1
|
Xue T, Yang QS, Li L, Chang XY, Ding YS, Zheng Z. Supramolecular assemblies of tetravalent terbium complex units: syntheses, structure, and materials properties. Chem Sci 2025; 16:6805-6811. [PMID: 40110526 PMCID: PMC11915134 DOI: 10.1039/d4sc08731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
There is a growing interest in lanthanide complexes exhibiting unconventional oxidation states, primarily due to their unique electronic structures and accompanying physicochemical properties. Herein, likely the first examples of supramolecular assemblies of non-Ce(iv) tetravalent lanthanide complexes, with the general formula [Tb(OSiPh3)4Lx] n [1 (n = 2, L1 = 1,2-bis(4-pyridyl)ethane); 2 (L2 = 4,4'-bipyridine), 3 (L3 = 1,2-bis(4-pyridyl)acetylene), 4 (L4 = 1,2-bis(4-pyridyl)ethylene), and 5 (L5 = 1,4-bis(4-pyridyl)benzene)], are reported. Cyclic voltammetry studies show two successive redox events, indicating electronic interactions between the two Tb(iv) centers in the dimeric metallomacrocycle 1. Compounds 2-5 are zig-zag structured coordination polymers featuring complex units of Tb(OSiPh3)4 bridged by their respective pyridyl-based ditopic ligands. These tetravalent lanthanide species display impressive stability in air, which is believed to result from the stabilization effect of ligand Lx and the extensive multifarious interactions involving the aromatic rings of the anionic (Ph3SiO-) and bridging ligands. UV-vis absorption spectroscopic studies show that 2-5 are semiconducting, each with a narrow bandgap of ca. 1.7 eV. Magnetic property studies yielded magnetic entropy changes of ca. 8.0 J (kg K)-1 at 2.5 K and 7T, which is reasonable for a complex with high-molecular-weight ligands, suggesting the potential development of Tb(iv) complexes as molecular refrigerants due to their f7 electronic configuration.
Collapse
Affiliation(s)
- Tianjiao Xue
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Qing-Song Yang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Li
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - You-Song Ding
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
2
|
Liu M, Chen YC, Mondal A, Wang H, Tong ML, Layfield RA, Guo FS. η 6-Benzene Tetra-Anion Complexes of Early and Late Rare-Earth Metals. J Am Chem Soc 2025; 147:11359-11367. [PMID: 40114314 PMCID: PMC11969546 DOI: 10.1021/jacs.5c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
A novel synthetic route to the triple-decker benzene tetra-anion complexes [(η5-C5iPr5)M(μ:η6:η6-C6H6)M(η5-C5iPr5)] is reported for a range of early and late rare-earth elements, i.e., M = Y, La, Sm, Gd, and Dy (1M). The lanthanum complex 1La is the first benzene tetra-anion complex of the largest rare-earth element. Aromaticity in the 10π-electron benzene ligands is confirmed through crystallographic studies of all compounds and nucleus-independent chemical shift calculations on 1Y and 1La. Analysis of the bonding in 1Y and 1La using density functional theory revealed strong covalency in the metal-benzene interactions, with very similar contributions from the metal 4d/5d orbitals, respectively, and the benzene π* orbitals. Magnetic susceptibility measurements on 1Sm, 1Gd, and 1Dy are also consistent with the presence of a benzene tetra-anion ligand. The origins of the appreciable exchange coupling constant of Jexch = -3.35 cm-1 (-2J formalism) in 1Gd are established through a computational study of the interacting magnetic orbitals. The dynamic magnetic properties of 1Dy are also described. The clear absence of SMM behavior in the dysprosium complex is explained using multireference calculations and an ab initio ligand-field theory description of the 4f orbitals, which clearly show that the benzene tetra-anion ligand provides a dominant equatorial contribution.
Collapse
Affiliation(s)
- Ming Liu
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China
| | - Yan-Cong Chen
- Key Laboratory
of Bioinorganic and Synthetic Chemistry of the Ministry of Education,
School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Arpan Mondal
- Department
of Chemistry, University of Sussex, Falmer, Brighton BN1 9QR, U.K.
| | - Huan Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China
| | - Ming-Liang Tong
- Key Laboratory
of Bioinorganic and Synthetic Chemistry of the Ministry of Education,
School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Richard A. Layfield
- Department
of Chemistry, University of Sussex, Falmer, Brighton BN1 9QR, U.K.
| | - Fu-Sheng Guo
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China
| |
Collapse
|
3
|
Beltran-Leiva MJ, Moore WNG, Jenkins TF, Evans WJ, Albrecht TE, Celis-Barros C. A comprehensive approach for elucidating the interplay between 4f n+1 and 4f n 5d 1 configurations in Ln 2+ complexes. Chem Sci 2025; 16:2024-2033. [PMID: 39759928 PMCID: PMC11697074 DOI: 10.1039/d4sc05438e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Lanthanides (Ln) are typically found in the +3 oxidation state. However, in recent decades, their chemistry has been expanded to include the less stable +2 oxidation state across the entire series except promethium (Pm), facilitated by the coordination of ligands such as trimethylsilylcyclopentadienyl, C5H4SiMe3 (Cp'). The complexes have been the workhorse for the synthesis and theoretical study of the fundamental aspects of divalent lanthanide chemistry, where experimental and computational evidence have suggested the existence of different ground state (GS) configurations, 4f n+1 or 4f n 5d1, depending on the specific metal. Standard reduction potentials and 4f n+1 to 4f n 5d1 promotion energies have been two factors usually considered to rationalize the occurrence of these variable GS configurations, however the driving force behind this phenomenon is still not clear. In this work we present a comprehensive theoretical approach to shed light on this matter using the [LnCp3]- model systems. We begin by calculating 4f n+1 to 4f n 5d1 promotion energies and successfully correlate them with existing experimental data. Furthermore, we analyze how changes in the GS charge distribution between the Ln ions, LnCp3 and the reduced [LnCp3]- complexes (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) correlate with experimental trends in redox potentials and the calculated promotion energies. For this purpose, a comprehensive theoretical work that includes relativistic ligand field density functional theory (LFDFT) and relativistic ab initio wavefunction methods was performed. This study will help the rational design of suitable environments to tune the different GS configurations as well as modulating the spectroscopic properties of new Ln2+ complexes.
Collapse
Affiliation(s)
- Maria J Beltran-Leiva
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - William N G Moore
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Tener F Jenkins
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - William J Evans
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Thomas E Albrecht
- Department of Chemistry, Nuclear Science & Engineering Center, Colorado School of Mines Golden Colorado 80401 USA
| | - Cristian Celis-Barros
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| |
Collapse
|
4
|
Eralie DMT, Ducilon J, Gorden AEV. Uranium Chemistry: Identifying the Next Frontiers†. Inorg Chem 2025; 64:767-784. [PMID: 39190695 DOI: 10.1021/acs.inorgchem.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
While uranium is the most extensively studied actinide in terms of chemical properties, there remains much to be explored about its fundamental chemistry. Organometallic and organoactinide chemistry first emerged in the 1950s with research that found inspiration from transition-metal chemistry with the synthesis and characterization of uranocene, expanding new opportunities for organoactinide chemistry. Since then, a significant amount of research has pursued many avenues characterizing the fundamental nature of the f orbitals and their modes of bonding as well as their potential in catalysis. Uranium(III/IV) arene complexes dominate much of uranium organometallic chemistry, with bonding interactions stabilized by δ-back-bonding. Recent additions to this area of chemistry include the first UI and new additions of UII organouranium compounds. Uranium-transition metal complexes are still rare and maintain UIV oxidation states, with variable bond lengths determining the transition-metal oxidation state. Resultant reactivities are discussed as synthetic complexes, and unique bonding and coordination motifs are highlighted. This Viewpoint will focus on significant developments in uranium chemistry from the last 15 years while considering key areas for future research.
Collapse
Affiliation(s)
- Dylan M T Eralie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79401, United States
| | - John Ducilon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79401, United States
| | - Anne E V Gorden
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79401, United States
| |
Collapse
|
5
|
Ye LW, Zhang ZH, He Y, Wei SR, Lu JB, Hu HS, Li J. Is pentavalent Pr(V) feasible in solid CsPrF 6? Dalton Trans 2024; 53:15198-15204. [PMID: 39221622 DOI: 10.1039/d4dt02063d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The oxidation state (OS) holds significant importance in the field of chemistry and serves as a crucial parameter for tracking electrons. Lanthanide (Ln) elements predominately exhibit a +III oxidation state, with a few elements such as Ce, Pr, Nd, Tb, and Dy able to achieve a +IV oxidation state. Over the past century, numerous attempts to synthesize Pr(V) have been made without success until recent reports on Pr(V) oxides and nitride-oxide in the gas phase expanded our understanding of Ln elements. However, the formation of Pr(V) in the condensed phase remains an open question. In this work, based on advanced quantum chemical investigations, we predict that formation of the solid-state CsPrVF6 from Pr(III) and Pr(IV) complexes is exothermic, indicating that CsPrVF6 is stable. The crystal structure comprises [PrF6]- octahedral clusters occupying the interstitial spaces of Cs cations. Electronic structure analysis reveals that the CsPrF6 crystal has a closed-shell structure and that Pr reaches its highest oxidation state of +V. The results indicate that the existence of Pr(V) in solid-state Ln fluorides is not impossible, which enriches our understanding of high-valence Ln compounds.
