1
|
Cheng J, Nie J, Li X, Huang J, Zhang Z, Feng Z, Zhang G, Wu R, Shen S, Wei G, Zhang J. Phosphorus and Cobalt Codoped Transition-Metal Oxides with Accelerated Surface Reconstruction for Efficient Alkaline Oxygen Evolution Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6872-6881. [PMID: 40036730 DOI: 10.1021/acs.langmuir.4c05122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Developing highly efficient nonprecious metal catalysts for oxygen evolution reactions (OERs) is crucial for the development of water electrolysis; however, these catalysts face challenges such as high overpotential and insufficient durability at high current densities. In this study, we successfully prepared ordered needlelike structured Co-Fe hydroxide with F-ion immersion (Fe/Co(OH)F) on the surface of nickel foam and explored the synergistic strengthening effects of Mo cation doping and P anion doping. The ordered needlelike structure of Fe/Co(OH)F was destroyed during the phosphating calcination process, while Mo doping transformed it into a rough surface platelike structure. By combining Mo doping with phosphating treatment, the obtained Fe/F-MoCo-POx catalyst presented a crystalline-amorphous heterostructure and platelike morphology with enhanced OER performance. At a high current density of 200 mA cm-2, the Fe/F-MoCo-POx catalyst exhibited an overpotential of 300 mV without i-R compensation and maintained a potential decay rate of only 0.16 mV h-1 after a 560 h durability test. Electrochemical testing combined with phase structure and composition analysis revealed that P doping induced the formation of an amorphous surface layer of hypophosphite Fe(PO3)3, which was found to undergo anion exchange with *OH during electrochemical testing. This surface reconstruction thus formed a rich -OH catalytic layer on the surface of Fe/F-MoCo-POx, which then exhibited a remarkably lowered overpotential and boosted OER kinetics, surpassing most state-of-the-art OER electrocatalysts. This finding underscores the synergistic effect of Mo and P doping in forming a crystalline-amorphous heterostructure, which boosts alkaline OER performance, aiding in cost reduction and improvement of the hydrogen production efficiency through water electrolysis at high current densities.
Collapse
Affiliation(s)
- Junfang Cheng
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Nie
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Li
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiawei Huang
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zuyu Zhang
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziye Feng
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanghua Wei
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Zhang W, Liu Q, Cheng W, Wang W, Ding J, Huang Y. Oxygen vacancies enhanced electrocatalytic water splitting of P-FeMoO 4 initiated via phosphorus doping. J Colloid Interface Sci 2024; 660:114-123. [PMID: 38241860 DOI: 10.1016/j.jcis.2024.01.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Transition metal oxides (TMOs) are abundant and cost-effective materials. However, poor conductivity and low intrinsic activity limit their application in electrolyzed water catalysts. Herein, we prepared P-FeMoO4 in situ on nickel foam (P-FMO@NF) by phosphorylation-modified FeMoO4 to optimize its electrocatalytic properties. Interestingly, phosphorus doping is accompanied by the generation of oxygen vacancies and surface phosphates. Oxygen vacancies accelerated Mo dissolution during the oxygen evolution reaction (OER), leading to the rapid reconfiguration of P-FMO@NF to FeOOH and regulating the electronic structure of P-FMO@NF. The formation of phosphates is caused by the substitution of some molybdates with phosphates, which further increases the amount of oxygen vacancies. Hence, the OER overpotential of P-FMO@NF at a current density of 10 mA cm-2 is only 206 mV, and the hydrogen evolution reaction (HER) overpotential is 154 mV. It was assembled into a water splitting cell with a voltage of just 1.59 V at 10 mA cm-2 and shows excellent stability over 50 h. These excellent electrocatalytic properties are mainly attributed to the oxygen vacancies, which improve the interfacial charge transfer properties of the catalysts. This study provides new insights into phosphorus doping and offers a new perspective on the design of electrocatalysts.
