1
|
Xue W, Wu K, Ouyang N, Brotin T, Nitschke JR. Allosterically Regulated Guest Binding Determines Framework Symmetry for an Fe II 4 L 4 Cage. Angew Chem Int Ed Engl 2023; 62:e202301319. [PMID: 36866857 PMCID: PMC10947561 DOI: 10.1002/anie.202301319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Self-assembly of a flexible tritopic aniline and 3-substituted 2-formylpyridine subcomponents around iron(II) templates gave rise to a low-spin FeII 4 L4 capsule, whereas a high-spin FeII 3 L2 sandwich species formed when a sterically hindered 6-methyl-2-formylpyridine was used. The FeII 4 L4 cage adopted a new structure type with S4 symmetry, having two mer-Δ and two mer-Ʌ metal vertices, as confirmed by NMR and X-ray crystallographic analysis. The flexibility of the face-capping ligand endows the resulting FeII 4 L4 framework with conformational plasticity, enabling it to adapt structurally from S4 to T or C3 symmetry upon guest binding. The cage also displayed negative allosteric cooperativity in simultaneously binding different guests within its cavity and at the apertures between its faces.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kai Wu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Nianfeng Ouyang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Thierry Brotin
- Laboratoire de chimieUniversité LyonEns de Lyon, CNRS UMR 518269342LyonFrance
| | | |
Collapse
|
2
|
Lewis JEM. Pseudo-heterolepticity in Low-Symmetry Metal-Organic Cages. Angew Chem Int Ed Engl 2022; 61:e202212392. [PMID: 36074024 PMCID: PMC9828238 DOI: 10.1002/anie.202212392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/12/2023]
Abstract
Heteroleptic metal-organic cages, formed through integrative self-assembly of ligand mixtures, are highly attractive as reduced symmetry supramolecular hosts. Ensuring high-fidelity, non-statistical self-assembly, however, presents a significant challenge in molecular engineering due to the inherent difficulty in predicting thermodynamic energy landscapes. In this work, two conceptual strategies are described that circumvent this issue, using ligand design strategies to access structurally sophisticated metal-organic hosts. Using these approaches, it was possible to realise cavity environments described by two inequivalent, unsymmetrical ligand frameworks, representing a significant step forward in the construction of highly anisotropic confined spaces.
Collapse
Affiliation(s)
- James E. M. Lewis
- School of ChemistryUniversity of BirminghamEdgbastonBirmingham B15 2TTUK
- Previous address: Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
3
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Lewis J. Pseudo‐heterolepticity in Low‐Symmetry Metal‐Organic Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James Lewis
- University of Birmingham School of Chemistry Edgbaston B15 2TT Birmingham UNITED KINGDOM
| |
Collapse
|
5
|
Cruz-Nava S, Valencia-Loza SDJ, Percástegui EG. Protection and Transformation of Natural Products within Aqueous Metal–Organic Cages. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sofía Cruz-Nava
- National Autonomous University of Mexico Faculty of Science: Universidad Nacional Autonoma de Mexico Facultad de Ciencias Institute of Chemistry MEXICO
| | | | - Edmundo Guzmán Percástegui
- Universidad Nacional Autónoma de México: Universidad Nacional Autonoma de Mexico Instituto de Química Instituto de Química at CCIQS UAEM-UNAM MEXICO
| |
Collapse
|
6
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
7
|
Xu C, Lin Q, Shan C, Han X, Wang H, Wang H, Zhang W, Chen Z, Guo C, Xie Y, Yu X, Song B, Song H, Wojtas L, Li X. Metallo‐Supramolecular Octahedral Cages with Three Types of Chirality towards Spontaneous Resolution. Angew Chem Int Ed Engl 2022; 61:e202203099. [DOI: 10.1002/anie.202203099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Chen Xu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Quanjie Lin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xin Han
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Hao Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Yinghao Xie
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Heng Song
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| |
Collapse
|
8
|
Xu C, Lin Q, Shan C, Han X, Wang H, Wang H, Zhang W, Chen Z, Guo C, Xie Y, Yu X, Song B, Song H, Wojtas L, Li X. Metallo‐Supramolecular Octahedral Cages with Three Types of Chirality towards Spontaneous Resolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Xu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Quanjie Lin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xin Han
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Hao Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Yinghao Xie
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Heng Song
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| |
Collapse
|
9
|
Vatsadze SZ, Maximov AL, Bukhtiyarov VI. Supramolecular Effects and Systems in Catalysis. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liu C, Chen Z, Teng K, Tong W, Zhang Y, Chee W, An Q. Enzyme‐Mimetic Molecular Selective Catalysis via Single Zr Atom Catalysis in Chelated Cage Embedded in a Flexible Piezoelectrical Matrix. Chemistry 2022; 28:e202104287. [DOI: 10.1002/chem.202104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences, Beijing Beijing 100083 P. R. China