Collapse
Affiliation(s)
- Lian-Wei Ye
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Zi-He Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Yang He
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Shi-Ru Wei
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Jun-Bo Lu
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
6
|
Kaltsoyannis N, Kerridge A. Understanding covalency in molecular f-block compounds from the synergy of spectroscopy and quantum chemistry. Nat Rev Chem 2024; 8:701-712. [PMID: 39174633 DOI: 10.1038/s41570-024-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
One of the most intensely studied areas of f-block chemistry is the nature of the bonds between the f-element and another species, and in particular the role played by covalency. Computational quantum chemical methods have been at the forefront of this research for decades and have a particularly valuable role, given the radioactivity of the actinide series. The very strong agreement that has recently emerged between theory and the results of a range of spectroscopic techniques not only facilitates deeper insight into the experimental data, but it also provides confidence in the conclusions from the computational studies. These synergies are shining new light on the nature of the f element-other element bond.
Collapse
Affiliation(s)
| | - Andrew Kerridge
- Department of Chemistry, The University of Lancaster, Lancaster, UK.
| |
Collapse
|
7
|
Brown AN, Kelleher JN, Brown AM, Saghy P, Bohl JJ, Robinson JR, Huh DN. Synthesis and reduction of [(C 5H 4SiMe 3) 2Ln(μ-OR)] 2 (Ln = La, Ce) complexes: structural effects of bridging alkoxides. Dalton Trans 2024. [PMID: 39188244 DOI: 10.1039/d4dt02137a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Alcoholysis of Cp'3Ln (Ln = La, Ce; Cp' = C5H4SiMe3) generate high-yielding (72-97%) bimetallic LnIII complexes of [Cp'2Ln(μ-OR)]2 [R = Et, iPr, or C6H4-4-tBu]. Single-crystal X-ray diffraction of these complexes reveal unexpected decreases in Ln⋯Ln distances, increasing Cpcent-Ln-Cpcent angles, and increasing intermolecular C⋯C contacts with bulkier bridging alkoxides, in line with structural control driven by significant dispersion forces. 1H NMR spectroscopy of [Cp'2Ce(μ-OEt)]2 and [Cp'2Ce(μ-OiPr)]2 revealed significantly upfield resonances assigned as methylene and methine moieties of -43.74 and -70.85 ppm, respectively. 2D 1H DOSY NMR experiments of [Cp'2Ce(μ-OiPr)]2 in C6D6 supported a dimeric structure in solution, including in the presence of a Lewis base (i.e., THF). Reduction of [Cp'2La(μ-OiPr)]2 using KC8 in the presence of 2.2.2-cryptand at -78 °C generated a purple solution and X-band EPR spectroscopy revealed an eight-line hyperfine pattern indicative of a LaII species.
Collapse
Affiliation(s)
- Adrian N Brown
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | - Jack N Kelleher
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | - Alexander M Brown
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Peter Saghy
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Joshua J Bohl
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Daniel N Huh
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
8
|
Garcia NA, Tafuri VC, Abdu RB, Roberts CC. Elucidating the Impact of Rare Earth or Transition Metal Identity on the Physical and Electronic Structural Properties of a Series of Redox-Active Tris(amido) Complexes. Inorg Chem 2024; 63:15283-15293. [PMID: 39102431 DOI: 10.1021/acs.inorgchem.4c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The use of redox-active ligands with the f-block elements has been employed to promote unique chemical transformations and explore their unique emergent electronic properties for a myriad of applications. In this study, we report eight new tris(amido) metal complexes: 1-Ln (Ln = Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+), 1-La, and 1-Ti (an early transition metal analogue). The one-electron oxidation of the tris(amido) ligand was conducted to generate semi-iminato complexes 2-Ln, 2-La, and 2-Ti, and these complexes were studied using EPR. Tris(amido) complexes 1-Ln, 1-La, and 1-Ti were fully characterized using a range of spectroscopic (NMR and UV-vis/NIR) and physical techniques (X-ray diffraction and cyclic voltammetry, with the exception of 1-La). Computational methods were employed to further elucidate the electronic structures of these complexes. Lastly, complexes 1-Ln, 1-La, and 1-Ti were probed as catalysts for alkyl-alkyl cross-coupling, and the initial rate of the reaction was measured to explore the influence of the metal ion.
Collapse
Affiliation(s)
- Nicholas A Garcia
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Victoria C Tafuri
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rana B Abdu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Roberts
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Réant BL, Mackintosh FJ, Gransbury GK, Mattei CA, Alnami B, Atkinson BE, Bonham KL, Baldwin J, Wooles AJ, Vitorica-Yrezabal IJ, Lee D, Chilton NF, Liddle ST, Mills DP. Tris-Silanide f-Block Complexes: Insights into Paramagnetic Influence on NMR Chemical Shifts. JACS AU 2024; 4:2695-2711. [PMID: 39055148 PMCID: PMC11267535 DOI: 10.1021/jacsau.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The paramagnetism of f-block ions has been exploited in chiral shift reagents and magnetic resonance imaging, but these applications tend to focus on 1H NMR shifts as paramagnetic broadening makes less sensitive nuclei more difficult to study. Here we report a solution and solid-state (ss) 29Si NMR study of an isostructural series of locally D 3h -symmetric early f-block metal(III) tris-hypersilanide complexes, [M{Si(SiMe3)3}3(THF)2] (1-M; M = La, Ce, Pr, Nd, U); 1-M were also characterized by single crystal and powder X-ray diffraction, EPR, ATR-IR, and UV-vis-NIR spectroscopies, SQUID magnetometry, and elemental analysis. Only one SiMe3 signal was observed in the 29Si ssNMR spectra of 1-M, while two SiMe3 signals were seen in solution 29Si NMR spectra of 1-La and 1-Ce. This is attributed to dynamic averaging of the SiMe3 groups in 1-M in the solid state due to free rotation of the M-Si bonds and dissociation of THF from 1-M in solution to give the locally C 3v -symmetric complexes [M{Si(SiMe3)3}3(THF) n ] (n = 0 or 1), which show restricted rotation of M-Si bonds on the NMR time scale. Density functional theory and complete active space self-consistent field spin-orbit calculations were performed on 1-M and desolvated solution species to model paramagnetic NMR shifts. We find excellent agreement of experimental 29Si NMR data for diamagnetic 1-La, suggesting n = 1 in solution and reasonable agreement of calculated paramagnetic shifts of SiMe3 groups for 1-M (M = Pr and Nd); the NMR shifts for metal-bound 29Si nuclei could only be reproduced for diamagnetic 1-La, showing the current limitations of pNMR calculations for larger nuclei.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Fraser J. Mackintosh
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Carlo Andrea Mattei
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Barak Alnami
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin E. Atkinson
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Katherine L. Bonham
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Jack Baldwin
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra 2601, Australian Capital Territory, Australia
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
10
|
Nodaraki L, Ariciu AM, Huh DN, Liu J, Martins DOTA, Ortu F, Winpenny REP, Chilton NF, McInnes EJL, Mills DP, Evans WJ, Tuna F. Ligand Effects on the Spin Relaxation Dynamics and Coherent Manipulation of Organometallic La(II) Potential Qu dits. J Am Chem Soc 2024; 146:15000-15009. [PMID: 38787801 PMCID: PMC11157535 DOI: 10.1021/jacs.3c12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
We present pulsed electron paramagnetic resonance (EPR) studies on three La(II) complexes, [K(2.2.2-cryptand)][La(Cp')3] (1), [K(2.2.2-cryptand)][La(Cp″)3] (2), and [K(2.2.2-cryptand)][La(Cptt)3] (3), which feature cyclopentadienyl derivatives as ligands [Cp' = C5H4SiMe3; Cp″ = C5H3(SiMe3)2; Cptt = C5H3(CMe3)2] and display a C3 symmetry. Long spin-lattice relaxation (T1) and phase memory (Tm) times are observed for all three compounds, but with significant variation in T1 among 1-3, with 3 being the slowest relaxing due to higher s-character of the SOMO. The dephasing times can be extended by more than an order of magnitude via dynamical decoupling experiments using a Carr-Purcell-Meiboom-Gill (CPMG) sequence, reaching 161 μs (5 K) for 3. Coherent spin manipulation is performed by the observation of Rabi quantum oscillations up to 80 K in this nuclear spin-rich environment (1H, 13C, and 29Si). The high nuclear spin of 139La (I = 7/2), and the ability to coherently manipulate all eight hyperfine transitions, makes these molecules promising candidates for application as qudits (multilevel quantum systems featuring d quantum states; d >2) for performing quantum operations within a single molecule. Application of HYSCORE techniques allows us to quantify the electron spin density at ligand nuclei and interrogate the role of functional groups to the electron spin relaxation properties.