Collapse
Affiliation(s)
- Weilu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Qingcui Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Wenhua Cheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Wei Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Juan Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yudai Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
3
|
Deng Y, Lai W, Ge L, Yang H, Bao J, Ouyang B, Li H. Densifying Crystalline-Amorphous Ni 3S 2/NiOOH Interfacial Sites To Boost Electrocatalytic O 2 Production. Inorg Chem 2023; 62:3976-3985. [PMID: 36824015 DOI: 10.1021/acs.inorgchem.2c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The development of an efficient and low-cost electrocatalyst for oxygen evolution reaction (OER) is the key to improving the overall efficiency of water electrolysis. Here, we report the design of a three-dimensional (3-D) heterostructured Ni9S8/Ni3S2 precatalyst composed of unstable Ni9S8 and inert Ni3S2 components, which undergoes in situ electrochemical activation to generate an amorphous-NiOOH/Ni3S2 heterostructured catalyst. In situ Raman spectroscopy combined with ex situ characterizations, such as X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy, reveals that during the activation, Ni9S8 loses the sulfur element to form nickel oxides and eventually transforms to amorphous NiOOH at O2-evolving potentials, while the Ni3S2 component is rather inert that its majority in the bulk remains, thus forming a 3-D congee-like NiOOH/Ni3S2 heterostructure with the Ni3S2 crystalline particles randomly dispersed among amorphous NiOOH species. Unlike the sparse heterostructure that consists of a layer of NiOOH on top of Ni3S2, our unique congee-like NiOOH/Ni3S2 heterostructure provides plentiful reactive amorphous-crystalline interfacial sites. Moreover, the partial electron transfer between the NiOOH and remaining Ni3S2, benefiting from their dense interfacial sites, contributes to a higher valence state of the Ni3+ active centers in NiOOH, hence optimizing the adsorption of OER intermediates. Density functional theory calculations further disclose that the electronic structure regulation not only optimizes the Gibbs free energy of intermediate adsorption but also tunes the OH* absorption behavior to be exothermic, elucidating the spontaneous occurrence of OH* absorption and hence improves the OER. Therefore, a low overpotential of only 197 mV at an O2-evolving current density of 10 mA/cm2, a small Tafel slope of 38.8 mV/dec, and good stability are achieved on the amorphous-NiOOH/crystalline-Ni3S2 heterostructured catalyst.
Collapse
Affiliation(s)
- Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Wei Lai
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Hua Yang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jian Bao
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Zhang Y, Liu H, Zhao S, Xie C, Huang Z, Wang S. Insights into the Dynamic Evolution of Defects in Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209680. [PMID: 36631395 DOI: 10.1002/adma.202209680] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
This review focuses on the formation and preparation of defects, the dynamic evolution process of defects, and the influence of defect dynamic evolution on catalytic reactions. The summary of the current advances in the dynamic evolution process of defects in oxygen evolution reaction, hydrogen evolution reaction, nitrogen reduction reaction, oxygen reduction reaction, and carbon dioxide reduction reaction, and the given perspectives are expected to provide a more comprehensive understanding of defective electrocatalysts on the structural evolution process during electrocatalysis and the reaction mechanisms, especially for the defect dynamic evolution on the performance in catalytic reactions.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Hanwen Liu
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Siyuan Zhao
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Zhenguo Huang
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Lin G, Zhang Z, Ju Q, Wu T, Segre CU, Chen W, Peng H, Zhang H, Liu Q, Liu Z, Zhang Y, Kong S, Mao Y, Zhao W, Suenaga K, Huang F, Wang J. Bottom-up evolution of perovskite clusters into high-activity rhodium nanoparticles toward alkaline hydrogen evolution. Nat Commun 2023; 14:280. [PMID: 36650135 PMCID: PMC9845238 DOI: 10.1038/s41467-023-35783-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Self-reconstruction has been considered an efficient means to prepare efficient electrocatalysts in various energy transformation process for bond activation and breaking. However, developing nano-sized electrocatalysts through complete in-situ reconstruction with improved activity remains challenging. Herein, we report a bottom-up evolution route of electrochemically reducing Cs3Rh2I9 halide-perovskite clusters on N-doped carbon to prepare ultrafine Rh nanoparticles (~2.2 nm) with large lattice spacings and grain boundaries. Various in-situ and ex-situ characterizations including electrochemical quartz crystal microbalance experiments elucidate the Cs and I extraction and Rh reduction during the electrochemical reduction. These Rh nanoparticles from Cs3Rh2I9 clusters show significantly enhanced mass and area activity toward hydrogen evolution reaction in both alkaline and chlor-alkali electrolyte, superior to liquid-reduced Rh nanoparticles as well as bulk Cs3Rh2I9-derived Rh via top-down electro-reduction transformation. Theoretical calculations demonstrate water activation could be boosted on Cs3Rh2I9 clusters-derived Rh nanoparticles enriched with multiply sites, thus smoothing alkaline hydrogen evolution.
