1
|
Lenton S, Chaaban H, Khaled M, van de Weert M, Strodel B, Foderà V. Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation. J Colloid Interface Sci 2025; 683:1175-1187. [PMID: 39778472 DOI: 10.1016/j.jcis.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules. The same interaction was responsible for an enhanced insulin conformational stability and resistance to oligomerisation. Under aggregation conditions, the anion-protein interaction translated into the activation of a coalescence process, leading to amyloid-like microparticles. This reaction is alternative to conformationally-driven pathways, giving rise to elongated amyloid-like fibrils and occurs in the absence of preferential ion-protein binding. Our findings depict a unifying scenario in which common interactions dictated both phase separation at low temperatures and the occurrence of pronounced heterogeneity in the amyloid morphology at high temperatures, similar to what has previously been reported for protein crystal growth.
Collapse
Affiliation(s)
- Samuel Lenton
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hussein Chaaban
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mohammed Khaled
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marco van de Weert
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Elizebath D, Vedhanarayanan B, Dhiman A, Mishra RK, Ramachandran CN, Lin TW, Praveen VK. Spontaneous Curvature Induction in an Artificial Bilayer Membrane. Angew Chem Int Ed Engl 2024; 63:e202403900. [PMID: 38459961 DOI: 10.1002/anie.202403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water. Autogenous protonation of the tertiary amines in the periphery of the bilayer by water induces anisotropic curvature, resulting in membrane fission to form vesicles and can be monitored using time-dependent spectroscopy and microscopy. Interestingly, upon loss of the induced asymmetry by extensive protonation using an organic acid restored bilayer membrane. The mechanism leading to the compositional asymmetry in the leaflet and curvature induction in the membrane is validated by density functional theory (DFT) calculations. Studies extended to control molecules having changes in hydrophilic (BA2) and hydrophobic (BA3) segments provide insight into the delicate nature of molecular scale interactions in the dynamic transformation of supramolecular structures. The synergic effect of hydrophobic interaction and the hydrated state of BA1 aggregates provide dynamicity and unusual stability. Our study unveils mechanistic insight into the dynamic transformation of bilayer membranes into vesicles.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Angat Dhiman
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rakesh K Mishra
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Department of Chemistry, National Institute of Technology Uttarakhand (NITUK), Srinagar (Garhwal), Uttarakhand, 246174, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Zeng D, Hu HF, Ming JB, Wang W. Hierarchically Organized Cocrystal of Tetra-Anionic Porphyrin and Di-Cationic Viologen: Ion Conformations, Supramolecule Interactions, and Porphyrin Arrays. Chemistry 2023; 29:e202203188. [PMID: 36511145 DOI: 10.1002/chem.202203188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Ionic co-assembly of tetra-anionic porphyrins has been extensively researched in the construction of hierarchically organized architectures with potential application value in organic semiconductors, sunlight catalysts and supramolecular chirality systems. However, such architectures are difficult to grow to a size suitable for single-crystal X-ray diffraction (SCXRD); the lack of single-crystal structures of these architectures leads to challenges in gaining deeper comprehension about that. This study reports a hierarchically organized cocrystal of meso-tetra(4-sulfonato-phenyl)-porphyrin (TSPP4- ) and N, N'-diethyl-viologen (DEV2+ ), wherein wave-like and saddle-like TSPP4- ions co-aggregate at a stoichiometric ratio of 1 : 2 to form unique porphyrin arrays; the spectrum characteristics and calculated coulombic exciton coupling energy show that these porphyrin arrays are J-aggregates. We prove that the distortion of porphyrin ring of TSPP4- strongly correlates with the deflection of its phenyl groups. The crystal comprises six different ionic conformations, and the multiplicity of ionic conformation leads to intricate supramolecular interactions.
Collapse
Affiliation(s)
- Dong Zeng
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Fen Hu
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jiang-Bo Ming
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng, Shanxi, 044000, P. R. China
| | - Wei Wang
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Ji W, Yuan H, Xue B, Guerin S, Li H, Zhang L, Liu Y, Shimon LJW, Si M, Cao Y, Wang W, Thompson D, Cai K, Yang R, Gazit E. Co-Assembly Induced Solid-State Stacking Transformation in Amino Acid-Based Crystals with Enhanced Physical Properties. Angew Chem Int Ed Engl 2022; 61:e202201234. [PMID: 35170170 PMCID: PMC9311667 DOI: 10.1002/anie.202201234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 02/02/2023]
Abstract
The physical characteristics of supramolecular assemblies composed of small building blocks are dictated by molecular packing patterns in the solid-state. Yet, the structure-property correlation is still not fully understood. Herein, we report the unexpected cofacial to herringbone stacking transformation of a small aromatic bipyridine through co-assembly with acetylated glutamic acid. The unique solid-state structural transformation results in enhanced physical properties of the supramolecular organizations. The co-assembly methodology was further expanded to obtain diverse molecular packings by different bipyridine and acetylated amino acid derivatives. This study presents a feasible co-assembly approach to achieve the solid-state stacking transformation of supramolecular organization and opens up new opportunities to further explore the relationship between molecular arrangement and properties of supramolecular assemblies by crystal engineering.