Collapse
Affiliation(s)
- Lydia
E. Nodaraki
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Ana-Maria Ariciu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Daniel N. Huh
- Department
of Chemistry, University of California, Irvine, California 92697, United States
of America
- Department
of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
of America
| | - Jingjing Liu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Daniel O. T. A. Martins
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Fabrizio Ortu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | | | - Nicholas F. Chilton
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Research
School of Chemistry, Australian National
University, Canberra 2617, Australia
| | - Eric J. L. McInnes
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - William J. Evans
- Department
of Chemistry, University of California, Irvine, California 92697, United States
of America
| | - Floriana Tuna
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
11
|
Goodwin CAP, Corbey JF. Ligand-Metal Complementarity in Rare-Earth and Actinide Chemistry. Inorg Chem 2024; 63:9355-9362. [PMID: 38798242 DOI: 10.1021/acs.inorgchem.4c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Conrad A P Goodwin
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jordan F Corbey
- Nuclear Material Processing Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
12
|
Du J, Dollberg K, Seed JA, Wooles AJ, von Hänisch C, Liddle ST. Thorium(IV)-antimony complexes exhibiting single, double, and triple polar covalent metal-metal bonds. Nat Chem 2024; 16:780-790. [PMID: 38378948 DOI: 10.1038/s41557-024-01448-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
There is continued burgeoning interest in metal-metal multiple bonding to further our understanding of chemical bonding across the periodic table. However, although polar covalent metal-metal multiple bonding is well known for the d and p blocks, it is relatively underdeveloped for actinides. Homometallic examples are found in spectroscopic or fullerene-confined species, and heterometallic variants exhibiting a polar covalent σ bond supplemented by up to two dative π bonds are more prevalent. Hence, securing polar covalent actinide double and triple metal-metal bonds under normal experimental conditions has been a fundamental target. Here we exploit the protonolysis and dehydrocoupling chemistry of the parent dihydrogen-antimonide anion, to report one-, two- and three-fold thorium-antimony bonds, thus introducing polar covalent actinide-metal multiple bonding under normal experimental conditions between some of the heaviest ions in the periodic table with little or no bulky-substituent protection at the antimony centre. This provides fundamental insights into heavy element multiple bonding, in particular the tension between orbital-energy-driven and overlap-driven covalency for the actinides in a relativistic regime.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Kevin Dollberg
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany.
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK.
| |
Collapse
|
13
|
Gilbert-Bass K, Stennett CR, Grotjahn R, Ziller JW, Furche F, Evans WJ. Exploring sulfur donor atom coordination chemistry with La(II), Nd(II), and Tm(II) using a terphenylthiolate ligand. Chem Commun (Camb) 2024; 60:4601-4604. [PMID: 38586900 DOI: 10.1039/d4cc01037j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
To expand the range of donor atoms known to stabilize 4fn5d1 Ln(II) rare-earth metal (Ln) ions beyond the C, N, and O first row main group donor atoms, the Ln(III) sulfur donor terphenylthiolate iodide complexes, LnIII(SAriPr6)2I (AriPr6 = C6H3-2,6-(C6H2-2,4,6-iPr3)2, Ln = La, Nd) were reduced to form LnII(SAriPr6)2 complexes. These Ln(II) species were structurally characterized, analyzed by density functional theory (DFT) calculations, and compared to Tm(SAriPr6)2, which was synthesized from TmI2(DME)3.
Collapse
Affiliation(s)
- Kito Gilbert-Bass
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Cary R Stennett
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Robin Grotjahn
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
14
|
Ouellette ET, Brackbill IJ, Kynman AE, Christodoulou S, Maron L, Bergman RG, Arnold J. Triple Inverse Sandwich versus End-On Diazenido: Bonding Motifs across a Series of Rhenium-Lanthanide and -Actinide Complexes. Inorg Chem 2024; 63:7177-7188. [PMID: 38598523 DOI: 10.1021/acs.inorgchem.3c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
While synthesizing a series of rhenium-lanthanide triple inverse sandwich complexes, we unexpectedly uncovered evidence for rare examples of end-on lanthanide dinitrogen coordination for certain heavy lanthanide elements as well as for uranium. We begin our report with the synthesis and characterization of a series of trirhenium triple inverse sandwich complexes with the early lanthanides, Ln[(μ-η5:η5-Cp)Re(BDI)]3(THF) (1-Ln, Ln = La, Ce, Pr, Nd, Sm; Cp = cyclopentadienide, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate). However, as we moved across the lanthanide series, we ran into an unexpected result for gadolinium in which we structurally characterized two products for gadolinium, namely, 1-Gd (analogous to 1-Ln) and a diazenido dirhenium double inverse sandwich complex Gd[(μ-η1:η1-N2)Re(η5-Cp)(BDI)][(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (2-Gd). Evidence for analogues of 2-Gd was spectroscopically observed for other heavy lanthanides (2-Ln, Ln = Tb, Dy, Er), and, in the case of 2-Er, structurally authenticated. These complexes represent the first observed examples of heterobimetallic end-on lanthanide dinitrogen coordination. Density functional theory (DFT) calculations were utilized to probe relevant bonding interactions and reveal energetic differences between both the experimental and putative 1-Ln and 2-Ln complexes. We also present additional examples of novel end-on heterobimetallic lanthanide and actinide diazenido moieties in the erbium-rhenium complex (η8-COT)Er[(μ-η1:η1-N2)Re(η5-Cp)(BDI)](THF)(Et2O) (3-Er) and uranium-rhenium complex [Na(2.2.2-cryptand)][(η5-C5H4SiMe3)3U(μ-η1:η1-N2)Re(η5-Cp)(BDI)] (4-U). Finally, we expand the scope of rhenium inverse sandwich coordination by synthesizing divalent double inverse sandwich complex Yb[(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (5-Yb), as well as base-free, homoleptic rhenium-rare earth triple inverse sandwich complex Y[(μ-η5:η5-Cp)Re(BDI)]3 (6-Y).
Collapse
Affiliation(s)
- Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Amy E Kynman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stella Christodoulou
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Nguyen JQ, Wedal JC, Ziller JW, Furche F, Evans WJ. Investigating Steric and Electronic Effects in the Synthesis of Square Planar 6d 1 Th(III) Complexes. Inorg Chem 2024; 63:6217-6230. [PMID: 38502000 DOI: 10.1021/acs.inorgchem.3c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The factors affecting the formation and crystal structures of unusual 6d1 Th(III) square planar aryloxide complexes, as exemplified by [Th(OArMe)4]1- (OArMe = OC6H2tBu2-2,6-Me-4), were explored by synthetic and reduction studies of a series of related Th(IV) tetrakis(aryloxide) complexes, Th(OArR)4 (OArR = OC6H2tBu2-2,6-R-4). Specifically, electronic, steric, and countercation effects were explored by varying the aryloxide ligand, the alkali metal reducing agent, and the alkali metal chelating agent. Salt metathesis reactions between ThBr4(DME)2 (DME = 1,2-dimethoxyethane) and 4 equiv of the appropriate potassium aryloxide salt were used to prepare a series of Th(IV) aryloxide complexes in high yields: Th(OArH)4 (OArH = OC6H3tBu2-2,6), Th(OArtBu)4 (OArtBu = OC6H2tBu3-2,4,6), Th(OArOMe)4 (OArOMe = OC6H2tBu2-2,6-OMe-4), and Th(OArPh)4 (OArPh = OC6H2tBu2-2,6-Ph-4). Th(OArH)4 can be reduced by KC8, Na, or Li in the absence or presence of 2.2.2-cryptand (crypt) or 18-crown-6 (crown) to form dark purple solutions that have EPR and UV-visible spectra similar to those of the square planar Th(III) complex, [Th(OArMe)4]1-. Hence, the para position of the aryloxide ligand does not have to be alkylated to obtain the Th(III) complexes. Furthermore, reduction of Th(OArOMe)4, Th(OArtBu)4, and Th(OArPh)4 with KC8 in THF generated purple solutions with EPR and UV-visible spectra that are similar to those of the previously reported Th(III) anion, [Th(OArMe)4]1-. Although many of these reduction reactions did not produce single crystals suitable for study by X-ray diffraction, reduction of Th(OArH)4, Th(OArtBu)4, and Th(OArOMe)4 with Li provided X-ray quality crystals whose structures had square planar coordination geometries. Reduction of Th(OArPh)4 with Li also gave a product with EPR and UV-visible spectra that matched those of [Th(OArMe)4]1-, but X-ray quality crystals of the reduction product were too unstable to provide data. Neither Th(Odipp)4(THF)2 (Odipp = OC6H3iPr2-2,6) nor Th(Odmp)4(THF)2 (Odmp = OC6H3Me2-2,6) could be reduced to Th(III) products under similar conditions. Reduction of U(OArH)3(THF) with KC8 in the presence of 2.2.2-cryptand (crypt) was examined for comparison and formed [K(crypt)][U(OArH)4], which has a tetrahedral arrangement of the aryloxide ligands. Moreover, no further reduction was observed when either [K(crypt)][U(OArH)4] or [K(crown)(THF)2][U(OArH)4] were treated with KC8 or Li.