Collapse
Affiliation(s)
- Gaoxin Lin
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhuang Zhang
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qiangjian Ju
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Tong Wu
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Carlo U. Segre
- grid.62813.3e0000 0004 1936 7806Department of Physics & Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Wei Chen
- grid.62813.3e0000 0004 1936 7806Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Hongru Peng
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Hui Zhang
- grid.458459.10000 0004 1792 5798State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Qiunan Liu
- grid.136593.b0000 0004 0373 3971SANKEN, Osaka University, Ibaraki, 567-0047 Japan
| | - Zhi Liu
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China ,grid.458459.10000 0004 1792 5798State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Yifan Zhang
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuyi Kong
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuanlv Mao
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Zhao
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Kazu Suenaga
- grid.136593.b0000 0004 0373 3971SANKEN, Osaka University, Ibaraki, 567-0047 Japan
| | - Fuqiang Huang
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Jiacheng Wang
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China ,grid.440734.00000 0001 0707 0296Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, 063210 Tangshan, China ,grid.440657.40000 0004 1762 5832School of Materials Science and Engineering, Taizhou University, 318000 Taizhou, Zhejiang China
| |
Collapse
|
6
|
Kang S, Im C, Spanos I, Ham K, Lim A, Jacob T, Schlögl R, Lee J. Durable Nickel-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts through Surface Functionalization with Tetraphenylporphyrin. Angew Chem Int Ed Engl 2022; 61:e202214541. [PMID: 36274053 DOI: 10.1002/anie.202214541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/05/2022]
Abstract
NiFe-based oxides are one of the best-known active oxygen evolution electrocatalysts. Unfortunately, they rapidly lost performance in Fe-purified KOH during the reaction. Herein, tetraphenylporphyrin (TPP) was loaded on a catalyst/electrolyte interface to alleviate the destabilization of NiFe (oxy)hydroxide. We propose that the degradation occurs primarily due to the release of thermodynamically unstable Fe. TPP acts as a protective layer and suppresses the dissolution of hydrated metal at the catalyst/electrolyte interface. In the electric double layer, the nonpolar TPP layer on the NiFe surface also invigorates the redeposition of the active site, Fe, which leads to prolonging the lifetime of NiFe. The TPP-coated NiFe was demonstrated in anion exchange membrane water electrolysis, where hydrogen was generated at a rate of 126 L h-1 for 115 h at a 1.41 mV h-1 degradation rate. Consequently, TPP is a promising protective layer that could stabilize oxygen evolution electrocatalysts.
Collapse
Affiliation(s)
- Sinwoo Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.,International Future Research Center of Chemical Energy Storage and Conversion Processes (ifRC-CHESS), GIST, Gwangju, 61005, Republic of Korea
| | - Changbin Im
- Institute of Electrochemistry, Ulm University, Ulm, Germany
| | - Ioannis Spanos
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Kahyun Ham
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.,International Future Research Center of Chemical Energy Storage and Conversion Processes (ifRC-CHESS), GIST, Gwangju, 61005, Republic of Korea.,Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju, 61005, Republic of Korea
| | - Ahyoun Lim
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Ulm, Germany.,Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Robert Schlögl
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.,Department of Inorganic Chemistry, Fritz Haber Institut der Max-Planck-Gesselschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Jaeyoung Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.,International Future Research Center of Chemical Energy Storage and Conversion Processes (ifRC-CHESS), GIST, Gwangju, 61005, Republic of Korea.,Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju, 61005, Republic of Korea
| |
Collapse
|
7
|
