1
|
Ibrahim S, Umer Khan M, Khurram I, Rehman R, Rauf A, Ahmad Z, Aljohani ASM, Al Abdulmonem W, Quradha MM. Navigating PROTACs in Cancer Therapy: Advancements, Challenges, and Future Horizons. Food Sci Nutr 2025; 13:e70011. [PMID: 39898116 PMCID: PMC11786021 DOI: 10.1002/fsn3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Proteolysis Targeting Chimeras (PROTACs) have revolutionized cancer therapy by offering a selective and innovative approach to degrade key oncogenic proteins associated with various malignancies. These hybrid molecules exploit the ubiquitin-proteasome system, facilitating the degradation of target proteins through an event-driven mechanism, thereby overcoming drug resistance and enhancing selectivity. With diverse targets including androgen receptors, BTK, estrogen receptors, BET proteins, and BRAF, PROTACs offer a versatile strategy for personalized cancer treatment. Advantages of PROTACs over traditional small molecule inhibitors include their ability to operate at lower concentrations, catalyzing the degradation of multiple proteins of interest with reduced cytotoxicity. Notably, PROTACs address challenges associated with traditionally "undruggable" targets, expanding the therapeutic landscape of cancer therapy. Ongoing preclinical and clinical studies highlight the transformative potential of PROTACs, with promising results in prostate, breast, lung, melanoma, and colorectal cancers. Despite their potential, challenges persist in optimizing physicochemical properties and enhancing bioavailability. Further research is needed to refine PROTAC design and address complexities in molecule development. Nevertheless, the development of oral androgen receptor PROTACs represents a significant milestone, demonstrating the feasibility and efficacy of this innovative therapeutic approach. This review provides a comprehensive overview of PROTACs in cancer therapy, emphasizing their mechanism of action, advantages, and challenges. As PROTAC research progresses, continued exploration in both preclinical and clinical settings will be crucial to unlocking their full therapeutic potential and shaping the future of personalized cancer treatment.
Collapse
Affiliation(s)
- Saooda Ibrahim
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- Centre for Applied Molecular BiologyUniversity of the PunjabLahorePakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Iqra Khurram
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- Centre for Applied Molecular BiologyUniversity of the PunjabLahorePakistan
| | - Raima Rehman
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabiKhyber PakhtunkhwaPakistan
| | - Zubair Ahmad
- Department of ChemistryUniversity of SwabiSwabiKhyber PakhtunkhwaPakistan
| | - Abdullah S. M. Aljohani
- Department of Medical BiosciencesCollege of Veterinary Medicine, Qassim UniversityBuraydahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of PathologyCollege of Medicine, Qassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
2
|
Koirala M, DiPaola M. Targeting CDK9 in Cancer: An Integrated Approach of Combining In Silico Screening with Experimental Validation for Novel Degraders. Curr Issues Mol Biol 2024; 46:1713-1730. [PMID: 38534727 DOI: 10.3390/cimb46030111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The persistent threat of cancer remains a significant hurdle for global health, prompting the exploration of innovative approaches in the quest for successful therapeutic interventions. Cyclin-dependent kinase 9 (CDK9), a central player in transcription regulation and cell cycle progression, has emerged as a promising target to combat cancer. Its pivotal role in oncogenic pathways and the pressing need for novel cancer treatments has propelled CDK9 into the spotlight of drug discovery efforts. This article presents a comprehensive study that connects a multidisciplinary approach, combining computational methodologies, experimental validation, and the transformative Proteolysis-Targeting Chimera (PROTAC) technology. By uniting these diverse techniques, we aim to identify, characterize, and optimize a new class of degraders targeting CDK9. We explore these compounds for targeted protein degradation, offering a novel and potentially effective approach to cancer therapy. This cohesive strategy utilizes the combination of computational predictions and experimental insights, with the goal of advancing the development of effective anticancer therapeutics, targeting CDK9.
Collapse
|
3
|
Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: Insight and foresight. Biochim Biophys Acta Rev Cancer 2023; 1878:188967. [PMID: 37657684 DOI: 10.1016/j.bbcan.2023.188967] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) actively involves in modulation of various cancer progression related mechanisms including angiogenesis, differentiation and migration. Therefore, targeting EGFR has surfaced as a prominent approach for the treatment of several types of cancers, including non-small cell lung cancer (NSCLC), pancreatic cancer, glioblastoma. Various first, second and third generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated effectiveness as an anti-cancer therapeutics. However, rapid development of drug resistance and mutations still remains a major challenge for the EGFR-TKIs therapy. Overcoming from intrinsic and acquired resistance caused by EGFR mutations warrants the further exploration of alternative strategies and discovery of novel inhibitors. In this review, we delve into the breakthrough discoveries have been made in previous 20 years, and discuss the currently ongoing efforts aimed to circumvent the chemo-resistance. We also highlight the new challenges, limitations and future directions for the development of improved therapeutic approaches such as fourth-generation EGFR-TKIs, peptides, nanobodies, PROTACs etc.
