1
|
Wang WJ, Xin ZY, Su X, Hao L, Qiu Z, Li K, Luo Y, Cai XM, Zhang J, Alam P, Feng J, Wang S, Zhao Z, Tang BZ. Aggregation-Induced Emission Luminogens Realizing High-Contrast Bioimaging. ACS NANO 2025; 19:281-306. [PMID: 39745533 DOI: 10.1021/acsnano.4c14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance. This review delves into the molecular mechanisms of aggregation-induced emission (AIE), demonstrating how strategic molecular design unlocks exceptional luminescence and superior imaging contrast, which is crucial for distinguishing healthy and diseased tissues. This review also highlights key applications of AIEgens, such as time-resolved imaging, second near-infrared window (NIR-II), and the advancement of AIEgens in sensitivity to physical and biochemical cue-responsive imaging. The development of AIE technology promises to transform healthcare from early disease detection to targeted therapies, potentially reshaping personalized medicine. This paradigm shift in biophotonics offers efficient tools to decode the complexities of biological systems at the molecular level, bringing us closer to a future where the invisible becomes visible and the incurable becomes treatable.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zhuo-Yang Xin
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Xuxian Su
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Liang Hao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Kang Li
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yumei Luo
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jing Feng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Shaojuan Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Ji S, Du Y, Leng J, Zhang Y, Hu W. Planar-Twisted Molecular Engineering for Modulating the Fluorescence Brightness of NIR-II Fluorophores with a Donor-Acceptor-Donor Skeleton. Int J Mol Sci 2024; 25:12365. [PMID: 39596431 PMCID: PMC11595074 DOI: 10.3390/ijms252212365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Organic molecular fluorophores have been extensively utilized for biological imaging in the visible and the first near-infrared windows. However, their applications in the second near-infrared (NIR-II) window remain constrained, primarily due to the insufficient fluorescence brightness. Herein, we employ a theoretical protocol combining the thermal vibration correlation function with the time-dependent density functional theory method to investigate the mechanism of the planar-twisted strategy for developing fluorophores with balanced NIR-II emission and fluorescence brightness. Based on a planar donor-acceptor-donor molecular skeleton, various ortho-positioned alkyl side chains with steric hindrances are tactfully incorporated into the backbone to construct a series of twisted fluorophores. Photophysical characterizations of the studied fluorophores demonstrate that the emission spectra located in the NIR-II region exhibited a hypsochromic shift with the structural distortion. Notably, conformational twisting significantly accelerated the radiative decay rate while simultaneously suppressing the nonradiative decay rate, resulting in an improved fluorescence quantum efficiency (FQE). This enhancement can be mainly attributed to both the enlarged adiabatic excitation energy and reduced nonadiabatic electronic coupling between the first excited state and the ground state. Compared with the planar fluorophore, the twisted structures possessed a more than fivefold increase in FQE. In particular, the optimal twisted fluorophore BBTD-4 demonstrated a desirable fluorescence brightness (16.59 M-1 cm-1) on the premise of typical NIR-II emission (980 nm), making it a promising candidate for NIR-II fluorescence imaging in biomedical applications. The findings in this study elucidate the available experimental observations on the analogues, highlighting a feasible approach to modulating the photophysical performances of NIR-II chromophores for developing more highly efficient fluorophores toward optical imaging applications.
Collapse
Affiliation(s)
| | | | | | - Yujin Zhang
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.J.); (Y.D.); (J.L.)
| | - Wei Hu
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.J.); (Y.D.); (J.L.)
| |
Collapse
|
3
|
Wan Y, Chen W, Liu Y, Lee KW, Gao Y, Zhang D, Li Y, Huang Z, Luo J, Lee CS, Li S. Neutral Cyanine: Ultra-Stable NIR-II Merocyanines for Highly Efficient Bioimaging and Tumor-Targeted Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405966. [PMID: 38771978 DOI: 10.1002/adma.202405966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Fluorescence imaging (FLI)-guided phototheranostics using emission from the second near-infrared (NIR-II) window show significant potential for cancer diagnosis and treatment. Clinical imaging-used polymethine ionic indocyanine green (ICG) dye is widely adopted for NIR fluorescence imaging-guided photothermal therapy (PTT) research due to its exceptional photophysical properties. However, ICG has limitations such as poor photostability, low photothermal conversion efficiency (PCE), short-wavelength emission peak, and liver-targeting issues, which restrict its wider use. In this study, two ionic ICG derivatives are transformed into neutral merocyanines (mCy) to achieve much-enhanced performance for NIR-II cancer phototheranostics. Initial designs of two ionic dyes show similar drawbacks as ICG in terms of poor photostability and low photothermal performance. One of the modified neutral molecules, mCy890, shows significantly improved stability, an emission peak over 1000 nm, and a high photothermal PCE of 51%, all considerably outperform ICG. In vivo studies demonstrate that nanoparticles of the mCy890 can effectively accumulate at the tumor sites for cancer photothermal therapy guided by NIR-II fluorescence imaging. This research provides valuable insights into the development of neutral merocyanines for enhanced cancer phototheranostics.
