthesis and modification strategies are highlighted in this review. We conclude finally with an outlook providing a critical perspective on future trends on TiO 2 -based photoanodes for PEC water splitting.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Shanghai University, Department of chemistry, No. 99, Road Shangda, 200444, Shanghai, CHINA
| | | | - Xiaoli Cui
- Fudan University, Department of Materials Science, CHINA
| | - Wei Zhou
- Shanghai University, Department of Chemistry, CHINA
| | - Weimin Cao
- Shanghai University, Department of Chemistry, CHINA
| | | | - Yi Sun
- Shanghai Aerospace Hydrogen Energy Technology Co. Ltd, Department of R & D, CHINA
| |
Collapse
|
9
|
Xin ZK, Huang MY, Wang Y, Gao YJ, Guo Q, Li XB, Tung CH, Wu LZ. Reductive Carbon-Carbon Coupling on Metal Sites Regulates Photocatalytic CO 2 Reduction in Water Using ZnSe Quantum Dots. Angew Chem Int Ed Engl 2022; 61:e202207222. [PMID: 35644851 DOI: 10.1002/anie.202207222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/21/2022]
Abstract
Colloidal quantum dots (QDs) consisting of precious-metal-free elements show attractive potentials towards solar-driven CO2 reduction. However, the inhibition of hydrogen (H2 ) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon-carbon (C-C) coupling reaction to block the competing H2 evolution in photocatalytic CO2 reduction in water. In a specific system taking ZnSe QDs as photocatalysts, the introduction of furfural can significantly suppress H2 evolution leading to CO evolution with a rate of ≈5.3 mmol g-1 h-1 and a turnover number (TON) of >7500 under 24 h visible light. Meanwhile, furfural is upgraded to the self-coupling product with a yield of 99.8 % based on the consumption of furfural. Mechanistic insights show that the reductive furfural coupling reaction occurs on surface Zn-sites to consume electrons and protons originally used for H2 production, while the CO formation pathway at surface anion vacancies from CO2 remains.
Collapse
Affiliation(s)
- Zhi-Kun Xin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Mao-Yong Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Yu-Ji Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Meng Y, Yang S, Li H. Electro- and Photocatalytic Oxidative Upgrading of Bio-based 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202102581. [PMID: 35050546 DOI: 10.1002/cssc.202102581] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Conversion of biomass into biofuels and high value-added chemicals is a promising strategy to solve the increasingly deteriorating environmental problems caused by fossil energy consumption. The development of efficient technologies and methods is the premise and guarantee to realize the high-value conversion of biomass. 5-Hydroxymethylfurfural (HMF), as a versatile biomass platform compound, is generated via dehydration of hexoses (e. g., fructose and glucose) derived from cellulosic biomass. This Review gives an overview of the advances and challenges of electro- and photocatalytic oxidation of biomass-derived HMF to high-value chemicals such as 2,5-formylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). These strategies and methods for the preparation of high-value chemicals by electro- and photocatalytic oxidation of HMF, coupled with, for example, hydrogen evolution reaction, organic substrate reduction, CO2 reduction reaction, or N2 reduction reaction, were summarized and discussed. Moreover, the catalytic efficiency and mechanism of different types of catalysts were also introduced in these conversion systems.
Collapse
Affiliation(s)
- Ye Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| |
Collapse
|
11
|
Xin Z, Huang M, Wang Y, Gao Y, Guo Q, Li X, Tung C, Wu L. Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO
2
Reduction in Water Using ZnSe Quantum Dots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhi‐Kun Xin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 100049 P. R. China
| | - Mao‐Yong Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| | - Yu‐Ji Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 100049 P. R. China
| |
Collapse
|
12
|
Yu Z, Xiao Y, Guo S, Min F, Sun Q, Song R, Li J. Visible Light-Driven Selective Reduction of CO 2 by Acetylene-Bridged Cobalt Porphyrin Conjugated Polymers. CHEMSUSCHEM 2022; 15:e202200424. [PMID: 35445580 DOI: 10.1002/cssc.202200424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic conversion of CO2 into renewable fuels with high efficiency and selectivity is desirable for solar energy utilization, but remains a great challenge. Herein, cobalt(II)-porphyrin functionalized conjugated polymers with acetylene bridging units, assembled through the Sonogashira cross coupling reaction, as heterogeneous catalysts for CO2 photoreduction were presented. Experimental investigations and density functional theory calculations demonstrated the crucial roles of Co centers in porphyrin units for CO2 activation and conversion, while excessive acetylene group prompted the competing hydrogen evolution reaction and reduced the selectivity. Thus, the CoPor-DBBP afforded superior activity for the CO generation with a rate of 286.7 μmol g-1 h-1 and high selectivity of up to 90.4 %. This work presents a new insight for rationally designing of porphyrin-based conjugated polymers as energetic photocatalyst in CO2 reduction.