Collapse
Affiliation(s)
- Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India.
| |
Collapse
|
4
|
Kelm JM, Pandey DS, Malin E, Kansou H, Arora S, Kumar R, Gavande NS. PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Mol Cancer 2023; 22:62. [PMID: 36991452 PMCID: PMC10061819 DOI: 10.1186/s12943-022-01707-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 03/31/2023] Open
Abstract
Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design.
Collapse
Affiliation(s)
- Jeremy M Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Deepti S Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Evan Malin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Hussein Kansou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
6
|
Wu Y, Lin B, Lu Y, Li L, Deng K, Zhang S, Zhang H, Yang C, Zhu Z. Aptamer-LYTACs for Targeted Degradation of Extracellular and Membrane Proteins. Angew Chem Int Ed Engl 2023; 62:e202218106. [PMID: 36722696 DOI: 10.1002/anie.202218106] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/02/2023]
Abstract
Recently, lysosome targeting chimeras (LYTACs) have emerged as a promising technology that expands the scope of targeted protein degradation to extracellular targets. However, the preparation of chimeras by conjugation of the antibody and trivalent N-acetylgalactosamine (tri-GalNAc) is a complex and time-consuming process. The large uncertainty in number and position and the large molecular weights of the chimeras result in low internalization efficiency. To circumvent these problems, we developed the first aptamer-based LYTAC (Apt-LYTAC) to realize liver-cell-specific degradation of extracellular and membrane proteins by conjugating aptamers to tri-GalNAc. Taking advantage of the facile synthesis and low molecular weight of the aptamer, the Apt-LYTACs can efficiently and quickly degrade the extracellular protein PDGF and the membrane protein PTK7 through a lysosomal degradation pathway. We anticipate that the novel Apt-LYTACs will expand the usage of aptamers and provide a new dimension for targeted protein degradation.
Collapse
Affiliation(s)
- Yuqi Wu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bingqian Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yinzhu Lu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Liang Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Kunyue Deng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Suhui Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huiming Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Liu J, Peng Y, Inuzuka H, Wei W. Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Semin Cancer Biol 2022; 86:269-279. [PMID: 35798235 PMCID: PMC11000491 DOI: 10.1016/j.semcancer.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 10/31/2022]
Abstract
Tumor microenvironment (TME) composes of multiple cell types and non-cellular components, which supports the proliferation, metastasis and immune surveillance evasion of tumor cells, as well as accounts for the resistance to therapies. Therefore, therapeutic strategies using small molecule inhibitors (SMIs) and antibodies to block potential targets in TME are practical for cancer treatment. Targeted protein degradation using PROteolysis-TArgeting Chimera (PROTAC) technic has several advantages over traditional SMIs and antibodies, including overcoming drug resistance. Thus many PROTACs are currently under development for cancer treatment. In this review, we summarize the recent progress of PROTAC development that target TME pathways and propose the potential direction of future PROTAC technique to advance as novel cancer treatment options.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
8
|
O Aboelez M, Belal A, Xiang G, Ma X. Design, synthesis, and molecular docking studies of novel pomalidomide-based PROTACs as potential anti-cancer agents targeting EGFR WT and EGFR T790M. J Enzyme Inhib Med Chem 2022; 37:1196-1211. [PMID: 35470756 PMCID: PMC9067978 DOI: 10.1080/14756366.2022.2062338] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A new class of EGFR PROTACs based on pomalidomide was developed, synthesised, and tested for their cytotoxic activity against a panel of human cancer cells. Compounds 15–21 were showed to be more effective against the four tested cell lines than erlotinib. In particular, compound 16 was found to be the most potent counterpart as it was 5.55, 4.34, 5.04, and 7.18 times more active than erlotinib against MCF-7, HepG-2, HCT-116, and A549 cells, respectively. Compound 15 was revealed to be more active than doxorubicin against the four tested cell lines. Furthermore, the most potent cytotoxic compounds were studied further for their kinase inhibitory effects against EGFRWT and EGFRT790M using HTRF test. Compound 16 showed to be the most effective against both kinds of EGFR, with IC50 values of 0.10 and 4.02 µM, respectively. Compound 16 could effectively degrade EGFR protein through ubiquitination (Dmax = 96%) at 72 h in the tested cells.