Collapse
Affiliation(s)
- Yingpeng Wan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Weilong Chen
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ka-Wai Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Di Zhang
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yuqing Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jingdong Luo
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
4
|
Chen HJ, Wang L, Zhu H, Wang ZG, Liu SL. NIR-II Fluorescence Imaging for In Vivo Quantitative Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28011-28028. [PMID: 38783516 DOI: 10.1021/acsami.4c04913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In vivo real-time qualitative and quantitative analysis is essential for the diagnosis and treatment of diseases such as tumors. Near-infrared-II (NIR-II, 1000-1700 nm) bioimaging is an emerging visualization modality based on fluorescent materials. The advantages of NIR-II region fluorescent materials in terms of reduced photon scattering and low tissue autofluorescence enable NIR-II bioimaging with high resolution and increasing depth of tissue penetration, and thus have great potential for in vivo qualitative and quantitative analysis. In this review, we first summarize recent advances in NIR-II imaging, including fluorescent probe selection, quantitative analysis strategies, and imaging. Then, we describe in detail representative applications to illustrate how NIR-II fluorescence imaging has become an important tool for in vivo quantitative analysis. Finally, we describe the future possibilities and challenges of NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Dunn B, Hanafi M, Hummel J, Cressman JR, Veneziano R, Chitnis PV. NIR-II Nanoprobes: A Review of Components-Based Approaches to Next-Generation Bioimaging Probes. Bioengineering (Basel) 2023; 10:954. [PMID: 37627839 PMCID: PMC10451329 DOI: 10.3390/bioengineering10080954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fluorescence and photoacoustic imaging techniques offer valuable insights into cell- and tissue-level processes. However, these optical imaging modalities are limited by scattering and absorption in tissue, resulting in the low-depth penetration of imaging. Contrast-enhanced imaging in the near-infrared window improves imaging penetration by taking advantage of reduced autofluorescence and scattering effects. Current contrast agents for fluorescence and photoacoustic imaging face several limitations from photostability and targeting specificity, highlighting the need for a novel imaging probe development. This review covers a broad range of near-infrared fluorescent and photoacoustic contrast agents, including organic dyes, polymers, and metallic nanostructures, focusing on their optical properties and applications in cellular and animal imaging. Similarly, we explore encapsulation and functionalization technologies toward building targeted, nanoscale imaging probes. Bioimaging applications such as angiography, tumor imaging, and the tracking of specific cell types are discussed. This review sheds light on recent advancements in fluorescent and photoacoustic nanoprobes in the near-infrared window. It serves as a valuable resource for researchers working in fields of biomedical imaging and nanotechnology, facilitating the development of innovative nanoprobes for improved diagnostic approaches in preclinical healthcare.
Collapse
Affiliation(s)
- Bryce Dunn
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - Marzieh Hanafi
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - John Hummel
- Department of Physics, George Mason University, Fairfax, VA 22030, USA
| | - John R. Cressman
- Department of Physics, George Mason University, Fairfax, VA 22030, USA
| | - Rémi Veneziano
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - Parag V. Chitnis
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| |
Collapse
|
6
|
Tamima U, Sarkar S, Islam MR, Shil A, Kim KH, Reo YJ, Jun YW, Banna H, Lee S, Ahn KH. A Small-Molecule Fluorescence Probe for Nuclear ATP. Angew Chem Int Ed Engl 2023; 62:e202300580. [PMID: 36792537 DOI: 10.1002/anie.202300580] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Fluorescence monitoring of ATP in different organelles is now feasible with a few biosensors developed, which, however, show low sensitivity, limited biocompatibility, and accessibility. Small-molecule ATP probes that alleviate those limitations thus have received much attention recently, leading to a few ATP probes that target several organelles except for the nucleus. We disclose the first small-molecule probe that selectively detects nuclear ATP through reversible binding, with 25-fold fluorescence enhancement at pH 7.4 and excellent selectivity against various biologically relevant species. Using the probe, we observed 2.1-3.3-fold and 3.9-7.8-fold higher nuclear ATP levels in cancerous cell lines and tumor tissues compared with normal cell lines and tissues, respectively, which are explained by the higher nuclear ATP level in the mitosis phase. The probe has great potential for studying nuclear ATP-associated biology.