Zhang L, Wang J, Jiang K, Xiao Z, Gao Y, Lin S, Chen B. Self-Reconstructed Metal-Organic Framework Heterojunction for Switchable Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202214794. [PMID: 36278261 DOI: 10.1002/anie.202214794] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Designing metal-organic framework (MOF)-based catalysts with superior oxygen evolution reaction (OER) activity and robust durability simultaneously is highly required yet very challenging due to the limited intrinsic activity and their elusive evolution under harsh OER conditions. Herein, a steady self-reconstructed MOF heterojunction is constructed via redox electrochemistry and topology-guided strategy. Thanks to the inhibiting effect from hydrogen bonds of Ni-BDC-1 (BDC=1,4-benzenedicarboxylic acid), the obatained MOF heterojunction shows greatly improved OER activity with low overpotential of 225 mV at 10 mA cm-2 , relative to the totally reconstructed Ni-BDC-3 (332 mV). Density function theory calculations reveal that the formed built-in electric field in the MOF heterojunction remarkably optimizes the ad/desorption free energy of active Ni sites. Moreover, such MOF heterojunction shows superior durability attributed to the shielding effect of the surface-evolved NiOOH coating.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiaji Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yuntian Gao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| |
Collapse
|
8
|
Hausmann JN, Menezes PW. Effect of Surface-Adsorbed and Intercalated (Oxy)anions on the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202207279. [PMID: 35762646 PMCID: PMC9546270 DOI: 10.1002/anie.202207279] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/17/2022]
Abstract
As the kinetically demanding oxygen evolution reaction (OER) is crucial for the decarbonization of our society, a wide range of (pre)catalysts with various non-active-site elements (e.g., Mo, S, Se, N, P, C, Si…) have been investigated. Thermodynamics dictate that these elements oxidize during industrial operation. The formed oxyanions are water soluble and thus predominantly leach in a reconstruction process. Nevertheless, recently, it was unveiled that these thermodynamically stable (oxy)anions can adsorb on the surface or intercalate in the interlayer space of the active catalyst. There, they tune the electronic properties of the active sites and can interact with the reaction intermediates, changing the OER kinetics and potentially breaking the persisting OER *OH/*OOH scaling relations. Thus, the addition of (oxy)anions to the electrolyte opens a new design dimension for OER catalysis and the herein discussed observations deepen the understanding of the role of anions in the OER.
Collapse
Affiliation(s)
- J. Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
- Material Chemistry Group for Thin Film Catalysis—CatLabHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Str. 1512489BerlinGermany
| |
Collapse
|
9
|
Hausmann JNW, Menezes PW. Effect of Surface‐Adsorbed and Intercalated (Oxy)anions on the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- J. Niklas W. Hausmann
- TU Berlin: Technische Universitat Berlin Chemistry Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| | - Prashanth W. Menezes
- Technische Universitat Berlin Chemistry Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| |
Collapse
|
10
|
Liu Y, Wang Y, Wen H, Han Y, Deng S. Green Preparation of CNTs/graphite supported NiFe Carbonate Hydroxides for Oxygen Evolution Reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Liu
- Northwest Normal University College of Chemistry and Chemical Engineering Lanzhou, Gansu, 730070, P. R. China 730070 Lanzhou CHINA
| | - Yangchen Wang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - He Wen
- : Petrochina Petrochemical Research Institute Lanzhou Petrochemical Research Cente CHINA
| | - Yuqi Han
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Shuwei Deng
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
11
|
Qian J, Wang X, Jiang H, Li S, Li C, Li S, Ma R, Wang J. Surface Engineering of Cr-Doped Cobalt Molybdate toward High-Performance Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18607-18615. [PMID: 35416031 DOI: 10.1021/acsami.2c03380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Replacing commercial noble metal catalysts with earth-abundant metal catalysts for hydrogen production is an important research direction for electrolytic water. Improving the catalytic performance of non-noble metals while maintaining stability is a key challenge for alkaline hydrogen evolution. Herein, we combined alkali etching and surface phosphating to regulate the properties of Cr-doped CoMoO4 material, forming a surface structure in which amorphous cobalt phosphate and Cr-doped Co(Mo)Ox coexist. As expected, the as-prepared catalytic material exhibits remarkable hydrogen evolution activity in 1.0 M KOH, only requiring a low overpotential of 52.7 mV to achieve a current density of 10 mA cm-2, and can maintain this current density for 24 h. The characterization and analysis of the catalyst before and after the stability test reveal that the Cr doping and surface engineering (i.e., alkali etching and phosphating) synergistically increase the adsorption and dissociation of water, optimize the desorption of H, and ultimately accelerate hydrogen evolution. This work provides a new strategy for tailoring nonprecious metal materials to improve the hydrogen production from water electrolysis.