Collapse
Affiliation(s)
- Zhen Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Yuting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Shien Guo
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Feng Min
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Renjie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Jinheng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Henan, 475004, P. R. China
| |
Collapse
|
13
|
Ou H, Ning S, Zhu P, Chen S, Han A, Kang Q, Hu Z, Ye J, Wang D, Li Y. Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO2 Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Honghui Ou
- Tsinghua University Department of Chemistry CHINA
| | - Shangbo Ning
- Tianjin University School of Materials Science and Engineering CHINA
| | - Peng Zhu
- Tsinghua University Department of Chemistry CHINA
| | | | - Ali Han
- Tsinghua University Department of Chemistry CHINA
| | - Qing Kang
- University of Jinan Department Institute of Surface Analysis and Chemical Biology CHINA
| | - Zhuofeng Hu
- SYSU: Sun Yat-Sen University School of Environmental Science and Engineering CHINA
| | - Jinhua Ye
- Tianjin University School of Materials Science and Engineering CHINA
| | | | - Yadong Li
- Tsinghua University Department of Chemistry District of Haidian 100084 Beijing CHINA
| |
Collapse
|
14
|
Ou H, Ning S, Zhu P, Chen S, Han A, Kang Q, Hu Z, Ye J, Wang D, Li Y. Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO 2 Conversion. Angew Chem Int Ed Engl 2022; 61:e202206579. [PMID: 35715933 DOI: 10.1002/anie.202206579] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Single-atom active-site catalysts have attracted significant attention in the field of photocatalytic CO2 conversion. However, designing active sites for CO2 reduction and H2 O oxidation simultaneously on a photocatalyst and combining the corresponding half-reaction in a photocatalytic system is still difficult. Here, we synthesized a bimetallic single-atom active-site photocatalyst with two compatible active centers of Mn and Co on carbon nitride (Mn1 Co1 /CN). Our experimental results and density functional theory calculations showed that the active center of Mn promotes H2 O oxidation by accumulating photogenerated holes. In addition, the active center of Co promotes CO2 activation by increasing the bond length and bond angle of CO2 molecules. Benefiting from the synergistic effect of the atomic active centers, the synthesized Mn1 Co1 /CN exhibited a CO production rate of 47 μmol g-1 h-1 , which is significantly higher than that of the corresponding single-metal active-site photocatalyst.
Collapse
Affiliation(s)
- Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shangbo Ning
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,Department Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ali Han
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing Kang
- Department Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0047, Japan
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
15
|
Guo Y, Liang Z, Xue Y, Wang X, Zhang X, Tian J. A cation exchange strategy to construct Rod-shell CdS/Cu 2S nanostructures for broad spectrum photocatalytic hydrogen production. J Colloid Interface Sci 2022; 608:158-163. [PMID: 34626963 DOI: 10.1016/j.jcis.2021.09.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Herein, Cu2S as the outer shell is grown on CdS nanorods (NRs) to construct rod-shell nanostructures (CdS/Cu2S) by a rapid, scalable and facile cation exchange reaction. The CdS NRs are firstly synthesized by a hydrothermal route, in which thiourea as the precursor of sulfur and ethylenediamine (EDA) as the solvent. And then, the outer shells of CdS NRs are successfully exchanged by Cu2S via a cation exchange reaction. The obtained CdS/Cu2S rod-shell NRs exhibit much enhanced activity of hydrogen production (640.95 μmol h-1 g-1) in comparison with pure CdS NRs (74.1 μmol h-1 g-1) and pure Cu2S NRs (0 μmol h-1 g-1). The enhanced photocatalytic activity of CdS/Cu2S rod-shell NRs owns to the following points: i) the photogenerated electrons generated by CdS quickly migrate to Cu2S without any barrier due to rod-shell structure by the in-situ cation exchange reaction, a decreased carrier recombination is achieved; ii) Cu2S as outer shells broaden the light absorption range of CdS/Cu2S rod-shell NRs into visible or even NIR light, which can produce more electrons and holes. This work inspires people to further study the rod-shell structured photocatalyst through the cation exchange strategy to further solar energy conversion.