Collapse
Affiliation(s)
- Umme Tamima
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Md Reyazul Islam
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Anushree Shil
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Kyeong Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Yong Woong Jun
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Hasanul Banna
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Soobin Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| |
Collapse
|
7
|
Miao J, Miao M, Jiang Y, Zhao M, Li Q, Zhang Y, An Y, Pu K, Miao Q. An Activatable NIR-II Fluorescent Reporter for In Vivo Imaging of Amyloid-β Plaques. Angew Chem Int Ed Engl 2023; 62:e202216351. [PMID: 36512417 DOI: 10.1002/anie.202216351] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Fluorescence imaging in the second near-infrared (NIR-II) window holds great promise for in vivo visualization of amyloid-β (Aβ) pathology, which can facilitate characterization and deep understanding of Alzheimer's disease (AD); however, it has been rarely exploited. Herein, we report the development of NIR-II fluorescent reporters with a donor-π-acceptor (D-π-A) architecture for specific detection of Aβ plaques in AD-model mice. Among all the designed probes, DMP2 exhibits the highest affinity to Aβ fibrils and can specifically activate its NIR-II fluorescence after binding to Aβ fibrils via suppressed twisted intramolecular charge transfer (TICT) effect. With suitable lipophilicity for ideal blood-brain barrier (BBB) penetrability and deep-tissue penetration of NIR-II fluorescence, DMP2 possesses specific detection of Aβ plaques in in vivo AD-model mice. Thus, this study presents a potential agent for non-invasive imaging of Aβ plaques and deep deciphering of AD progression.
Collapse
Affiliation(s)
- Jia Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Minqian Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.,School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Affiliation(s)
- Qinxia Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qianyu Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
9
|
She Z, Chen J, Sun L, Zeng F, Wu S. An NO-responsive probe for detecting acute inflammation using NIR-II fluorescence/optoacoustic imaging. Chem Commun (Camb) 2022; 58:13123-13126. [PMID: 36346386 DOI: 10.1039/d2cc05386a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
An NO-responsive probe for imaging acute inflammation was developed. The probe responds to in situ NO in acute inflammation sites such as LPS-induced acute dermatitis and MIA-induced acute joint inflammation with turn-on NIR-II fluorescence and optoacoustic signals.
Collapse
Affiliation(s)
- Zunpan She
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Junjie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
10
|
Wang X, Su D, Liu C, Li P, Zhang R, Zhang W, Zhang W, Tang B. Janus-Faced Fluorescence Imaging Agent for Malondialdehyde and Formaldehyde in Brains. Anal Chem 2022; 94:14965-14973. [PMID: 36256865 DOI: 10.1021/acs.analchem.2c02805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbonyl stress caused by reactive carbonyl species (RCS) is closely related to various brain diseases. As the highly reactive, highly toxic, and lipophilic RCS, malondialdehyde (MDA) and formaldehyde (FA) could easily cross the blood-brain barrier (BBB) and induce protein dysfunction or cross-linking in the brain. Do MDA and FA coordinately regulate the physio-pathological processes of the brain? To answer the question, first of all, powerful identification and sensing tools are needed. However, competent probes for simultaneously analyzing MDA and FA in living brains are lacking, which originates from the following three challenges: (1) MDA and FA are difficult to distinguish due to their great similarity in structure and reactivity; (2) to achieve simultaneous and discriminable imaging, same excitation and different emissions are preferable; and (3) the detection of MDA and FA in living brains require the materials to pass through the BBB. Thus, we created a two-photon fluorescent agent, TFCH, for MDA/FA. The hydrazine group in TFCH could successfully differentiate MDA/FA at 440/510 nm under same excitation. Moreover, the lipophilic trifluoromethyl group (-CF3) in TFCH prompts it to traverse the BBB, thereby realizing the coinstantaneous visualization of MDA and FA in the living brain. Using TFCH, we observed the excessive production of MDA and FA in living PC12 cells under carbonyl stress and oxidative stress. Notably, for the first time, two-photon fluorescence imaging indicated the synchronous increase of MDA and FA in living brains of mice with depression. Altogether, this work provides a promising tool for revealing the carbonyl stress-related molecular mechanism involved in brain diseases.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunyu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
11
|
Hong Y, Geng W, Zhang T, Gong G, Li C, Zheng C, Liu F, Qian J, Chen M, Tang BZ. Facile Access to Far‐Red Fluorescent Probes with Through‐Space Charge‐Transfer Effects for In Vivo Two‐Photon Microscopy of the Mouse Cerebrovascular System. Angew Chem Int Ed Engl 2022; 61:e202209590. [DOI: 10.1002/anie.202209590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yingjuan Hong
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Weihang Geng
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering International Research Center for Advanced Photonics Zhejiang University Hangzhou 310058 China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Guangshuai Gong
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Chongyang Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Canze Zheng
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Feng Liu
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering International Research Center for Advanced Photonics Zhejiang University Hangzhou 310058 China
| | - Ming Chen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
12
|