Collapse
Affiliation(s)
- Moustafa O Aboelez
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Li X, Pu W, Zheng Q, Ai M, Chen S, Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol Cancer 2022; 21:99. [PMID: 35410300 PMCID: PMC8996410 DOI: 10.1186/s12943-021-01434-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
AbstractProteolysis-targeting chimeras (PROTACs) are engineered techniques for targeted protein degradation. A bifunctional PROTAC molecule with two covalently-linked ligands recruits target protein and E3 ubiquitin ligase together to trigger proteasomal degradation of target protein by the ubiquitin-proteasome system. PROTAC has emerged as a promising approach for targeted therapy in various diseases, particularly in cancers. In this review, we introduce the principle and development of PROTAC technology, as well as the advantages of PROTACs over traditional anti-cancer therapies. Moreover, we summarize the application of PROTACs in targeting critical oncoproteins, provide the guidelines for the molecular design of PROTACs and discuss the challenges in the targeted degradation by PROTACs.
Collapse
|
10
|
Miao Y, Gao Q, Mao M, Zhang C, Yang L, Yang Y, Han D. Bispecific Aptamer Chimeras Enable Targeted Protein Degradation on Cell Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanyan Miao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Qianqian Gao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Menghan Mao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Chao Zhang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Liqun Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
11
|
Miao Y, Gao Q, Mao M, Zhang C, Yang L, Yang Y, Han D. Bispecific Aptamer Chimeras Enable Targeted Protein Degradation on Cell Membranes. Angew Chem Int Ed Engl 2021; 60:11267-11271. [PMID: 33634555 DOI: 10.1002/anie.202102170] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/12/2022]
Abstract
The ability to regulate membrane protein abundance offers great opportunities for developing therapeutic sites for various diseases. Herein, we describe a platform for the targeted degradation of membrane-associated proteins using bispecific aptamer chimeras that bind both the cell-surface lysosome-shuttling receptor (IGFIIR) and the targeted membrane-bound proteins of interest. We demonstrate that the aptamer chimeras can efficiently and quickly shuttle the therapeutically relevant membrane proteins of Met and PTK-7 to lysosomes and degrade them through the lysosomal protein degradation machinery. We anticipate that our method will provide a universal platform for the use of readily synthesized aptamer materials for biochemical research and potential therapeutics.
Collapse
Affiliation(s)
- Yanyan Miao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qianqian Gao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Menghan Mao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chao Zhang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liqun Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
12
|
Tripathi SK, Biswal BK. Allosteric mutant-selective fourth-generation EGFR inhibitors as an efficient combination therapeutic in the treatment of non-small cell lung carcinoma. Drug Discov Today 2021; 26:1466-1472. [PMID: 33581322 DOI: 10.1016/j.drudis.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) show most preferable treatment for non-small cell lung carcinoma (NSCLC) with EGFR activating mutations. Despite initial impressive response of first-, to third-generation EGFR-TKIs, these agents become ineffective because of rapid emergence of EGFR mutations (T790M or C797S) mediated resistance. Allosteric mutant-selective fourth-generation EGFR inhibitors appeared to be possible therapeutic option to overcome resistance. These EGFR inhibitors are less effective as a single agent but provide synergistic effect as a combinatorial drug with conventional chemo- or immunotherapeutic. Here, we aim to highlight the comprehensive overview on combined therapeutic efficacy of allosteric EGFR inhibitors for the treatment of EGFR mutant NSCLC.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
13
|
Sinclair JKL, Robertson WE, Mozumdar D, Quach K, Schepartz A. Allosteric Inhibition of the Epidermal Growth Factor Receptor. Biochemistry 2021; 60:500-512. [PMID: 33557518 DOI: 10.1021/acs.biochem.0c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously reported a family of hydrocarbon-stapled peptides designed to interact with the epidermal growth factor receptor (EGFR) juxtamembrane (JM) segment, blocking its ability to form a coiled coil dimer that is essential for receptor activation. These hydrocarbon-stapled peptides, most notably E1S, decreased the proliferation of cell lines that express wild-type EGFR (H2030 and A431) as well as those expressing the oncogenic mutants EGFR L858R (H3255) and L858R/T790M (H1975). Although our previous investigations provided evidence that E1S interacted with EGFR directly, the location and details of these interactions were not established. Here we apply biochemical and cross-linking mass spectrometry tools to better define the interactions between E1S and EGFR. Taken with previously reported structure-activity relationships, our results support a model in which E1S interacts simultaneously with both the JM and the C-lobe of the activator kinase, effectively displacing the JM of the receiver kinase. Our results also reveal potential interactions between E1S and the N-terminal region of the C-terminal tail. We propose a model in which E1S inhibits EGFR by both mimicking and inhibiting JM coiled coil formation. This model could be used to design novel, allosteric (and perhaps nonpeptidic) EGFR inhibitors.
Collapse
Affiliation(s)
- Julie K L Sinclair
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Wesley E Robertson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Deepto Mozumdar
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, University of California, Berkeley, California 94705, United States
| | - Kim Quach
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94705, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94705, United States
| |
Collapse
|