Collapse
Affiliation(s)
- Yichen Guo
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhangqian Liang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanjun Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinyu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
16
|
Wang J, Kim E, Kumar DP, Rangappa AP, Kim Y, Zhang Y, Kim TK. Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO
2
Photoreduction to CH
4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinming Wang
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Eunhyo Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | | | | | - Yujin Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430072 China
| | - Tae Kyu Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
17
|
Wang J, Kim E, Kumar DP, Rangappa AP, Kim Y, Zhang Y, Kim TK. Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO 2 Photoreduction to CH 4. Angew Chem Int Ed Engl 2021; 61:e202113044. [PMID: 34750936 DOI: 10.1002/anie.202113044] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Indexed: 11/07/2022]
Abstract
Dual-atom-site catalysts (DACs) have emerged as a new frontier in heterogeneous catalysis because the synergistic effect between adjacent metal atoms can promote their catalytic activity while maintaining the advantages of single-atom-site catalysts, such as almost 100 % atomic efficiency and excellent hydrocarbon selectivity. In this study, cobalt-based atom site catalysts with a Co2 -N coordination structure were synthesized and used for photodriven CO2 reduction. The resulting CoDAC containing 3.5 % Co atoms demonstrated a superior atom ratio for CO2 reduction catalytic performance, with 65.0 % CH4 selectivity, which far exceeds that of cobalt-based single-atom-site catalysts (CoSACs). The intrinsic reason for the superior activity of CoDACs is the excellent adsorption strength of CO2 and CO* intermediates at dimeric Co active sites.
Collapse
Affiliation(s)
- Jinming Wang
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunhyo Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | | | | | - Yujin Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430072, China
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
18
|
Bian J, Zhang Z, Feng J, Thangamuthu M, Yang F, Sun L, Li Z, Qu Y, Tang D, Lin Z, Bai F, Tang J, Jing L. Energy Platform for Directed Charge Transfer in the Cascade Z‐Scheme Heterojunction: CO
2
Photoreduction without a Cocatalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji Bian
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) School of Chemistry and Materials Science International Joint Research Center and Lab for Catalytic Technology Heilongjiang University Harbin 150080 P. R. China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Ziqing Zhang
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) School of Chemistry and Materials Science International Joint Research Center and Lab for Catalytic Technology Heilongjiang University Harbin 150080 P. R. China
| | - Jiannan Feng
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) School of Chemistry and Materials Science International Joint Research Center and Lab for Catalytic Technology Heilongjiang University Harbin 150080 P. R. China
| | - Madasamy Thangamuthu
- Department of Chemical Engineering University College London Torrington Place London WC1E 7JE UK
| | - Fan Yang
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) School of Chemistry and Materials Science International Joint Research Center and Lab for Catalytic Technology Heilongjiang University Harbin 150080 P. R. China
| | - Ling Sun
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) School of Chemistry and Materials Science International Joint Research Center and Lab for Catalytic Technology Heilongjiang University Harbin 150080 P. R. China
| | - Zhijun Li
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) School of Chemistry and Materials Science International Joint Research Center and Lab for Catalytic Technology Heilongjiang University Harbin 150080 P. R. China
| | - Yang Qu
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) School of Chemistry and Materials Science International Joint Research Center and Lab for Catalytic Technology Heilongjiang University Harbin 150080 P. R. China
| | - Dongyan Tang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Zewei Lin
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Fuquan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry Institute of Theoretical Chemistry and College of Chemistry Jilin University Changchun 130021 P. R. China
| | - Junwang Tang
- Department of Chemical Engineering University College London Torrington Place London WC1E 7JE UK
| | - Liqiang Jing
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) School of Chemistry and Materials Science International Joint Research Center and Lab for Catalytic Technology Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
19
|
Bian J, Zhang Z, Feng J, Thangamuthu M, Yang F, Sun L, Li Z, Qu Y, Tang D, Lin Z, Bai F, Tang J, Jing L. Energy Platform for Directed Charge Transfer in the Cascade Z-Scheme Heterojunction: CO 2 Photoreduction without a Cocatalyst. Angew Chem Int Ed Engl 2021; 60:20906-20914. [PMID: 34255409 PMCID: PMC8518548 DOI: 10.1002/anie.202106929] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 01/02/2023]
Abstract