Collapse
Affiliation(s)
- Wei Ji
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, The National “111” Project for Biomechanics and Tissue Repair Engineering, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Hui Yuan
- School of Molecular Cell Biology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126China
| | - Bin Xue
- National Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093JiangsuChina
| | - Sarah Guerin
- Department of PhysicsBernal InstituteUniversity of LimerickLimerickV94 T9PXIreland
| | - Hui Li
- Science and Technology on Combustion and Explosion LaboratoryXi'an Modern Chemistry Research InstituteXi'an710065China
| | - Lei Zhang
- CAEP Software Center for High Performance Numerical SimulationBeijing100088China
| | - Yanqing Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of EducationLanzhou UniversityLanzhou730000China
| | - Linda J. W. Shimon
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Mingsu Si
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of EducationLanzhou UniversityLanzhou730000China
| | - Yi Cao
- National Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093JiangsuChina
| | - Wei Wang
- National Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093JiangsuChina
| | - Damien Thompson
- Department of PhysicsBernal InstituteUniversity of LimerickLimerickV94 T9PXIreland
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, The National “111” Project for Biomechanics and Tissue Repair Engineering, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Rusen Yang
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126China
| | - Ehud Gazit
- School of Molecular Cell Biology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
5
|
Ji W, Yuan H, Xue B, Guerin S, Li H, Zhang L, Liu Y, Shimon LJW, Si M, Cao Y, Wang W, Thompson D, Cai K, Yang R, Gazit E. Co‐Assembly Induced Solid‐State Stacking Transformation in Amino Acid‐Based Crystals with Enhanced Physical Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Ji
- Key Laboratory of Biorheological Science and Technology Ministry of Education, The National “111” Project for Biomechanics and Tissue Repair Engineering, College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Hui Yuan
- School of Molecular Cell Biology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
- School of Advanced Materials and Nanotechnology Xidian University Xi'an 710126 China
| | - Bin Xue
- National Laboratory of Solid State Microstructure Department of Physics Nanjing University Nanjing 210093 Jiangsu China
| | - Sarah Guerin
- Department of Physics Bernal Institute University of Limerick Limerick V94 T9PX Ireland
| | - Hui Li
- Science and Technology on Combustion and Explosion Laboratory Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Lei Zhang
- CAEP Software Center for High Performance Numerical Simulation Beijing 100088 China
| | - Yanqing Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education Lanzhou University Lanzhou 730000 China
| | - Linda J. W. Shimon
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - Mingsu Si
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education Lanzhou University Lanzhou 730000 China
| | - Yi Cao
- National Laboratory of Solid State Microstructure Department of Physics Nanjing University Nanjing 210093 Jiangsu China
| | - Wei Wang
- National Laboratory of Solid State Microstructure Department of Physics Nanjing University Nanjing 210093 Jiangsu China
| | - Damien Thompson
- Department of Physics Bernal Institute University of Limerick Limerick V94 T9PX Ireland
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education, The National “111” Project for Biomechanics and Tissue Repair Engineering, College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology Xidian University Xi'an 710126 China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
6
|
Min F, Zhou P, Huang Z, Qiao Y, Yu C, Qu Z, Shi X, Li Z, Jiang L, Zhang Z, Yan X, Song Y. A Bubble-Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angew Chem Int Ed Engl 2021; 60:16547-16553. [PMID: 33974728 DOI: 10.1002/anie.202103765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Indexed: 11/11/2022]
Abstract
We demonstrate a new approach to pattern functional organic molecules with a template of foams, and achieve a resolution of sub 100 nm. The bubble-assisted assembly (BAA) process is consisted of two periods, including bubble evolution and molecular assembly, which are dominated by the Laplace pressure and molecular interactions, respectively. Using TPPS (meso-tetra(4-sulfonatophenyl) porphyrin), we systematically investigate the patterns and assembly behaviour in the bubble system with a series of characterizations, which show good uniformity in nanoscale resolution. Theoretical simulations reveal that TPPS's J-aggregates contribute to the ordered construction of molecular patterns. Finally, we propose an empirical rule for molecular patterning approach, that the surfactant and functional molecules should have the same type of charge in a two-component system. This approach exhibits promising feasibility to assemble molecular patterns at nanoscale resolution for micro/nano functional devices.