Collapse
Affiliation(s)
- Joseph Q Nguyen
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin C Wedal
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
16
|
Zhang Y, Chen J, Li K, Wu H, Hu Z, Wang J, Wu Y, Yu H. LaMg 6Ga 6S 16: a chemical stable divalent lanthanide chalcogenide. Nat Commun 2024; 15:2959. [PMID: 38580636 PMCID: PMC11271512 DOI: 10.1038/s41467-024-47209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Divalent lanthanide inorganic compounds can exhibit unique electronic configurations and physicochemical properties, yet their synthesis remains a great challenge because of the weak chemical stability. To the best of our knowledge, although several lanthanide monoxides epitaxial thin films have been reported, there is no chemically stable crystalline divalent lanthanide chalcogenide synthesized up to now. Herein, by using octahedra coupling tetrahedra single/double chains to construct an octahedral crystal field, we synthesized the stable crystalline La(II)-chalcogenide, LaMg6Ga6S16. The nature of the divalent La2+ cations can be identified by X-ray photoelectron spectroscopy, X-ray absorption near-edge structure and electron paramagnetic resonance, while the stability is confirmed by the differential thermal scanning, in-situ variable-temperature powder X-ray diffraction and a series of solid-state reactions. Owing to the particular electronic characteristics of La2+(5d1), LaMg6Ga6S16 displays an ultrabroad-band green emission at 500 nm, which is the inaugural instance of La(II)-based compounds demonstrating luminescent properties. Furthermore, as LaMg6Ga6S16 crystallizes in the non-centrosymmetric space group, P-6, it is the second-harmonic generation (SHG) active, possessing a comparable SHG response with classical AgGaS2. In consideration of its wider band gap (Eg = 3.0 eV) and higher laser-induced damage threshold (5×AgGaS2), LaMg6Ga6S16 is also a promising nonlinear optical material.
Collapse
Affiliation(s)
- Yujie Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Jiale Chen
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Kaixuan Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China.
| |
Collapse
|
17
|
Xue T, Ding YS, Zheng Z. A tetravalent praseodymium complex with field-induced slow magnetic relaxation. Dalton Trans 2024; 53:5779-5783. [PMID: 38482700 DOI: 10.1039/d4dt00052h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Herein the synthesis, structural characterization, and magnetic properties of a Pr(IV) complex [Pr(OSiPh3)4(L)] (1, L = 4,4'-dimethoxy-2,2'-bipyridine) are reported. The stability of the Pr(IV) complex significantly enhanced with the use of the bidentate ligand L. Slow magnetic relaxation was observed at low temperatures, indicating that the complex may be the first single-ion magnet with a tetravalent lanthanide ion being the magnetic center.
Collapse
Affiliation(s)
- Tianjiao Xue
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
- Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - You-Song Ding
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
- Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
- Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
18
|
Flosbach NT, Bykov M, Bykova E, Rasche B, Mezouar M, Fedotenko T, Chariton S, Prakapenka VB, Wickleder MS. Stabilization of Pr 4+ in Silicates─High-Pressure Synthesis of PrSi 3O 8 and Pr 2Si 7O 18. Inorg Chem 2024; 63:4875-4882. [PMID: 38412505 DOI: 10.1021/acs.inorgchem.3c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The reaction between PrO2 and SiO2 was investigated at various pressure points up to 29 GPa in a diamond anvil cell using laser heating and in situ single-crystal structure analysis. The pressure points at 5 and 10 GPa produced Pr2III(Si2O7), whereas Pr4IIISi3O12 and Pr2IV(O2)O3 were obtained at 15 GPa. Pr4IIISi3O12 can be interpreted as a high-pressure modification of the still unknown orthosilicate Pr4III(SiO4)3. PrIVSi3O8 and Pr2IVSi7O18 that contain praseodymium in its rare + IV oxidation state were identified at 29 GPa. After the pressure was released from the reaction chamber, the Pr(IV) silicates could be recovered, indicating that they are metastable at ambient pressure. Density functional theory calculations of the electronic structure corroborate the oxidation state of praseodymium in both PrIVSi3O8 and Pr2IVSi7O18. Both silicates are the first structurally characterized representatives of Pr4+-containing salts with oxoanions. All three silicates contain condensed networks of [SiO6] octahedra which is unprecedented in the rich chemistry of lanthanoid silicates.
Collapse
Affiliation(s)
- Niko T Flosbach
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Maxim Bykov
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
- Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Elena Bykova
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Bertold Rasche
- Institute of Inorganic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | - Timofey Fedotenko
- Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States
| | - Mathias S Wickleder
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
19
|
Jin PB, Luo QC, Gransbury GK, Vitorica-Yrezabal IJ, Hajdu T, Strashnov I, McInnes EJL, Winpenny REP, Chilton NF, Mills DP, Zheng YZ. Thermally Stable Terbium(II) and Dysprosium(II) Bis-amidinate Complexes. J Am Chem Soc 2023; 145:27993-28009. [PMID: 37997752 PMCID: PMC10755703 DOI: 10.1021/jacs.3c07978] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
The thermostable four-coordinate divalent lanthanide (Ln) bis-amidinate complexes [Ln(Piso)2] (Ln = Tb, Dy; Piso = {(NDipp)2CtBu}, Dipp = C6H3iPr2-2,6) were prepared by the reduction of parent five-coordinate Ln(III) precursors [Ln(Piso)2I] (Ln = Tb, Dy) with KC8; halide abstraction of [Ln(Piso)2I] with [H(SiEt3)2][B(C6F5)] gave the respective Ln(III) complexes [Ln(Piso)2][B(C6F5)]. All complexes were characterized by X-ray diffraction, ICP-MS, elemental analysis, SQUID magnetometry, UV-vis-NIR, ATR-IR, NMR, and EPR spectroscopy and ab initio CASSCF-SO calculations. These data consistently show that [Ln(Piso)2] formally exhibit Ln(II) centers with 4fn5dz21 (Ln = Tb, n = 8; Dy, n = 9) valence electron configurations. We show that simple assignments of the f-d coupling to either L-S or J-s schemes are an oversimplification, especially in the presence of significant crystal field splitting. The coordination geometry of [Ln(Piso)2] is intermediate between square planar and tetrahedral. Projecting from the quaternary carbon atoms of the CN2 ligand backbones shows near-linear C···Ln···C arrangements. This results in strong axial ligand fields to give effective energy barriers to magnetic reversal of 1920(91) K for the Tb(II) analogue and 1964(48) K for Dy(II), the highest values observed for mononuclear Ln(II) single-molecule magnets, eclipsing 1738 K for [Tb(C5iPr5)2]. We tentatively attribute the fast zero-field magnetic relaxation for these complexes at low temperatures to transverse fields, resulting in considerable mixing of mJ states.
Collapse
Affiliation(s)
- Peng-Bo Jin
- Frontier
Institute of Science and Technology (FIST), State Key Laboratory of
Electrical Insulation and Power Equipment, MOE Key Laboratory for
Nonequilibrium Synthesis of Condensed Matter, Xi’an Key Laboratory
of Electronic Devices and Materials Chemistry and School of Chemistry, Xi’an Jiaotong University, 99 Yanxiang Road, Xi’an, Shaanxi 710054, P. R. China
| | - Qian-Cheng Luo
- Frontier
Institute of Science and Technology (FIST), State Key Laboratory of
Electrical Insulation and Power Equipment, MOE Key Laboratory for
Nonequilibrium Synthesis of Condensed Matter, Xi’an Key Laboratory
of Electronic Devices and Materials Chemistry and School of Chemistry, Xi’an Jiaotong University, 99 Yanxiang Road, Xi’an, Shaanxi 710054, P. R. China
| | - Gemma K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Tomáš Hajdu
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Photon
Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ilya Strashnov
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Eric J. L. McInnes
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Photon
Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Richard E. P. Winpenny
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Yan-Zhen Zheng
- Frontier
Institute of Science and Technology (FIST), State Key Laboratory of
Electrical Insulation and Power Equipment, MOE Key Laboratory for
Nonequilibrium Synthesis of Condensed Matter, Xi’an Key Laboratory
of Electronic Devices and Materials Chemistry and School of Chemistry, Xi’an Jiaotong University, 99 Yanxiang Road, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
20
|
Xue T, Ding YS, Jiang XL, Tao L, Li J, Zheng Z. Tetravalent Terbium Chelates: Stability Enhancement and Property Tuning. PRECISION CHEMISTRY 2023; 1:583-591. [PMID: 39473575 PMCID: PMC11504578 DOI: 10.1021/prechem.3c00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 02/03/2025]
Abstract
Coordination chemistry of rare-earth elements has been dominated by the +3 oxidation state. Complexes with higher-valence lanthanide ions are synthetically challenging but are of fundamental research interest and significance as advanced molecular materials. Herein, four tetravalent terbium complexes (2-5) of the common formula [Tb(OSiPh3)4L] (L = ethylene glycol dimethyl ether (DME), 2,2'-bipyridine (bpy), 2,2'-bipyrimidine (bpym), and 1,10-phenanthroline (phen)) are reported. Crystallographic analyses reveal in each of these complexes a hexacoordinate Tb(IV) ion situated in a distorted octahedral coordination environment formed by four triphenylsiloxido ligands and a bidentate chelating ligand. The use of chelating ligands enhances the stability of the resulting complexes over their THF solvate precursor. More significantly, the aromatic N-chelating ligands have been found to tune effectively the electronic structures of the complexes, as evidenced by the sizable potential shifts observed for the quasi-reversible redox Tb(IV/III) process and by the changes in their absorption spectra. The experimental findings are augmented with quantum theoretical calculations in which the ligand π-donation to the 5d orbitals of the Tb(IV) center is found to be primarily responsible for stability enhancement and the corresponding changes of physical properties observed. Magnetic measurements and results from electron paramagnetic resonance studies produced small absolute values of zero-field splittings of these complexes, ranging from 0.1071(22) to 1.1484(112) cm-1 and comparable to the values reported for analogous Tb(IV) complexes.