Zheng Z, Chen X, Ma Y, Dai R, Wu S, Wang T, Xing J, Gao J, Zhang R. Dual H 2 O 2 -Amplified Nanofactory for Simultaneous Self-Enhanced NIR-II Fluorescence Activation Imaging and Synergistic Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203531. [PMID: 35962758 DOI: 10.1002/smll.202203531] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Activatable fluorescence imaging in the second near-infrared window (NIR-II FL, 1000-1700 nm) is of great significance for accurate tumor diagnosis and targeting therapy. However, the clinical translation of most stimulus-activated nanoprobes is severely restricted by insufficient tumor response and out-of-synchronization theranostic process. Herein, an intelligent nanofactory AUC-GOx/Cel that possesses the "external supply, internal promotion" dual H2 O2 -amplification strategy for homologous activated tumor theranostic is designed. This nanofactory is constructed via a two-step biomineralization method using Au-doped Ag2 S as a carrier for glucose oxidase (GOx) and celastrol, followed by the growing of CuS to "turn off" the NIR-II FL signal. In the overexpressed H2 O2 tumor-microenvironment, the CuS featuring a responsive-degradability behavior can effectively release Cu ions, resulting in the "ON" state of NIR-II FL and Fenton-like activity. The exposed GOx can realize the intratumoral H2 O2 supply (external supply) via the effective conversion of glucose, and mediating tumor-starvation therapy; the interaction of celastrol and mitochondria can offer a substantial increase in the endogenous H2 O2 level (internal promotion), thereby significantly promoting the chemodynamic therapy (CDT) efficacy. Meanwhile, the dual H2 O2 -enhancement performance will in turn accelerate the degradation of AUC-GOx/Cel, and achieve a positive feedback mechanism for self-reinforcing CDT.
Collapse
Affiliation(s)
- Ziliang Zheng
- General Surgery Department, Third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuejiao Chen
- General Surgery Department, Third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yanchun Ma
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Rong Dai
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Shutong Wu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Tong Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jun Xing
- General Surgery Department, Third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinnan Gao
- General Surgery Department, Third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- General Surgery Department, Third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
13
|
Shang J, Zhang X, He Z, Shen S, Liu D, Shi W, Ma H. An Oxazine‐Based Fluorogenic Probe with Changeable π‐Conjugation to Eliminate False‐Positive Interference of Albumin and Its Application to Sensing Aminopeptidase N. Angew Chem Int Ed Engl 2022; 61:e202205043. [DOI: 10.1002/anie.202205043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jizhen Shang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies School of Life Sciences Huzhou University Zhejiang 313000 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Xiaofan Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zixu He
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shili Shen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Hong Y, Geng W, Zhang T, Gong G, Li C, Zheng C, Liu F, Qian J, Chen M, Tang BZ. Facile Access to Far‐Red Fluorescent Probes with Through‐Space Charge Transfer Effect for In Vivo Two‐Photon Microscopy of Mouse Cerebrovascular System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingjuan Hong
- Jinan University College of Chemistry and Materials Science CHINA
| | - Weihang Geng
- Zhejiang University College of Optical Science and Engineering CHINA
| | - Tian Zhang
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Guangshuai Gong
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Chongyang Li
- Jinan University College of Chemistry and Materials Science CHINA
| | - Canze Zheng
- Jinan University College of Chemistry and Materials Science CHINA
| | - Feng Liu
- Jinan University College of Chemistry and Materials Science CHINA
| | - Jun Qian
- Zhejiang University College of Optical Science and Engineering CHINA
| | - Ming Chen
- Jinan University College of Chemistry and Materials Science CHINA
| | - Ben Zhong Tang
- The Chinese University of Hong Kong, Shenzhen School of Science and Engineering 2001 Longxiang Boulevard, Longgang District 518172 Shenzhen CHINA
| |
Collapse
|
15
|
Li S, Li Q, Chen W, Song Z, An Y, Chen P, Wu Y, Wang G, He Y, Miao Q. A Renal-Clearable Activatable Molecular Probe for Fluoro-Photacoustic and Radioactive Imaging of Cancer Biomarkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201334. [PMID: 35723177 DOI: 10.1002/smll.202201334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In vivo simultaneous visualization of multiple biomarkers is critical to accurately diagnose disease and decipher fundamental processes at a certain pathological evolution, which however is rarely exploited. Herein, a multimodal activatable imaging probe (P-125 I) is reported with activatable fluoro-photoacoustic and radioactive signal for in vivo imaging of biomarkers (i.e., hepsin and prostate-specific membrane antigen (PSMA)) associated with prostate cancer diagnosis and prognosis. P-125 I contains a near-infrared (NIR) dye that is caged with a hepsin-cleavable peptide sequence and linked with a radiolabeled PSMA-targeted ligand (PSMAL). After systemic administration, P-125 I actively targets the tumor site via specific recognition between PSMA and PSMAL moiety and in-situ generates of activated fluoro-photoacoustic signal after reacting with hepsin to release the free dye (uncaged state). P-125 I achieves precisely early detection of prostate cancer and renal clearance to alleviate toxicity issues. In addition, the accumulated radioactive and activated photoacoustic signal of probe correlates well with the respective expression level of PSMA and hepsin, which provides valuable foreseeability for cancer progression and prognosis. Thus, this study presents a multimodal activatable probe for early detection and in-depth deciphering of prostate cancer.