Collapse
Affiliation(s)
- Fanyi Min
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering, The University of Western Ontario London, Ontario, N6A 5B9, Canada
| | - Yali Qiao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changhui Yu
- State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory of Molecular Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaosong Shi
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lang Jiang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory of Molecular Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
7
|
Min F, Zhou P, Huang Z, Qiao Y, Yu C, Qu Z, Shi X, Li Z, Jiang L, Zhang Z, Yan X, Song Y. A Bubble‐Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fanyi Min
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering The University of Western Ontario London Ontario N6A 5B9 Canada
| | - Yali Qiao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changhui Yu
- State Key Laboratory of Molecular Reaction Dynamics CAS Research/Education Centre for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory of Molecular Sciences University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiaosong Shi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lang Jiang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhen Zhang
- State Key Laboratory of Molecular Reaction Dynamics CAS Research/Education Centre for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory of Molecular Sciences University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
8
|
Ohtani R, Anegawa Y, Watanabe H, Tajima Y, Kinoshita M, Matsumori N, Kawano K, Yanaka S, Kato K, Nakamura M, Ohba M, Hayami S. Metal Complex Lipids for Fluid–Fluid Phase Separation in Coassembled Phospholipid Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yuka Anegawa
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Hikaru Watanabe
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yutaro Tajima
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Masanao Kinoshita
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuaki Matsumori
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Masaaki Nakamura
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Masaaki Ohba
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
9
|
Ohtani R, Anegawa Y, Watanabe H, Tajima Y, Kinoshita M, Matsumori N, Kawano K, Yanaka S, Kato K, Nakamura M, Ohba M, Hayami S. Metal Complex Lipids for Fluid-Fluid Phase Separation in Coassembled Phospholipid Membranes. Angew Chem Int Ed Engl 2021; 60:13603-13608. [PMID: 33723910 DOI: 10.1002/anie.202102774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/08/2022]
Abstract
We demonstrate a fluid-fluid phase separation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes using a metal complex lipid of type [Mn(L1)] (1; HL1=1-(2-hydroxybenzamide)-2-(2-hydroxy-3-formyl-5-hexadecyloxybenzylideneamino)ethane). Small amount of 1 produces two separated domains in DMPC, whose phase transition temperatures of lipids (Tc ) are both lower than that of the pristine DMPC. Variable temperature fluorescent microscopy for giant-unilamellar vesicles of DMPC/1 hybrids demonstrates that visible phase separations remain in fluid phases up to 37 °C, which is clearly over the Tc of DMPC. This provides a new dimension for the application of metal complex lipids toward controlling lipid distributions in fluid membranes.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuka Anegawa
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Hikaru Watanabe
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yutaro Tajima
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
10
|
Xuan J, Liu Y, Xu X, Ding Z, Zhuang Z, Zhang Y, Yan Y, Cao M, Wang S, Xia Y, Sun L. Peptide-Mediated Synthesis of Zeolitic Imidazolate Framework-8 with Controllable Morphology and Size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13981-13988. [PMID: 33175536 DOI: 10.1021/acs.langmuir.0c02496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peptides with a sequence of Nap-Ix-GPLGLAG-R4-NH2 (x = 2, 4, and 6, shorted as I2R4, I4R4, and I6R4) were used as capping agents for the synthesis of zeolitic imidazolate framework-8 (ZIF-8) in water. Peptide addition can significantly inhibit the growth of ZIF-8 crystals. The shape and size of ZIF-8 crystals was related closely to the number of isoleucine (Ile, I) residues as well as concentration of the peptide. The shape of ZIF-8 crystals changes from rhomboid dodecahedron to truncated rhombic dodecahedron to cube with the decreasing number of isoleucine residues from six to two. At a peptide concentration of 1.0 mM, the morphology of ZIF-8 crystals was cubic, truncated rhombic dodecahedron, and typical rhombic dodecahedron in the cases of I2R4, I4R4, and I6R4, respectively. Also, the particle size can be regulated from ca. 1.7 μm to <100 nm by controlling the peptide concentration from 0 to 2.0 mM. This work develops a simple and green method for the synthesis of ZIF-8 crystals with controllable shape and size in water, which shows high potential for biomedical and biological applications.
Collapse
Affiliation(s)
- Jiaming Xuan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiaomin Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhen Ding
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Ziwei Zhuang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yuxin Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yunpeng Yan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Shengjie Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|