Collapse
Affiliation(s)
- Tianjiao Xue
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
- Key
University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - You-Song Ding
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
- Key
University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xue-Lian Jiang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
- Key
University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lizhi Tao
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Li
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
- Department
of Chemistry and Engineering Research Center of Advanced Rare-Earth
Materials of Ministry of Education, Tsinghua
University, Beijing 100084, China
- Key
University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiping Zheng
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
- Key
University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
21
|
Wang Y, Liang J, Deng C, Sun R, Fu PX, Wang BW, Gao S, Huang W. Two-Electron Oxidations at a Single Cerium Center. J Am Chem Soc 2023; 145:22466-22474. [PMID: 37738079 DOI: 10.1021/jacs.3c06613] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Two-electron oxidations are ubiquitous and play a key role in the synthesis and catalysis. For transition metals and actinides, two-electron oxidation often takes place at a single-metal site. However, redox reactions at rare-earth metals have been limited to one-electron processes due to the lack of accessible oxidation states. Despite recent advancements in nontraditional oxidation state chemistry, the low stability of low-valent compounds and large disparity among different oxidation states prevented the implementation of two-electron processes at a single rare-earth metal center. Here we report two-electron oxidations at a cerium(II) center to yield cerium(IV) terminal oxo and imido complexes. A series of cerium(II-IV) complexes supported by a tripodal tris(amido)arene ligand were synthesized and characterized. Experimental and theoretical studies revealed that the cerium(II) complex is best described as a 4f2 ion stabilized by δ-backdonation to the anchoring arene, while the cerium(IV) oxo and imido complexes exhibit multiple bonding characters. The accomplishment of two-electron oxidations at a single cerium center brings a new facet to molecular rare-earth metal chemistry.
Collapse
Affiliation(s)
- Yi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, P. R. China
| | - Peng-Xiang Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
22
|
Bowles AWJ, Liu Y, Stevens MP, Vitorica‐Yrezabal IJ, McMullin CL, Ortu F. A Blueprint for the Stabilization of Sub-Valent Alkaline Earth Complexes. Chemistry 2023; 29:e202301850. [PMID: 37338225 PMCID: PMC10947258 DOI: 10.1002/chem.202301850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The study of sub-valent Group 2 chemistry is a relatively new research field, being established in 2007 with the report of the first Mg(I) dimers. These species are stabilized by the formation of a Mg-Mg covalent bond; however, the extension of this chemistry to heavier alkaline earth (AE) metals has been frustrated by significant synthetic challenges, primarily associated with the instability of heavy AE-AE interactions. Here we present a new blueprint for the stabilization of heavy AE(I) complexes, based upon the reduction of AE(II) precursors with planar coordination geometries. We report the synthesis and structural characterisation of homoleptic trigonal planar AE(II) complexes of the monodentate amides {N(SiMe3 )2 }- and {N(Mes)(SiMe3 )}- . DFT calculations showed that the LUMOs of these complexes all show some d-character for AE = Ca-Ba. DFT analysis of the square planar Sr(II) complex [Sr{N(SiMe3 )2 }(dioxane)2 ]∞ revealed analogous frontier orbital d-character. AE(I) complexes that could be accessed by reduction of these AE(II) precursors were modelled computationally, revealing exergonic formation in all cases. Crucially, NBO calculations show that some d-character is preserved in the SOMO of theoretical AE(I) products upon reduction, showing that d-orbitals could play a crucial role in achieving stable heavy AE(I) complexes.
Collapse
Affiliation(s)
- Alex W. J. Bowles
- School of ChemistryUniversity of LeicesterUniversity RoadLeicesterLE1 7RHUK
| | - Yu Liu
- School of ChemistryUniversity of LeicesterUniversity RoadLeicesterLE1 7RHUK
| | - Matthew P. Stevens
- School of ChemistryUniversity of LeicesterUniversity RoadLeicesterLE1 7RHUK
| | | | | | - Fabrizio Ortu
- School of ChemistryUniversity of LeicesterUniversity RoadLeicesterLE1 7RHUK
| |
Collapse
|
23
|
Hsueh FC, Rajeshkumar T, Maron L, Scopelliti R, Sienkiewicz A, Mazzanti M. Isolation and redox reactivity of cerium complexes in four redox states. Chem Sci 2023; 14:6011-6021. [PMID: 37293643 PMCID: PMC10246686 DOI: 10.1039/d3sc01478a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
The chemistry of lanthanides is limited to one electron transfer reactions due to the difficulty of accessing multiple oxidation states. Here we report that a redox-active ligand combining three siloxides with an arene ring in a tripodal ligand can stabilize cerium complexes in four different redox states and can promote multielectron redox reactivity in cerium complexes. Ce(iii) and Ce(iv) complexes [(LO3)Ce(THF)] (1) and [(LO3)CeCl] (2) (LO3 = 1,3,5-(2-OSi(OtBu)2C6H4)3C6H3) were synthesized and fully characterized. Remarkably the one-electron reduction and the unprecedented two-electron reduction of the tripodal Ce(iii) complex are easily achieved to yield reduced complexes [K(2.2.2-cryptand)][(LO3)Ce(THF)] (3) and [K2{(LO3)Ce(Et2O)3}] (5) that are formally "Ce(ii)" and "Ce(i)" analogues. Structural analysis, UV and EPR spectroscopy and computational studies indicate that in 3 the cerium oxidation state is in between +II and +III with a partially reduced arene. In 5 the arene is doubly reduced, but the removal of potassium results in a redistribution of electrons on the metal. The electrons in both 3 and 5 are stored onto δ-bonds allowing the reduced complexes to be described as masked "Ce(ii)" and "Ce(i)". Preliminary reactivity studies show that these complexes act as masked Ce(ii) and Ce(i) in redox reactions with oxidizing substrates such as Ag+, CO2, I2 and S8 effecting both one- and two-electron transfers that are not accessible in classical cerium chemistry.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées 31077 Toulouse, Cedex 4 France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées 31077 Toulouse, Cedex 4 France
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- ADSresonances Sàrl 1920 Martigny Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
24
|
Wedal JC, Anderson-Sanchez LM, Dumas MT, Gould CA, Beltrán-Leiva MJ, Celis-Barros C, Páez-Hernández D, Ziller JW, Long JR, Evans WJ. Synthesis and Crystallographic Characterization of a Reduced Bimetallic Yttrium ansa-Metallocene Hydride Complex, [K(crypt)][(μ-Cp An)Y(μ-H)] 2 (Cp An = Me 2Si[C 5H 3(SiMe 3)-3] 2), with a 3.4 Å Yttrium-Yttrium Distance. J Am Chem Soc 2023; 145:10730-10742. [PMID: 37133919 DOI: 10.1021/jacs.3c01405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The reduction of a bimetallic yttrium ansa-metallocene hydride was examined to explore the possible formation of Y-Y bonds with 4d1 Y(II) ions. The precursor [CpAnY(μ-H)(THF)]2 (CpAn = Me2Si[C5H3(SiMe3)-3]2) was synthesized by hydrogenolysis of the allyl complex CpAnY(η3-C3H5)(THF), which was prepared from (C3H5)MgCl and [CpAnY(μ-Cl)]2. Treatment of [CpAnY(μ-H)(THF)]2 with excess KC8 in the presence of one equivalent of 2.2.2-cryptand (crypt) generates an intensely colored red-brown product crystallographically identified as [K(crypt)][(μ-CpAn)Y(μ-H)]2. The two rings of each CpAn ligand in the reduced anion [(μ-CpAn)Y(μ-H)]21- are attached to two yttrium centers in a "flyover" configuration. The 3.3992(6) and 3.4022(7) Å Y···Y distances between the equivalent metal centers within two crystallographically independent complexes are the shortest Y···Y distances observed to date. Ultraviolet-visible (UV-visible)/near infrared (IR) and electron paramagnetic resonance (EPR) spectroscopy support the presence of Y(II), and theoretical analysis describes the singly occupied molecular orbital (SOMO) as an Y-Y bonding orbital composed of metal 4d orbitals mixed with metallocene ligand orbitals. A dysprosium analogue, [K(18-crown-6)(THF)2][(μ-CpAn)Dy(μ-H)]2, was also synthesized, crystallographically characterized, and studied by variable temperature magnetic susceptibility. The magnetic data are best modeled with the presence of one 4f9 Dy(III) center and one 4f9(5dz2)1 Dy(II) center with no coupling between them. CASSCF calculations are consistent with magnetic measurements supporting the absence of coupling between the Dy centers.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Megan T Dumas
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Colin A Gould
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - María J Beltrán-Leiva
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Dayán Páez-Hernández
- Center of Applied Nanoscience (CANS), Universidad Andres Bello, Santiago 8370146, Chile
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
25
|
Stennett CR, Nguyen JQ, Ziller JW, Evans WJ. Accessing Lanthanide Metallocene Two-Electron Reduction Chemistry Using 2,2′-Bipyridine. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Cary R. Stennett
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph Q. Nguyen
