1
|
Wohlgemuth M, Mayer M, Rappen M, Schmidt F, Saure R, Grätz S, Borchardt L. From Inert to Catalytically Active Milling Media: Galvanostatic Coating for Direct Mechanocatalysis. Angew Chem Int Ed Engl 2022; 61:e202212694. [PMID: 36098910 PMCID: PMC9828539 DOI: 10.1002/anie.202212694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 01/12/2023]
Abstract
The inert milling balls, commonly utilized in mechanochemical reactions, were coated with a layer of Pd and utilized as catalyst in the direct mechanocatalytic Suzuki reaction. With high yields (>80 %), the milling balls can be recycled multiple times in the absence of any solvents, ligands, catalyst-molecules and -powders, while utilizing as little as 0.8 mg of Pd per coated milling ball. The coating sequence, the support material, and the layer thickness were examined towards archiving high catalyst retention, low abrasion and high conversion. The approach was transferred to the coating of milling vessels revealing the interplay between catalytically available surface area and the mechanical energy impact in direct mechanocatalysis.
Collapse
Affiliation(s)
- Maximilian Wohlgemuth
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maike Mayer
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Marisol Rappen
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Fabian Schmidt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Roman Saure
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Sven Grätz
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Lars Borchardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
2
|
Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Kraus FJL, Etter M, Grätz S, Borchardt L. The Direct Mechanocatalytic Suzuki-Miyaura Reaction of Small Organic Molecules. Angew Chem Int Ed Engl 2022; 61:e202205003. [PMID: 35638133 PMCID: PMC9543434 DOI: 10.1002/anie.202205003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/23/2022]
Abstract
The molecular Suzuki cross-coupling reaction was conducted mechanochemically, without solvents, ligands, or catalyst powders. Utilizing one catalytically active palladium milling ball, products could be formed in quantitative yield in as little as 30 min. In contrast to previous reports, the adjustment of milling parameters led to the complete elimination of abrasion from the catalyst ball, thus enabling the first reported systematic catalyst analysis. XPS, in situ XRD, and reference experiments provided evidence that the milling ball surface was the location of the catalysis, allowing a mechanism to be proposed. The versatility of the approach was demonstrated by extending the substrate scope to deactivated and even sterically hindered aryl iodides and bromides.
Collapse
Affiliation(s)
- Wilm Pickhardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Claudio Beaković
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maike Mayer
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maximilian Wohlgemuth
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | | | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY)Notkestraße 8522607HamburgGermany
| | - Sven Grätz
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Lars Borchardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
3
|
Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Leon Kraus FJ, Etter M, Grätz S, Borchardt L. The Direct Mechanocatalytic Suzuki‐Miyaura Reaction of Small Organic Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wilm Pickhardt
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Claudio Beaković
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Maike Mayer
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | | | | | - Martin Etter
- DESY Accelerator Centre: Deutsches Elektronen-Synchrotron DESY GERMANY
| | - Sven Grätz
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Lars Borchardt
- Ruhr-Universitat Bochum Inorganic Chemistry Universitätsstraße 150 44801 Bochum GERMANY
| |
Collapse
|
4
|
Min S, Park B, Nedsaengtip J, Hyeok Hong S. Mechanochemical Direct Fluorination of Unactivated C(
sp
3
)−H Bonds. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sehye Min
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Beomsoon Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jantakan Nedsaengtip
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
5
|
Ardila-Fierro KJ, Rubčić M, Hernández JG. Cocrystal Formation Precedes the Mechanochemically Acetate-Assisted C-H Activation with [Cp*RhCl 2 ] 2. Chemistry 2022; 28:e202200737. [PMID: 35274769 DOI: 10.1002/chem.202200737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/16/2022]
Abstract