Collapse
Affiliation(s)
- Shenhua Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhuorun Song
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Yang Y, Sun C, Wang S, Yan K, Zhao M, Wu B, Zhang F. Counterion-Paired Bright Heptamethine Fluorophores with NIR-II Excitation and Emission Enable Multiplexed Biomedical Imaging. Angew Chem Int Ed Engl 2022; 61:e202117436. [PMID: 35294084 DOI: 10.1002/anie.202117436] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Photon excitation and emission at the NIR-II spectral window enable high-contrast deep-tissue bioimaging. However, multiplexed imaging with NIR-II excitation and emission has been hampered by the limited chemical strategies to develop bright fluorophores with tunable absorption in this spectral regime. Herein, we developed a series of heptamethine cyanines (HCs) with varied absorption/emission maxima spanning from 1100 to 1600 nm through a physical organic approach. A bulky counterion paired to HCs was found to elicit substantial improvements in absorptivity (7-fold), brightness (14-fold), and spectral profiles in water, addressing a notorious quenching problem of NIR-II cyanines due to aggregation and polarization. We demonstrated the utilities of HC1222 and HC1342 for high-contrast dual-color imaging of circulatory system, lymphatic structures, tumor, and organ function in living mice under 1120 nm and 1319 nm excitation, showing HCs as a promising platform for non-invasive bioimaging.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| |
Collapse
|
17
|
Ma H, Shang J, Zhang X, He Z, Shen S, Liu D, Shi W. An Oxazine‐Based Fluorogenic Probe with Changeable π‐conjugation to Eliminate False‐Positive Interference of Albumin and Its Application to Sensing Aminopeptidase N. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huimin Ma
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems No. 2, The 1st North Street, Zhongguancun 100190 Beijing CHINA
| | - Jizhen Shang
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Xiaofan Zhang
- CAS Institute of Chemistry: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Zixu He
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Shili Shen
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Diankai Liu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Wen Shi
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| |
Collapse
|
18
|
Han Z, Xiong J, Ren TB, Zhang XB. Recent advances in dual-target-activated fluorescent probes for biosensing and bioimaging. Chem Asian J 2022; 17:e202200387. [PMID: 35579099 DOI: 10.1002/asia.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Fluorescent probes have been powerful tools for visualizing and quantifying multiple dynamic processes in living cells. However, the currently developed probes are often constructed by conjugation a fluorophore with a recognition moiety and given signal-output after triggering with one singly target interest. Compared with the single-target-activated fluorescent probes mentioned above, the dual-target-activated ones, triggering with one target under stimulus (such as photoirradiation, microenvironment) or another targets, have the advantages of advoiding nonspecific activation and "false positive" results in complicated environments. In recent years, many dual-target-activated fluorescent probes have been developed to detect various biologically relevant species. In view of the importance of a comprehensive understanding of dual-target- activated fluorescent probes, a thorough summary of this topic is urgently needed. However, no comprehensive and critical review on dual target activated fluorescent probes has been published recently. In this review, we focus on the dual-target-activated fluorescent probes and briefly outline their types and current state of development. In each type, the chemical structure, proposed responsive mechanism and application of probes are highlighted. At last, the challenges and prospective opportunities of every type were proposed.