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Lu JB, Jiang XL, Wang JQ, Hu HS, Schwarz WHE, Li J. On the highest oxidation states of the actinoids in AnO 4 molecules (An = Ac - Cm): A DMRG-CASSCF study. J Comput Chem 2023; 44:190-198. [PMID: 35420170 DOI: 10.1002/jcc.26856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
Actinoid tetroxide molecules AnO4 (An = Ac - Cm) are investigated with the ab initio density matrix renormalization group (DMRG) approach. Natural orbital shapes are used to read out the oxidation state (OS) of the f-elements, and the atomic orbital energies and radii are used to explain the trends. The highest OSs reveal a "volcano"-type variation: For An = Ac - Np, the OSs are equal to the number of available valence electrons, that is, AcIII , ThIV , PaV , UVI , and NpVII . Starting with plutonium as the turning point, the highest OSs in the most stable AnO4 isomers then decrease as PuV , AmV , and CmIII , indicating that the 5f-electrons are hard to be fully oxidized off from Pu onward. The variations are related to the actinoid contraction and to the 5f-covalency characteristics. Combined with previous work on OSs, we review their general trends throughout the periodic table, providing fundamental understanding of OS-relevant phenomena.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen.,Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - Xue-Lian Jiang
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen
| | - Jia-Qi Wang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing.,Theoretische Chemie, Fachbereich Chemie und Biologie, Universität Siegen, Siegen, Germany
| | - Jun Li
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen.,Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| |
Collapse
|
27
|
Mahieu N, Piątkowski J, Simler T, Nocton G. Back to the future of organolanthanide chemistry. Chem Sci 2023; 14:443-457. [PMID: 36741512 PMCID: PMC9848160 DOI: 10.1039/d2sc05976b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
At the dawn of the development of structural organometallic chemistry, soon after the discovery of ferrocene, the description of the LnCp3 complexes, featuring large and mostly trivalent lanthanide ions, was rather original and sparked curiosity. Yet, the interest in these new architectures rapidly dwindled due to the electrostatic nature of the bonding between π-aromatic ligands and 4f-elements. Almost 70 years later, it is interesting to focus on how the discipline has evolved in various directions with the reports of multiple catalytic reactivities, remarkable potential in small molecule activation, and the development of rich redox chemistry. Aside from chemical reactivity, a better understanding of their singular electronic nature - not precisely as simplistic as anticipated - has been crucial for developing tailored compounds with adapted magnetic anisotropy or high fluorescence properties that have witnessed significant popularity in recent years. Future developments shall greatly benefit from the detailed reactivity, structural and physical chemistry studies, particularly in photochemistry, electro- or photoelectrocatalysis of inert small molecules, and manipulating the spins' coherence in quantum technology.
Collapse
Affiliation(s)
- Nolwenn Mahieu
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Jakub Piątkowski
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Thomas Simler
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| |
Collapse
|
28
|
Anderson-Sanchez LM, Yu JM, Ziller JW, Furche F, Evans WJ. Room-Temperature Stable Ln(II) Complexes Supported by 2,6-Diadamantyl Aryloxide Ligands. Inorg Chem 2023; 62:706-714. [PMID: 36595714 DOI: 10.1021/acs.inorgchem.2c02167] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sterically bulky aryloxide ligand OAr* (OAr* = -OC6H2-Ad2-2,6tBu-4; Ad = 1-adamantyl) has been used to generate Ln(II) complexes across the lanthanide series that are more thermally stable than complexes of any other ligand system reported to date for 4fnd1 Ln(II) ions. The Ln(III) precursors Ln(OAr*)3 (1-Ln) were synthesized by reacting 1.2 equiv of Ln(NR2)3 (R = SiMe3) with 3 equiv of HOAr* for Ln = La, Ce, Nd, Gd, Dy, Yb, and Lu. 1-Ce, 1-Nd, 1-Gd, 1-Dy, and 1-Lu were identified by single-crystal X-ray diffraction studies. Reductions of 1-Ln with potassium graphite (KC8) in tetrahydrofuran in the presence of 2.2.2-cryptand (crypt) yielded the Ln(II) complexes [K(crypt)][Ln(OAr*)3] (2-Ln). The 2-Ln complexes for Ln = Nd, Gd, Dy, and Lu were characterized by X-ray crystallography and found to have Ln-O bond distances 0.038-0.087 Å longer than those of their 1-Ln analogues; this is consistent with 4fn5d1 electron configurations. The structure of 2-Yb has Yb-O distances 0.167 Å longer than those predicted for 1-Yb, which is consistent with a 4f14 electron configuration. Although 2-La and 2-Ce proved to be challenging to isolate, with 18-crown-6 (18-c-6) as the potassium chelator, La(II) and Ce(II) complexes with OAr* could be isolated and crystallographically characterized: [K(18-c-6)][Ln(OAr*)3] (3-Ln). The Ln(II) complexes decompose at room temperature more slowly than other previously reported 4fn5d1 Ln(II) complexes. For example, only 30% decomposition of 2-Dy was observed after 30 h at room temperature compared to complete decomposition of [Dy(OAr')3]- and [DyCp'3]- under similar conditions (OAr' = OC6H2-2,6-tBu2-4-Me; Cp' = C5H4SiMe3).
Collapse
Affiliation(s)
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, Irvine, California 92617, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92617, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, Irvine, California 92617, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, Irvine, California 92617, United States
| |
Collapse
|
29
|
Lu JB, Jiang XL, Hu HS, Li J. Norm-Conserving 4f-in-Core Pseudopotentials and Basis Sets Optimized for Trivalent Lanthanides (Ln = Ce-Lu). J Chem Theory Comput 2023; 19:82-96. [PMID: 36512750 DOI: 10.1021/acs.jctc.2c00922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present here a set of scalar-relativistic norm-conserving 4f-in-core pseudopotentials, together with complementary valence-shell Gaussian basis sets, for the lanthanide (Ln) series (Ce-Lu). The Goedecker, Teter, and Hutter (GTH) formalism is adopted with the generalized gradient approximation (GGA) for the exchange-correlation Perdew-Burke-Ernzerhof (PBE) functional. The 4f-in-core pseudopotentials are built through attributing 4f-subconfiguration 4fn (n = 1-14) for Ln (Ln = Ce-Lu) into the atomic core region, making it possible to circumvent the difficulty of the description of the open 4fn valence shell. A wide variety of computational benchmarks and tests have been carried out on lanthanide systems including Ln3+-containing molecular complexes, aqueous solutions, and bulk solids to validate the accuracy, reliability, and efficiency of the optimized 4f-in-core GTH pseudopotentials and basis sets. The 4f-in-core GTH pseudopotentials successfully replicate the main features of lanthanide structural chemistry and reaction energetics, particularly for nonredox reactions. The chemical bonding features and solvation shells, hydrolysis energetics, acidity constants, and solid-state properties of selected lanthanide systems are also discussed in detail by utilizing these new 4f-in-core GTH pseudopotentials. This work bridges the idea of keeping highly localized 4f electrons in the atomic core and efficient pseudopotential formalism of GTH, thus providing a highly efficient approach for studying lanthanide chemistry in multi-scale modeling of constituent-wise and structurally complicated systems, including electronic structures of the condensed phase and first-principles molecular dynamics simulations.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Lian Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Réant BL, Wooles AJ, Liddle ST, Mills DP. Synthesis and Characterization of Yttrium Methanediide Silanide Complexes. Inorg Chem 2023; 62:137-146. [PMID: 36537859 PMCID: PMC9832533 DOI: 10.1021/acs.inorgchem.2c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The salt metathesis reactions of the yttrium methanediide iodide complex [Y(BIPM)(I)(THF)2] (BIPM = {C(PPh2NSiMe3)2}) with the group 1 silanide ligand-transfer reagents MSiR3 (M = Na, R3 = tBu2Me or tBu3; M = K, R3 = (SiMe3)3) gave the yttrium methanediide silanide complexes [Y(BIPM)(SitBu2Me)(THF)] (1), [Y(BIPM)(SitBu3)(THF)] (2), and [Y(BIPM){Si(SiMe3)3}(THF)] (3). Complexes 1-3 provide rare examples of structurally authenticated rare earth metal-silicon bonds and were characterized by single-crystal X-ray diffraction, multinuclear NMR and ATR-IR spectroscopies, and elemental analysis. Density functional theory calculations were performed on 1-3 to probe their electronic structures further, revealing predominantly ionic Y-Si bonding. The computed Y-Si bonds show lower covalency than Y═C bonds, which are in turn best represented by Y+-C- dipolar forms due to the strong σ-donor properties of the silanide ligands investigated; these observations are in accord with experimentally obtained 13C{1H} and 29Si{1H} NMR data for 1-3 and related Y(III) BIPM alkyl complexes in the literature. Preliminary reactivity studies were performed, with complex 1 treated separately with benzophenone, azobenzene, and N,N'-dicyclohexyl-carbodiimide. 29Si{1H} and 31P{1H} NMR spectra of these reaction mixtures indicated that 1,2-migratory insertion of the unsaturated substrate into the Y-Si bond is favored, while for the latter substrate, a [2 + 2]-cycloaddition reaction also occurs at the Y═C bond to afford [Y{C(PPh2NSiMe3)2[C(NCy)2]-κ4C,N,N',N'}{C(NCy)2(SitBu2Me)-κ2N,N'}] (4); these reactivity profiles complement and contrast with those of Y(III) BIPM alkyl complexes.