A universal strategy is developed to construct a cascade Z‐Scheme system, in which an effective energy platform is the core to direct charge transfer and separation, blocking the unexpected type‐II charge transfer pathway. The dimension‐matched (001)TiO2‐g‐C3N4/BiVO4 nanosheet heterojunction (T‐CN/BVNS) is the first such model. The optimized cascade Z‐Scheme exhibits ≈19‐fold photoactivity improvement for CO2 reduction to CO in the absence of cocatalysts and costly sacrificial agents under visible‐light irradiation, compared with BVNS, which is also superior to other reported Z‐Scheme systems even with noble metals as mediators. The experimental results and DFT calculations based on van der Waals structural models on the ultrafast timescale reveal that the introduced T as the platform prolongs the lifetimes of spatially separated electrons and holes and does not compromise their reduction and oxidation potentials.
Collapse
Affiliation(s)
- Ji Bian
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ziqing Zhang
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jiannan Feng
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Madasamy Thangamuthu
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Fan Yang
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ling Sun
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhijun Li
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yang Qu
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Dongyan Tang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zewei Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fuquan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Liqiang Jing
- Department Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
20
|
Shen M, Zhang L, Shi J. Defect Engineering of Photocatalysts towards Elevated CO 2 Reduction Performance. CHEMSUSCHEM 2021; 14:2635-2654. [PMID: 33872463 DOI: 10.1002/cssc.202100677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic CO2 reduction provides a promising solution to address the crises of massive CO2 emissions and fossil energy shortages. As one of the most effective strategies to promote CO2 photoconversion, defect engineering shows great potential in modulating the electronic structure and light absorption properties of photocatalysts while increasing surface active sites for CO2 activation and conversion. This Review summarizes the recent progress in defect engineering of photocatalysts to promote CO2 reduction performances from the following four aspects: 1) Approaches to defect (mainly vacancy and dopant) generation in photocatalysts; 2) defect structure characterization techniques; 3) physical and chemical properties of defect-engineered photocatalysts; 4) CO2 reduction performance enhancements in activity, selectivity, and stability of photocatalysts by defect engineering. This Review is expected to present readers with a comprehensive view of progress in the field of photocatalytic CO2 reduction through defect engineering for elevated CO2 -to-fuels conversion efficiency.
Collapse
Affiliation(s)
- Meng Shen
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
| | - Lingxia Zhang
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Jianlin Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Akinoglu EM, Hoogeveen DA, Cao C, Simonov AN, Jasieniak JJ. Prospects of Z-Scheme Photocatalytic Systems Based on Metal Halide Perovskites. ACS NANO 2021; 15:7860-7878. [PMID: 33891396 DOI: 10.1021/acsnano.0c10387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Considering the attractive optoelectronic properties of metal halide perovskites (MHPs), their introduction to the field of photocatalysis was only a matter of time. Thus far, MHPs have been explored for the photocatalytic generation of hydrogen, carbon dioxide reduction, organic synthesis, and pollutant degradation applications. Of growing research interest and possible applied significance are the currently emerging developments of MHP-based Z-scheme heterostructures, which can potentially enable efficient photocatalysis of highly energy-demanding redox processes. In this Perspective, we discuss the advantages and limitations of MHPs compared to traditional semiconductor materials for applications as photocatalysts and describe emerging examples in the construction of MHP-based Z-scheme systems. We discuss the principles and material properties that are required for the development of such Z-scheme heterostructure photocatalysts and consider the ongoing challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Eser M Akinoglu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dijon A Hoogeveen
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Chang Cao
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Alexandr N Simonov
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Jacek J Jasieniak
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Yuan L, Qi MY, Tang ZR, Xu YJ. Coupling Strategy for CO 2 Valorization Integrated with Organic Synthesis by Heterogeneous Photocatalysis. Angew Chem Int Ed Engl 2021; 60:21150-21172. [PMID: 33908154 DOI: 10.1002/anie.202101667] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 11/10/2022]
Abstract
Photocatalytic reduction of CO2 to solar fuels and/or fine chemicals is a promising way to increase the energy supply and reduce greenhouse gas emissions. However, the conventional reaction system for CO2 photoreduction with pure H2 O or sacrificial agents usually suffers from low catalytic efficiency, poor stability, or cost-ineffective atom economy. A recent surge of developments, in which photocatalytic CO2 valorization is integrated with selective organic synthesis into one reaction system, indicates an efficient modus operandi that enables sufficient utilization of photogenerated electrons and holes to achieve the goals for sustainable economic and social development. In this Review we discuss current advances in cooperative photoredox reaction systems that integrate CO2 valorization with organics upgrading based on heterogeneous photocatalysis. The applications and virtues of this strategy and the underlying reaction mechanisms are discussed. The ongoing challenges and prospects in this area are critically discussed.