| | - Zhensheng Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences, Beijing Beijing 100083 P. R. China
| | - Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences, Beijing Beijing 100083 P. R. China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences, Beijing Beijing 100083 P. R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences, Beijing Beijing 100083 P. R. China
| | - Whowwei Chee
- Micron Semiconductor Asia 75743 Singapore Singapore
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences, Beijing Beijing 100083 P. R. China
| |
Collapse
|
11
|
Shi WJ, Liu D, Li X, Bai S, Wang YY, Han YF. Supramolecular Coordination Cages Based on N-Heterocyclic Carbene-Gold(I) Ligands and Their Precursors: Self-Assembly, Structural Transformation and Guest-Binding Properties. Chemistry 2021; 27:7853-7861. [PMID: 33780062 DOI: 10.1002/chem.202100710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 01/11/2023]
Abstract
The incorporation of functional groups into the cavity of discrete supramolecular coordination cages (SCCs) will bring unique functions and applications. Here, three dicarboxylate ligands (H2 L1Cl, H2 L2Cl and H2 L3Cl) containing N-heterocyclic carbene (NHC) precursors as linkers were introduced to construct SCCs by combining with two C3 -symmertic (CpZr)3 (μ3 -O)(μ2 -OH)3 clusters as three-connect vertices, resulted in a series of rugby-like V2 E3 (V=vertex, E=edge) type homoleptic cages (SCC-1, SCC-2 and SCC-3). However, V4 E6 -type tetrahedral cages (SCC-4 and SCC-5), incorporating six Au-NHC moieties, were obtained when the corresponding NHC-gold(I) functionalized ligands (H2 L1Au , H2 L2Au ) were applied. For the first time, we present a trackable CpZr-involved cage to cage conversion to generate a heteroleptic V2 E3 cage (SCC-6) from two homoleptic cages (SCC-2 and SCC-5) with different geometries of V2 E3 and V4 E6 . The heteroleptic assembly SCC-6 can also be formed upon a subcomponent displacement strategy. The structural transformation and reassembly processes were detected and monitored by 1 H NMR spectroscopy and electrospray-ionization mass spectrometry. The formation of heteroleptic assembly was further supported by single crystal X-ray diffraction analysis. Moreover, homoleptic cage SCC-2 possesses a trigonal bipyramidal cationic cavity allowing the encapsulation of a series of sulfonate anionic guests.
Collapse
Affiliation(s)
- Wen-Jie Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Dan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
12
|
Liu C, Zhang Y, An Q. Functional Material Systems Based on Soft Cages. Chem Asian J 2021; 16:1198-1215. [PMID: 33742742 DOI: 10.1002/asia.202100178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Indexed: 01/28/2023]
Abstract
Discrete molecular soft cages integrate multiple functionalities in one molecule. They express their functions from the confined space in their cavity, functional groups in the cavity interior wall and exterior wall, and the chelating nodes in many chelating cages. Such functional integrity render cage molecules special applications in material engineering. Increasing applications of cage molecules in material design have been reported in recent years. Compared with other cavity-rich molecular structures such as metal-organic framework (MOF) or covalent organic frameworks (COF), discrete soft cages present the unique advantage of material design flexibility, that they can easily composite with nanoparticles or polymers and exist in materials of various forms. We document the development of cage-based materials in recent years and expect to further inspire materials engineering to integrate contribution from the functionality specificity of cage molecules and ultimately promote the development of functional materials and thus human life qualities.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Yihe Zhang
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
13
|
Ngai C, Sanchez‐Marsetti CM, Harman WH, Hooley RJ. Supramolecular Catalysis of the oxa‐Pictet–Spengler Reaction with an Endohedrally Functionalized Self‐Assembled Cage Complex. Angew Chem Int Ed Engl 2020; 59:23505-23509. [DOI: 10.1002/anie.202009553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Courtney Ngai
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA 92521 USA
| | - Colomba M. Sanchez‐Marsetti
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA 92521 USA
| | - W. Hill Harman
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA 92521 USA
| | - Richard J. Hooley
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA 92521 USA
| |
Collapse
|
14
|
Supramolecular Catalysis of the oxa‐Pictet–Spengler Reaction with an Endohedrally Functionalized Self‐Assembled Cage Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Li Y, Huo GF, Liu B, Song B, Zhang Y, Qian X, Wang H, Yin GQ, Filosa A, Sun W, Hla SW, Yang HB, Li X. Giant Concentric Metallosupramolecule with Aggregation-Induced Phosphorescent Emission. J Am Chem Soc 2020; 142:14638-14648. [DOI: 10.1021/jacs.0c06680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Gui-Fei Huo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Zhang
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Xiaomin Qian
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Alexander Filosa
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Saw Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|