Collapse
Affiliation(s)
- Zhixiang Han
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Jie Xiong
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Tian-Bing Ren
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| | - Xiao-Bing Zhang
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| |
Collapse
|
19
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII-HDs: A Versatile Platform for Developing Activatable NIR-II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022; 61:e202201541. [PMID: 35218130 DOI: 10.1002/anie.202201541] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Small-molecule-based second near-infrared (NIR-II) activatable fluorescent probes can potentially provide a high target-to-background ratio and deep tissue penetration. However, most of the reported NIR-II activatable small-molecule probes exhibit poor versatility owing to the lack of a general and stable optically tunable group. In this study, we designed NIRII-HDs, a novel dye scaffold optimized for NIR-II probe development. In particular, dye NIRII-HD5 showed the best optical properties such as proper pKa value, excellent stability, and high NIR-II brightness, which can be beneficial for in vivo imaging with high contrast. To demonstrate the applicability of the NIRII-HD5 dye, we designed three target-activatable NIR-II probes for ROS, thiols, and enzymes. Using these novel probes, we not only realized reliable NIR-II imaging of different diseases in mouse models but also evaluated the redox potential of liver tissue during a liver injury in vivo with high fidelity.
Collapse
Affiliation(s)
- Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huijie Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
20
|
Yang Y, Sun C, Wang S, Yan K, Zhao M, Wu B, Zhang F. Counterion‐Paired Bright Heptamethine Fluorophores with NIR‐II Excitation and Emission Enable Multiplexed Biomedical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200433 China
| |
Collapse
|
21
|
Cui M, Dai P, Ding J, Li M, Sun R, Jiang X, Wu M, Pang X, Liu M, Zhao Q, Song B, He Y. Millisecond-Range Time-Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes. Angew Chem Int Ed Engl 2022; 61:e202200172. [PMID: 35098631 DOI: 10.1002/anie.202200172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Probes featuring room-temperature phosphorescence (RTP) are promising tools for time-resolved imaging. It is worth noting that the time scale of time-resolved bioimaging generally ranges around the microsecond level, because of the short-lived emission. Herein, the first example of millisecond-range time-resolved bioimaging is illustrated, which is enabled through a kind of ultralong aqueous phosphorescence probes (i.e., cyclo-(Arg-Gly-AspD-Tyr-Cys)-conjugated zinc-doped silica nanospheres), with a RTP emission lasting for ≈5 s and a lifetime as long as 743.7 ms. We demonstrate that live cells and deep tumor tissue in mice can be specifically targeted through immune-phosphorescence imaging, with a high signal-to-background ratio (SBR) value of ≈69 for in vitro imaging, and ≈627 for in vivo imaging, respectively. We further show that, compared to that of fluorescence imaging, the SBR enhancement of millisecond-range time-resolved in vivo bioimaging is up to 105 times.
Collapse
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Manjing Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Rong Sun
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Xin Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Menglin Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Mingzhu Liu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| |
Collapse
|
22
|
Zhou HJ, Ren TB. Recent Progress of Cyanine Fluorophores for NIR-II Sensing and Imaging. Chem Asian J 2022; 17:e202200147. [PMID: 35233937 DOI: 10.1002/asia.202200147] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/01/2022] [Indexed: 11/11/2022]
Abstract
The cyanine fluorophores, a kind of classic organic fluorophores, are famous for their high extinction coefficient, simple synthetic route, and relatively long absorption and emission wavelengths. Moreover, the excellent biocompatibility and low toxicity in biological samples make cyanine fluorophores show excellent application value in the biomedical field, especially in Near-Infrared II (NIR-II) sensing and imaging. In this review, we briefly outline the history, characteristics, and current state of development of cyanine fluorophores. In particular, we described the application of cyanine fluorophores in NIR-II sensing and imaging. We hope this review can help researchers grab the latest information in the fast-growing field of cyanine fluorophores for NIR-II sensing and imaging.