Collapse
Affiliation(s)
- Lan Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
23
|
Yuan L, Qi M, Tang Z, Xu Y. Coupling Strategy for CO
2
Valorization Integrated with Organic Synthesis by Heterogeneous Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lan Yuan
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 China
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350116 China
| | - Ming‐Yu Qi
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350116 China
| | - Zi‐Rong Tang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350116 China
| | - Yi‐Jun Xu
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350116 China
| |
Collapse
|
24
|
Zhao L, Zhao Z, Li Y, Chu X, Li Z, Qu Y, Bai L, Jing L. The synthesis of interface-modulated ultrathin Ni(ii) MOF/g-C 3N 4 heterojunctions as efficient photocatalysts for CO 2 reduction. NANOSCALE 2020; 12:10010-10018. [PMID: 32350498 DOI: 10.1039/d0nr02551h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is highly desirable to improve charge separation and to provide catalytic functions for the efficient photocatalytic CO2 reduction reaction (CO2RR) on g-C3N4 (CN). Here, dimension-matched ultrathin NiMOF/CN heterojunctions have been successfully constructed by the in situ growth of NiMOF nanosheets on hydroxylated and 1,4-aminobenzoic acid (AA) functionalized CN nanosheets, respectively, with ultrasonic assistance. The resultant NiMOF/CN heterojunctions exhibited excellent photocatalytic activities for the CO2RR to produce CO and CH4, especially NiMOF/CN-AA, which had photoactivity 18 times higher than that of bare CN. Based on the surface photovoltage responses, wavelength-dependent photocurrent action spectra, electrochemical impedance spectra, and CO2 electrochemical reduction data, it is clearly confirmed that the exceptional photoactivity mainly resulted from the favorable charge transport properties of ultrathin CN and coupled NiMOF, and from the greatly enhanced charge separation via excited high-level electron transfer from CN to NiMOF in the resultant intimately contacted heterojunction caused by the induction effect of AA, and also from the provided catalytic functionality of the central Ni(ii) for CO2 activation. This work provides a feasible synthetic protocol to fabricate MOF-containing dimension-matched heterojunctions with good charge separation for efficient photocatalysis.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao X, Fan Y, Zhang W, Zhang X, Han D, Niu L, Ivaska A. Nanoengineering Construction of Cu2O Nanowire Arrays Encapsulated with g-C3N4 as 3D Spatial Reticulation All-Solid-State Direct Z-Scheme Photocatalysts for Photocatalytic Reduction of Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01033] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, CAS Center for Excellence in Nanoscience, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Yingying Fan
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, c/o MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wensheng Zhang
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, c/o MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Zhang
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, c/o MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, CAS Center for Excellence in Nanoscience, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, c/o MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, CAS Center for Excellence in Nanoscience, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, c/o MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ari Ivaska
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, c/o MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
- Laboratory of Analytical Chemistry, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, Åbo-Turku FI-20500, Finland
| |
Collapse
|
26
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|