Collapse
|
31
|
Tetramethylcyclopentadienyl Samarium(II) Metallocene Chemistry: Isolation of a Bimetallic Sm(II)/Sm(II) Complex. INORGANICS 2022. [DOI: 10.3390/inorganics11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The salt metathesis reaction between one equivalent of SmI2(THF)2 and two equivalents of K(C5Me4H) in THF afforded single crystals of the unusual, toluene-soluble, and asymmetric bimetallic Sm(II)/Sm(II) complex, (C5Me4H)2SmII(μ-η3:η5-C5Me4H)SmII(C5Me4H)(THF)2, instead of the expected product, (C5Me4H)2SmII(THF)2. The toluene-insoluble products of this reaction can be worked up in 1,2-dimethoxyethane (DME) to provide X-ray quality crystals of the monomeric Sm(II) metallocene, (C5Me4H)2SmII(DME). (C5Me4H)2SmII(DME) can also be synthesized directly by the reaction between one equivalent of SmI2(THF)2 and two equivalents of K(C5Me4H) in neat DME. The isolation and characterization of the bimetallic Sm(II)/Sm(II) complex provides supporting evidence for the possible oligomerization that may occur during the synthesis of Sm(II) complexes with cyclopentadienyl ligands that are less sterically bulky and less solubilizing than (C5Me5)1−.
Collapse
|
32
|
McClain KR, Gould CA, Marchiori DA, Kwon H, Nguyen TT, Rosenkoetter KE, Kuzmina D, Tuna F, Britt RD, Long JR, Harvey BG. Divalent Lanthanide Metallocene Complexes with a Linear Coordination Geometry and Pronounced 6s–5d Orbital Mixing. J Am Chem Soc 2022; 144:22193-22201. [DOI: 10.1021/jacs.2c09880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K. Randall McClain
- Research Department, Chemistry Division. US Navy, Naval Air Warfare Center, Weapons Division, China Lake, California 93555, United States
| | | | - David A. Marchiori
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | | | - Trisha T. Nguyen
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Kyle E. Rosenkoetter
- Research Department, Chemistry Division. US Navy, Naval Air Warfare Center, Weapons Division, China Lake, California 93555, United States
| | - Diana Kuzmina
- Department of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PL, U.K
| | - R. David Britt
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Jeffrey R. Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin G. Harvey
- Research Department, Chemistry Division. US Navy, Naval Air Warfare Center, Weapons Division, China Lake, California 93555, United States
| |
Collapse
|
33
|
Moore WNG, White JRK, Wedal JC, Furche F, Evans WJ. Reduction of Rare-Earth Metal Complexes Induced by γ Irradiation. Inorg Chem 2022; 61:17713-17718. [DOI: 10.1021/acs.inorgchem.2c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William N. G. Moore
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jessica R. K. White
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Justin C. Wedal
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
34
|
Barluzzi L, Giblin SR, Mansikkamäki A, Layfield RA. Identification of Oxidation State +1 in a Molecular Uranium Complex. J Am Chem Soc 2022; 144:18229-18233. [PMID: 36169550 PMCID: PMC9562434 DOI: 10.1021/jacs.2c06519] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The concept of oxidation state plays a fundamentally
important
role in defining the chemistry of the elements. In the f block of
the periodic table, well-known oxidation states in compounds of the
lanthanides include 0, +2, +3 and +4, and oxidation states for the
actinides range from +7 to +2. Oxidation state +1 is conspicuous by
its absence from the f-block elements. Here we show that the uranium(II)
metallocene [U(η5-C5iPr5)2] and the uranium(III) metallocene
[IU(η5-C5iPr5)2] can be reduced by potassium graphite
in the presence of 2.2.2-cryptand to the uranium(I) metallocene [U(η5-C5iPr5)2]− (1) (C5iPr5 = pentaisopropylcyclopentadienyl)
as the salt of [K(2.2.2-cryptand)]+. An X-ray crystallographic
study revealed that 1 has a bent metallocene structure,
and theoretical studies and magnetic measurements confirmed that the
electronic ground state of uranium(I) adopts a 5f3(7s/6dz2)1(6dx2–y2/6dxy)1 configuration. The
metal–ligand bonding in 1 consists of contributions
from uranium 5f, 6d, and 7s orbitals, with the 6d orbitals engaging
in weak but non-negligible covalent interactions. Identification of
the oxidation state +1 for uranium expands the range of isolable oxidation
states for the f-block elements and potentially signposts a synthetic
route to this elusive species for other actinides and the lanthanides.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9JQ, U.K
| | - Sean R Giblin
- School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, U.K
| | - Akseli Mansikkamäki
- NMR Research Group, University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9JQ, U.K
| |
Collapse
|
35
|
Chung AB, Rappoport D, Ziller JW, Cramer RE, Furche F, Evans WJ. Solid-State End-On to Side-On Isomerization of (N═N) 2- in {[(R 2N) 3Nd] 2N 2} 2- (R = SiMe 3) Connects In Situ Ln III(NR 2) 3/K and Isolated [Ln II(NR 2) 3] 1- Dinitrogen Reduction. J Am Chem Soc 2022; 144:17064-17074. [PMID: 36074041 DOI: 10.1021/jacs.2c06716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Examination of the reduction chemistry of Nd(NR2)3 (R = SiMe3) under N2 has provided connections between the in situ Ln(III)-based LnIII(NR2)3/K reductions of N2 that form side-on bound neutral (N=N)2- complexes, [(R2N)2(THF)Ln]2[μ-η2:η2-N2], and the Ln(II)-based [LnII(NR2)3]1- reductions by Sc, Gd, and Tb that form end-on bound (N=N)2- complexes, {[(R2N)3Ln]2[μ-η1:η1-N2]}2-, which are dianions. The reduction of Nd(NR2)3 by KC8 under dinitrogen in Et2O in the presence of 18-crown-6 (18-c-6) forms dark yellow solutions of [K2(18-c-6)3]{[(R2N)3Nd]2N2} at low temperatures that become green as they warm up to -35 °C in a glovebox freezer. Green crystals obtained from the solution turn yellow-brown when cooled below -100 °C, and the yellow-brown compound has an end-on Nd2(μ-η1:η1-N2) structure. The yellow-brown crystals isomerize in the solid state on the diffractometer upon warming, and at -25 °C, the crystals are green and have a side-on Nd2(μ-η2:η2-N2) structure. Collection of X-ray diffraction data at 10 °C intervals from -50 to -90 °C revealed that the isomerization occurs at temperatures below -100 °C. In the presence of tetrahydrofuran (THF), the dianionic {[(R2N)3Nd]2N2}2- system can lose an amide ligand to provide the monoanionic [(R2N)3NdIII(μ-η2:η2-N2)NdIII(NR2)2(THF)]1-, characterized by X-ray crystallography. These data suggest a connection between the in situ Ln(III)/K reductions and Ln(II) reductions that depends on solvent, temperature, the presence of a chelate, and the specific rare-earth metal.
Collapse
Affiliation(s)
- Amanda B Chung
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Roger E Cramer
- Department of Chemistry, University of Hawaii, Manoa, Honolulu, Hawaii 96822-2275, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
36
|
Rice NT, Dalodière E, Adelman SL, Jones ZR, Kozimor SA, Mocko V, Root HD, Stein BW. Oxidizing Americium(III) with Sodium Bismuthate in Acidic Aqueous Solutions. Inorg Chem 2022; 61:12948-12953. [PMID: 35939562 DOI: 10.1021/acs.inorgchem.2c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Historic perspectives describing f-elements as being redox "inactive" are fading. Researchers continue to discover new oxidation states that are not as inaccessible as once assumed for actinides and lanthanides. Inspired by those contributions, we studied americium(III) oxidation in aqueous media under air using NaBiO3(s). We identified selective oxidation of Am3+(aq) to AmO22+(aq) or AmO21+(aq) could be achieved by changing the aqueous matrix identity. AmO22+(aq) formed in H3PO4(aq) (1 M) and AmO21+(aq) formed in dilute HCl(aq) (0.1 M). These americyl products were stable for weeks in solution. Also included is a method to recover 243Am from the americium and bismuth mixtures generated during these studies.