This work reports the experimentally studied mechanochemical formation of rhodacycles by ball milling pyridine- and quinoline-derived substrates and [Cp*RhCl2 ]2 in the presence of NaOAc. Ex-situ analysis of the mechanochemical reactions using powder X-ray diffraction (PXRD), solid-state UV-vis spectroscopy and ATR-FTIR spectroscopy revealed the formation of unexpected cocrystals between the substrates and the rhodium dimer prior to the C-H activation step. This sequence of events differs from the generally accepted steps in solution in which cleavage of [Cp*RhCl2 ]2 is initiated by acetate ions. Additionally, the mechanochemical approach enabled the synthesis of the six-membered rhodacycle [Cp*Rh(2-benzilpyridine)Cl], a metal complex repeatedly reported as inaccessible in solution. Altogether, the results of this investigation clarify some of the fundamental aspects of mechanochemical cyclometallations.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - Mirta Rubčić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia.,Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
6
|
Mechanochemical Solvent‐Free Suzuki–Miyaura Cross‐Coupling of Amides via Highly Chemoselective N−C Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Kuciński K, Simon H, Ackermann L. Rhoda-Electrocatalyzed C-H Methylation and Paired Electrocatalyzed C-H Ethylation and Propylation. Chemistry 2022; 28:e202103837. [PMID: 34714563 PMCID: PMC9299020 DOI: 10.1002/chem.202103837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/18/2022]
Abstract
The use of electricity over traditional stoichiometric oxidants is a promising strategy for sustainable molecular assembly. Herein, we describe the rhoda-electrocatalyzed C-H activation/alkylation of several N-heteroarenes. This catalytic approach has been successfully applied to several arenes, including biologically relevant purines, diazepam, and amino acids. The versatile C-H alkylation featured water as a co-solvent and user-friendly trifluoroborates as alkylating agents. Finally, the rhoda-electrocatalysis with unsaturated organotrifluoroborates proceeded by paired electrolysis.
Collapse
Affiliation(s)
- Krzysztof Kuciński
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Hendrik Simon
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
8
|
Bangade VM, Dadmal TL, Popatkar BB, Mali PR, Meshram HM. One Pot Catalyst‐free Synthesis of Substituted Di‐amino N‐tosyl Benzoyl Thiazoles byRegioselective C−N Bond Cleavage and Its Anticancer Activity. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vikas M. Bangade
- Department of Chemistry The Institute of Science, Mumbai Dr.HomiBhabha State University Mumbai 15, Madame Cama Road Mumbai-32 400 032 India
- Medicinal Chemistry and Pharmacology Division CSIR-Indian Institute of Chemical Technology, Hyderabad Uppal Road, Tarnaka Hyderabad Telangana 500007 India
| | - Tulshiram L. Dadmal
- Department of Chemistry Government Vidarbha Institute of Science and Humanities Amravati Maharashtra 444604 India
| | - Bhushan B. Popatkar
- Department of Chemistry University of Mumbai Vidyanagari, Kalina, Santacruz (E) Mumbai Maharashtra 400 098 India
| | - Prakash R. Mali
- Medicinal Chemistry and Pharmacology Division CSIR-Indian Institute of Chemical Technology, Hyderabad Uppal Road, Tarnaka Hyderabad Telangana 500007 India
| | - Harshadas M. Meshram
- Medicinal Chemistry and Pharmacology Division CSIR-Indian Institute of Chemical Technology, Hyderabad Uppal Road, Tarnaka Hyderabad Telangana 500007 India
| |
Collapse
|
9
|
Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Mechanochemical Solvent-Free Suzuki-Miyaura Cross-Coupling of Amides via Highly Chemoselective N-C Cleavage. Angew Chem Int Ed Engl 2021; 61:e202114146. [PMID: 34877756 DOI: 10.1002/anie.202114146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Although cross-coupling reactions of amides by selective N-C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid-state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent-free palladium-catalyzed cross-coupling of amides by N-C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N-C bond activation. The reaction shows excellent functional group tolerance and can be applied to late-stage functionalization of complex APIs and sequential orthogonal cross-couplings exploiting double solventless solid-state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N-C bond interconversions to solid-state environmentally friendly mechanochemical methods.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Lei Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102, United States
| |
Collapse
|
10
|
Nicholson WI, Howard JL, Magri G, Seastram AC, Khan A, Bolt RRA, Morrill LC, Richards E, Browne DL. Ball-Milling-Enabled Reactivity of Manganese Metal*. Angew Chem Int Ed Engl 2021; 60:23128-23133. [PMID: 34405513 PMCID: PMC8596600 DOI: 10.1002/anie.202108752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 01/17/2023]
Abstract
Efforts to generate organomanganese reagents under ball-milling conditions have led to the serendipitous discovery that manganese metal can mediate the reductive dimerization of arylidene malonates. The newly uncovered process has been optimized and its mechanism explored using CV measurements, radical trapping experiments, EPR spectroscopy, and solution control reactions. This unique reactivity can also be translated to solution whereupon pre-milling of the manganese is required.