Collapse
Affiliation(s)
- Hui-Jie Zhou
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Tian-Bing Ren
- Hunan University, College of Chemistry and Chemical Engineering, Yuelu District, 410082, Changsha, CHINA
| |
Collapse
|
23
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
24
|
Li Z, Yang Y, Yin P, Yang Z, Zhang B, Zhang S, Han B, Lv J, Dong F, Ma H. A New Lipid‐Droplets‐Targeted Fluorescence Probe with Dual‐Reactive Sites for Specific Detection of ClO
−
in Living Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhao Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Yuan Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Pei Yin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Zengming Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Bo Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Shengjun Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Bingyang Han
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Jiawei Lv
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Fenghao Dong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Hengchang Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
25
|
Cui M, Dai P, Ding J, Li M, Sun R, Jiang X, Wu M, Pang X, Liu M, Zhao Q, Song B, He Y. Millisecond‐Range Time‐Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Manjing Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Rong Sun
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xin Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Menglin Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Mingzhu Liu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| |
Collapse
|
26
|
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. The Chemistry of Organic Contrast Agents in the NIR‐II Window. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jing Mu
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Ming Xiao
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Yu Shi
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xuewen Geng
- Department of Biology University of Rochester Rochester NY 14627 USA
| | - Hui Li
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yuxin Yin
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
27
|
Liu Y, Zhan S, Su X, Nie G, Wu X, Liu Y. An optical strategy for detecting hypochlorite in vitro and cells with high selectivity and stability based on a lanthanide-doped upconversion probe. RSC Adv 2022; 12:31608-31616. [PMID: 36380959 PMCID: PMC9631869 DOI: 10.1039/d2ra05414k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
Abstract
The excessive use of sodium hypochlorite disinfectant for preventing COVID-19 can be harmful to the water environment and humans. More importantly, owing to hypochlorite being a biomarker of immune responses in living organisms, its abnormal production can damage nucleic acids and protein molecules, eventually causing many diseases (even cancer). Exploring a reliable, rapid, and non-invasive method to monitor the hypochlorite level in vitro and in cells can be significant. Herein, we report a novel ratiometric fluorescence sensing strategy based on Astrazon Brilliant Red 4G dye-sensitized NaGdF4:Yb3+, Er3+@NaYF4 core–shell upconversion nanoparticles (UCNPs@ABR 4G). Based on the combination mechanism of the fluorescent resonant energy transfer effect (FRET) and redox, a linear model of fluorescence intensity ratio and hypochlorite concentration was constructed for a fast response and high selectivity monitoring of hypochlorite in vitro and in vivo. The detection limit was calculated to be 0.39 μM. In addition, this sensing strategy possessed good stability and circularity, making it valuable both for the quantitative detection of hypochlorite in water and for the visualization of intracellular hypochlorite. The proposed optical probe is promising for the efficient and stable non-invasive detection of hypochlorite. The excessive use of sodium hypochlorite disinfectant for preventing COVID-19 can be harmful to the water environment and humans.![]()
Collapse
Affiliation(s)
- Yuting Liu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| | - Shiping Zhan
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| | - Xin Su
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| | - Guozheng Nie
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| | - Xiaofeng Wu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China
| | - Yunxin Liu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| |
Collapse
|
28
|
Jia R, Xu H, Wang C, Su L, Jing J, Xu S, Zhou Y, Sun W, Song J, Chen X, Chen H. NIR-II emissive AIEgen photosensitizers enable ultrasensitive imaging-guided surgery and phototherapy to fully inhibit orthotopic hepatic tumors. J Nanobiotechnology 2021; 19:419. [PMID: 34903233 PMCID: PMC8670198 DOI: 10.1186/s12951-021-01168-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate diagnosis and effective treatment of primary liver tumors are of great significance, and optical imaging has been widely employed in clinical imaging-guided surgery for liver tumors. The second near-infrared window (NIR-II) emissive AIEgen photosensitizers have attracted a lot of attention with higher-resolution bioimaging and deeper penetration. NIR-II aggregation-induced emission-based luminogen (AIEgen) photosensitizers have better phototherapeutic effects and accuracy of the image-guided surgery/phototherapy. Herein, an NIR-II AIEgen phototheranostic dot was proposed for NIR-II imaging-guided resection surgery and phototherapy for orthotopic hepatic tumors. Compared with indocyanine green (ICG), the AIEgen dots showed bright and sharp NIR-II emission at 1250 nm, which extended to 1600 nm with high photostability. Moreover, the AIEgen dots efficiently generated reactive oxygen species (ROS) for photodynamic therapy. Investigations of orthotopic liver tumors in vitro and in vivo demonstrated that AIEgen dots could be employed both for imaging-guided tumor surgery of early-stage tumors and for 'downstaging' intention to reduce the size. Moreover, the therapeutic strategy induced complete inhibition of orthotopic tumors without recurrence and with few side effects.