Collapse
Affiliation(s)
- Jin Qian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Xunlu Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanlin Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Chunjie Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Shengjuan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Jiacheng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zhao S, Yang Y, Tang Z. Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shenlong Zhao
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Yongchao Yang
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| |
Collapse
|
13
|
Li S, Wang H, Ma Z, Xiao Q, Gao Q, Jiang Y, Shen W, He R, Li M. Rapid Surface Reconstruction of Amorphous Co(OH) 2 /WO x with Rich Oxygen Vacancies to Promote Oxygen Evolution. CHEMSUSCHEM 2021; 14:5534-5540. [PMID: 34709735 DOI: 10.1002/cssc.202102020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Herein, a transition metal dissolution-oxygen vacancy strategy, based on dissolution of highly oxidized transition metal species in alkaline electrolyte, was suggested to construct a high-performance amorphous Co(OH)2 /WOx (a-CoW) catalyst for the oxygen evolution reaction (OER). The surface reconstruction of a-CoW and its evolution were described by regulating oxygen vacancies. With continuous dissolution of W species, oxygen vacancies on the surface were generated rapidly, the surface reconstruction was promoted, and the OER performance was improved significantly. During the surface reconstruction, W species also played a role in electronic modulation for Co. Due to its rapid surface reconstruction, a-CoW exhibited excellent OER performance in alkaline electrolyte with an overpotential of 208 mV at 10 mA cm-2 and had long-term stability for at least 120 h. This work shows that the transition metal dissolution-oxygen vacancy strategy is effective for preparation of high-performance catalysts.
Collapse
Affiliation(s)
- Sijun Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Hua Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Zemian Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qinglan Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qin Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
14
|
Wu Y, Yang J, Tu T, Li W, Zhang P, Zhou Y, Li J, Li J, Sun S. Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi‐jin Wu
- College of Energy Xiamen University Xiamen 361005 China
- Hunan Engineering Research Center for monitoring and treatment of heavy metals pollution in the upper reaches of XiangJiang River Key Laboratory of Functional Metal-Organic Compounds of Hunan Province College of Chemistry and Material Science Hengyang Normal University Hengyang 421001 China
| | - Jian Yang
- State Key Lab of Physical Chemistry of Solid Surface College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Teng‐xiu Tu
- College of Energy Xiamen University Xiamen 361005 China
- Hunan Engineering Research Center for monitoring and treatment of heavy metals pollution in the upper reaches of XiangJiang River Key Laboratory of Functional Metal-Organic Compounds of Hunan Province College of Chemistry and Material Science Hengyang Normal University Hengyang 421001 China
| | - Wei‐qiong Li
- State Key Lab of Physical Chemistry of Solid Surface College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Peng‐fang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252000 P. R. China
| | - Yao Zhou
- College of Energy Xiamen University Xiamen 361005 China
| | - Jian‐feng Li
- State Key Lab of Physical Chemistry of Solid Surface College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jun‐tao Li
- College of Energy Xiamen University Xiamen 361005 China
| | - Shi‐Gang Sun
- State Key Lab of Physical Chemistry of Solid Surface College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
15
|
Wu YJ, Yang J, Tu TX, Li WQ, Zhang PF, Zhou Y, Li JF, Li JT, Sun SG. Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. Angew Chem Int Ed Engl 2021; 60:26829-26836. [PMID: 34658135 DOI: 10.1002/anie.202112447] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 11/08/2022]
Abstract
Defects have been found to enhance the electrocatalytic performance of NiFe-LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic-solvent-solvation-induced leaking of metal cations from NiFe-LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as-generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH , and eventually transform into VMOH-H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe-LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH-H . Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH-H ), and reveal the essential motif for the surface restructuration process of NiFe-LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect-induced surface restructuration behaviors of NiFe-LDH as a typical precatalyst for efficient OER electrocatalysis.