Collapse
Affiliation(s)
| | - Joseph L. Howard
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Giuseppina Magri
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Alex C. Seastram
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Adam Khan
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Robert R. A. Bolt
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Louis C. Morrill
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Emma Richards
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
11
|
Nicholson WI, Howard JL, Magri G, Seastram AC, Khan A, Bolt RRA, Morrill LC, Richards E, Browne DL. Ball‐Milling‐Enabled Reactivity of Manganese Metal**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Joseph L. Howard
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Giuseppina Magri
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Alex C. Seastram
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Adam Khan
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Robert R. A. Bolt
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square London WC1N 1AX UK
| | - Louis C. Morrill
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Emma Richards
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square London WC1N 1AX UK
| |
Collapse
|
12
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Park Place, Main Building Cardiff CF10 3AT UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Ian Priestley
- Syngenta Ltd. Huddersfield Manufacturing Centre Huddersfield HD2 1FF UK
| | - Edouard Godineau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | | | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| |
Collapse
|
13
|
Hou S, Meng M, Liu D, Zhang P. Mechanochemical Process to Construct Porous Ionic Polymers by Menshutkin Reaction. CHEMSUSCHEM 2021; 14:3059-3063. [PMID: 34213075 DOI: 10.1002/cssc.202101093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of porous ionic polymers (PIPs) via the Menshutkin reaction is intriguing because the reaction works smoothly in catalyst-free condition with 100 % atom utilization. However, the rotation of methane site, nonrigid knots, and charge interaction all may cause collapses of the channel, which is detrimental to the synthesis PIP in solid-state conditions. In this work, an inorganic salt (NaBr, NaCl: pollution-free and easy to recycle) was rationally chosen as the hard template and effectively prevented the intermolecular packing. Moreover, the increased surface area dramatically promoted the catalytic activity of PIP for cyclic carbonate synthesis. This work provides a green and efficient strategy to construct PIPs via the Menshutkin reaction.
Collapse
Affiliation(s)
- Shengtai Hou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Minshan Meng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Dandan Liu
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
14
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling*. Angew Chem Int Ed Engl 2021; 60:21868-21874. [PMID: 34357668 DOI: 10.1002/anie.202106412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
Collapse
Affiliation(s)
- William I Nicholson
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Ian Priestley
- Syngenta Ltd., Huddersfield Manufacturing Centre, Huddersfield, HD2 1FF, UK
| | - Edouard Godineau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | | | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| |
Collapse
|
15
|
Sunny S, John SE, Shankaraiah N. Exploration of C‐H Activation Strategies in Construction of Functionalized 2‐Aryl Benzoazoles: A Decisive Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steeva Sunny
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Stephy Elza John
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
16
|
Abstract
Recent research endeavors have established that the mechanochemical activation of piezoelectric materials can open new avenues in redox chemistry. Impact forces, such as those imparted by a ball mill, have been shown to transform piezoelectric materials such as barium titanate (BaTiO3) into a highly polarized state, which can then donate an electron to a suitable oxidant and receive an electron from a suitable reductant, mimicking established photoredox catalytic cycles. Proof‐of‐concept studies have elucidated that mechanoredox chemistry holds great potential in sustainable and efficient radical‐based synthesis.
Collapse
Affiliation(s)
- Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, WC1N 1AX, London, United Kingdom
| | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, WC1N 1AX, London, United Kingdom
| |
Collapse
|
17
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|