Collapse
Affiliation(s)
- Ruizhen Jia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Han Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jinpeng Jing
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shuyu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Clinical Imaging Research Centre, Centre for Translational Medicine, Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, Singapore, Singapore
- Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. The Chemistry of Organic Contrast Agents in the NIR-II Window. Angew Chem Int Ed Engl 2021; 61:e202114722. [PMID: 34873810 DOI: 10.1002/anie.202114722] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/08/2022]
Abstract
Optical imaging, especially fluorescence and photoacoustic imaging, possesses non-invasiveness, high spatial and temporal resolution, and high sensitivity, etc., compared to positron emission tomography (PET) or magnetic resonance imaging (MRI). Due to the merits from the second near infrared (NIR-II) window imaging, like deeper penetration depth, high signal-to-noise ratio, high resolution, and low tissue damage, researchers devote great efforts to develop contrast agents with NIR-II absorption or emission. In this review, we summarized recently developed organic luminescent and photoacoustic materials, ranging from small molecules to conjugated polymers. Then, we systematically introduced engineering strategies and their imaging performance, classified by the skeleton cores. Finally, we elucidated the challenges and prospective of these NIR-II organic dyes for potential clinical applications. We hope our summary can inspire further development of NIR-II contrast agents.
Collapse
Affiliation(s)
- Jing Mu
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Ming Xiao
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Yu Shi
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Xuewen Geng
- University of Rochester, Department of Biology, UNITED STATES
| | - Hui Li
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Yuxin Yin
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Xiaoyuan Chen
- National University of Singapore, School of Medicine and Faculty of Engineering, 10 Medical Dr, 117597, Singapore, SINGAPORE
| |
Collapse
|
30
|
Dai Y, Zhao H, He K, Du W, Kong Y, Wang Z, Li M, Shen Q, Sun P, Fan Q. NIR-II Excitation Phototheranostic Nanomedicine for Fluorescence/Photoacoustic Tumor Imaging and Targeted Photothermal-Photonic Thermodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102527. [PMID: 34528387 DOI: 10.1002/smll.202102527] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The success of phototheranostics is hampered by some intrinsic defects, such as limited light penetration depth, heat resistance of tumor cells to photothermal therapy (PTT) induced by heat shock protein (HSP) and stress resistance against photodynamic therapy (PDT) caused by hypoxia microenvironment of tumor. Herein, a second near infrared (NIR-II) light excitation phototheranostic nanomedicine has been fabricated by integrating the semiconducting polymer, azo compound, and HSP inhibitor into a thermosensitive liposome, followed by modification with targeting aptamer, forming Lip(PTQ/GA/AIPH) for multimodal phototheranostics of triple-negative breast cancer (TNBC). The phototheranostic nanomedicine provides tumor targeting NIR-II fluorescence and photoacoustic dual-modal imaging, as well as NIR-II PTT. The released HSP inhibitor can effectively inhibit the activity of HSP for enhanced NIR-II PTT. Moreover, azo compound can be decomposed by the NIR-II photothermal activation, generating cytotoxic free radicals and realizing oxygen-irrelevant photonic thermodynamic therapy (PTDT) effects. Under the NIR-II laser irradiation, NIR-II fluorescence/photoacoustic dual-modal imaging guided enhanced NIR-II PTT and PTDT by Lip(PTQ/GA/AIPH), can achieve precise diagnosis and effective suppression of deep-seated TNBC with negligible side effects. This work develops a promising NIR-II excitation phototheranostic nanomedicine for spatiotemporally specific diagnosis and combination therapy of TNBC.
Collapse
Affiliation(s)
- Yeneng Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Honghai Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kun He
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wenyu Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yingjie Kong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhen Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Meixing Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
31
|
Gong L, Shan X, Zhao XH, Tang L, Zhang XB. Activatable NIR-II Fluorescent Probes Applied in Biomedicine: Progress and Perspectives. ChemMedChem 2021; 16:2426-2440. [PMID: 33780139 DOI: 10.1002/cmdc.202100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/18/2022]
Abstract
With the advantage of inherent responsiveness that can change the spectroscopic signals from "off" to "on" state in responding to targets (e. g. biological analytes/microenvironmental factors), activatable fluorescent probes have attracted extensive attention and made significant progress in the field of bioimaging and biosensing. Due to the high depth of tissue penetration, minimal tissue damage and negligible background signal at longer wavelengths, the development of second near-infrared window (NIR-II) fluorescent materials provides a new opportunity to develop activable fluorescent probes. Here, we summarized properties, advantages and disadvantages of mainly NIR-II fluorophores (such as rare earth-doped nanoparticles, quantum dots, single-walled carbon nanotubes, small molecule dyes, conjugated polymers and gold nanoclusters), then overviewed current role and development of activatable NIR-II fluorescent probes (AFPs) for biomedical applications including biosensing, bioimaging and therapeutic. The potential challenges and perspectives of AFPs in deep-tissue imaging and clinical application are also discussed.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiuzhi Shan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xu-Hua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|