Collapse
Affiliation(s)
- Yi-Jin Wu
- College of Energy, Xiamen University, Xiamen, 361005, China.,Hunan Engineering Research Center for monitoring and treatment of heavy metals pollution in the upper reaches of XiangJiang River, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, China
| | - Jian Yang
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Teng-Xiu Tu
- College of Energy, Xiamen University, Xiamen, 361005, China.,Hunan Engineering Research Center for monitoring and treatment of heavy metals pollution in the upper reaches of XiangJiang River, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, China
| | - Wei-Qiong Li
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng-Fang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Yao Zhou
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jun-Tao Li
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Shi-Gang Sun
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
16
|
Chen C, Wang XT, Zhong JH, Liu J, Waterhouse GIN, Liu ZQ. Epitaxially Grown Heterostructured SrMn 3 O 6-x -SrMnO 3 with High-Valence Mn 3+/4+ for Improved Oxygen Reduction Catalysis. Angew Chem Int Ed Engl 2021; 60:22043-22050. [PMID: 34374478 DOI: 10.1002/anie.202109207] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 12/11/2022]
Abstract
Heterostructured catalysts show outstanding performance in electrochemical reactions owing to their beneficial interfacial properties. However, the rational design of heterostructured catalysts with the desired interfacial properties and charge-transfer characteristics is challenging. Herein, we developed a SrMn3 O6-x -SrMnO3 (SMOx -SMO) heterostructure through epitaxial growth, which demonstrated excellent electrocatalyst performance for the oxygen reduction reaction (ORR). The formation of high-valence Mn3+/4+ is beneficial for promoting a positive shift in the position of the d-band center, thereby optimizing the adsorption and desorption of ORR intermediates on the heterojunction surface and resulting in improved catalytic activity. When SMOx -SMO was applied as an air-electrode catalyst in a rechargeable zinc-air battery, a high output voltage and power density was achieved, with performance comparable to a battery prepared with Pt/C-IrO2 air-electrode catalysts, albeit with much better cycling stability.
Collapse
Affiliation(s)
- Cheng Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Xiao-Tong Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jia-Huan Zhong
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jinlong Liu
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | | | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
17
|
Tang Z, Zhao S, Yang Y. Insight into Structural Evolution, Active Site and Stability of Heterogeneous Electrocatalysts. Angew Chem Int Ed Engl 2021; 61:e202110186. [PMID: 34490688 DOI: 10.1002/anie.202110186] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/12/2022]
Abstract
The structure-activity correlation study of electrocatalysts is essential for improving conversion from electrical to chemical energy. Recently, increasing evidences obtained by operando characterization techniques reveal that the structural evolution of catalysts caused by the interplay with electric fields, electrolytes or reactants/intermediates brings about the formation of real active sites. Hence, it is time to summarize the structural evolution-related research advances and envisage their future developments. In this minireview, we first introduce the fundamental concepts associated with structural evolution ( e.g., catalyst, active site/center and stability/lifetime) and their relevance. Then, the multiple inducements of structural evolution and advanced operando characterizations are discussed. Lastly, a brief overview of structural evolution and its reversibility in heterogeneous electrocatalysis, especially for representative electrocatalytic oxygen evolution reaction (OER) and CO 2 reduction reaction (CO 2 RR), along with key challenges and opportunities, is highlighted.
Collapse
Affiliation(s)
- Zhiyong Tang
- National Center for Nanoscience and Technology, No 11, Beiyitiao, Zhongguancun, 100190, Beijing, CHINA
| | - Shenlong Zhao
- The University of Sydney, School of Chemical and Biomolecular Engineering, AUSTRALIA
| | - Yongchao Yang
- University of Sydney, School of Chemical and Biomolecular Engineering, AUSTRALIA
| |
Collapse
|
18
|
Chen C, Wang X, Zhong J, Liu J, Waterhouse GIN, Liu Z. Epitaxially Grown Heterostructured SrMn
3
O
6−
x
‐SrMnO
3
with High‐Valence Mn
3+/4+
for Improved Oxygen Reduction Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cheng Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials Guangzhou University No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Xiao‐Tong Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials Guangzhou University No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Jia‐Huan Zhong
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials Guangzhou University No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Jinlong Liu
- School of Chemical Sciences The University of Auckland Auckland 1142 New Zealand
| | | | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials Guangzhou University No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| |
Collapse
|