Collapse
Affiliation(s)
- Natalie T Rice
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Elodie Dalodière
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sara L Adelman
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Zachary R Jones
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stosh A Kozimor
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Veronika Mocko
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harrison D Root
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin W Stein
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
37
|
Jiang YF, Liu JC, Xu CQ, Li J, Xiao H. Breaking the scaling relations for efficient N2-to-NH3 conversion by a bowl active site design: Insight from LaRuSi and isostructural electrides. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Isolation and crystal structure of the first Pr(IV) coordination polymer and the complex anti-proliferative activity evaluation against seven cancer cell lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Abstract
The number of rare earth (RE) starting materials used in synthesis is staggering, ranging from simple binary metal-halide salts to borohydrides and "designer reagents" such as alkyl and organoaluminate complexes. This review collates the most important starting materials used in RE synthetic chemistry, including essential information on their preparations and uses in modern synthetic methodologies. The review is divided by starting material category and supporting ligands (i.e., metals as synthetic precursors, halides, borohydrides, nitrogen donors, oxygen donors, triflates, and organometallic reagents), and in each section relevant synthetic methodologies and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Ortu
- School of Chemistry, University of Leicester, LE1 7RH Leicester, U.K.
| |
Collapse
|
40
|
Kundu K, White JRK, Moehring SA, Yu JM, Ziller JW, Furche F, Evans WJ, Hill S. A 9.2-GHz clock transition in a Lu(II) molecular spin qubit arising from a 3,467-MHz hyperfine interaction. Nat Chem 2022; 14:392-397. [PMID: 35288686 DOI: 10.1038/s41557-022-00894-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
Spins in molecules are particularly attractive targets for next-generation quantum technologies, enabling chemically programmable qubits and potential for scale-up via self-assembly. Here we report the observation of one of the largest hyperfine interactions for a molecular system, Aiso = 3,467 ± 50 MHz, as well as a very large associated clock transition. This is achieved through chemical control of the degree of s-orbital mixing into the spin-bearing d orbital associated with a series of spin-½ La(II) and Lu(II) complexes. Increased s-orbital character reduces spin-orbit coupling and enhances the electron-nuclear Fermi contact interaction. Both outcomes are advantageous for quantum applications. The former reduces spin-lattice relaxation, and the latter maximizes the hyperfine interaction, which, in turn, generates a 9-GHz clock transition, leading to an increase in phase memory time from 1.0 ± 0.4 to 12 ± 1 μs for one of the Lu(II) complexes. These findings suggest strategies for the development of molecular quantum technologies, akin to trapped ion systems.
Collapse
Affiliation(s)
- Krishnendu Kundu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | | | - Jason M Yu
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, CA, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, CA, USA.
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA. .,Department of Physics, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
41
|
Synthesis of Ba(II) analogs of Ln(II)-in-(2.2.2-cryptand) and layered hexagonal net Ln(II) complexes, [(THF)Cs(µ–η5:η5–C5H4SiMe3)3LnII]. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Jenkins TF, Bekoe S, Ziller JW, Furche F, Evans WJ. Synthesis of a Heteroleptic Pentamethylcyclopentadienyl Yttrium(II) Complex, [K(2.2.2-Cryptand)]{(C5Me5)2YII[N(SiMe3)2]}, and Its C–H Bond Activated Y(III) Derivative. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tener F. Jenkins
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Samuel Bekoe
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
43
|
Wedal JC, Evans WJ. A Rare-Earth Metal Retrospective to Stimulate All Fields. J Am Chem Soc 2021; 143:18354-18367. [PMID: 34677044 DOI: 10.1021/jacs.1c08288] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formulating insightful questions and experiments is crucial to the advancement of science. The purpose of this Perspective is to encourage scientists in all areas of chemistry to ask more "What if?" questions: What if we tried this experiment? What if we used these conditions? What if that idea is not correct? To stimulate this thinking, a retrospective analysis of a specific field, in this case rare-earth metal chemistry, is presented that describes the "What if?" questions that could have and should have been asked earlier based on our current knowledge. The goal is to provide scientists with a historical perspective of discovery that exemplifies how previous views in chemistry were often narrowed by predominant beliefs in principles that were incorrect. The same situation is likely to exist today, but we do not realize the limitations! Hopefully, this analysis can be used as a springboard for posing important "What if?" questions that should be asked right now in every area of chemical research.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
44
|
Abstract
Lanthanide (Ln) elements are generally found in the oxidation state +II or +III, and a few examples of +IV and +V compounds have also been reported. In contrast, monovalent Ln(+I) complexes remain scarce. Here we combine photoelectron spectroscopy and theoretical calculations to study Ln-doped octa-boron clusters (LnB8−, Ln = La, Pr, Tb, Tm, Yb) with the rare +I oxidation state. The global minimum of the LnB8− species changes from Cs to C7v symmetry accompanied by an oxidation-state change from +III to +I from the early to late lanthanides. All the C7v-LnB8− clusters can be viewed as a monovalent Ln(I) coordinated by a η8-B82− doubly aromatic ligand. The B73−, B82−, and B9− series of aromatic boron clusters are analogous to the classical aromatic hydrocarbon molecules, C5H5−, C6H6, and C7H7+, respectively, with similar trends of size and charge state and they are named collectively as “borozenes”. Lanthanides with variable oxidation states and magnetic properties may be formed with different borozenes. The most common oxidation state for lanthanides is +3. Here the authors use photoelectron spectroscopy and theoretical calculations to study half-sandwich complexes where a lanthanide center in the oxidation state +1 is bound to an aromatic wheel-like B82- ligand.
Collapse
|
45
|
Wedal JC, Furche F, Evans WJ. Density Functional Theory Analysis of the Importance of Coordination Geometry for 5f 36d 1 versus 5f 4 Electron Configurations in U(II) Complexes. Inorg Chem 2021; 60:16316-16325. [PMID: 34644069 DOI: 10.1021/acs.inorgchem.1c02161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory (DFT) calculations on four known and seven hypothetical U(II) complexes indicate the importance of coordination geometry in favoring 5f36d1 versus 5f4 electronic ground states. The known [Cp″3U]-, [Cptet3U]-, and [U(NR2)3]- [Cp″ = C5H3(SiMe3)2, Cptet = C5Me4H, and R = SiMe3] anions were found to have 5f36d1 ground states, while a 5f4 ground state was found for the known compound (NHAriPr6)2U. The UV-visible spectra of the known 5f36d1 compounds were simulated via time-dependent DFT and are in qualitative agreement with the experimental spectra. For the hypothetical U(II) compounds, the 5f36d1 configuration is predicted for [U(CHR2)3]-, [U(H3BH)3]-, [U(OAr')4]2-, and [(C8H8)U]2- (OAr' = O-C6H2tBu2-2,6-Me-4). In the case of [U(bnz')4]2- (bnz' = CH2-C6H4tBu-4), a 5f3 configuration with a ligand-based radical was found as the ground state.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
46
|
Trinh MT, Wedal JC, Evans WJ. Evaluating electrochemical accessibility of 4f n5d 1 and 4f n+1 Ln(II) ions in (C 5H 4SiMe 3) 3Ln and (C 5Me 4H) 3Ln complexes. Dalton Trans 2021; 50:14384-14389. [PMID: 34569559 DOI: 10.1039/d1dt02427b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction potentials (reported vs. Fc+/Fc) for a series of Cp'3Ln complexes (Cp' = C5H4SiMe3, Ln = lanthanide) were determined via electrochemistry in THF with [nBu4N][BPh4] as the supporting electrolyte. The Ln(III)/Ln(II) reduction potentials for Ln = Eu, Yb, Sm, and Tm (-1.07 to -2.83 V) follow the expected trend for stability of 4f7, 4f14, 4f6, and 4f13 Ln(II) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4fn5d1 Ln(II) ions (n = 2-14), fall in a narrow range of -2.95 V to -3.14 V. Only cathodic events were observed for La and Ce at -3.36 V and -3.43 V, respectively. The reduction potentials of the Ln(II) compounds [K(2.2.2-cryptand)][Cp'3Ln] (Ln = Pr, Sm, Eu) match those of the Cp'3Ln complexes. The reduction potentials of nine (C5Me4H)3Ln complexes were also studied and found to be 0.05-0.24 V more negative than those of the Cp'3Ln compounds.
Collapse
Affiliation(s)
- Michael T Trinh
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| |
Collapse
|
47
|
Chung AB, Ryan AJ, Fang M, Ziller JW, Evans WJ. Reductive Reactivity of the 4f 75d 1 Gd(II) Ion in {Gd II[N(SiMe 3) 2] 3} -: Structural Characterization of Products of Coupling, Bond Cleavage, Insertion, and Radical Reactions. Inorg Chem 2021; 60:15635-15645. [PMID: 34606242 DOI: 10.1021/acs.inorgchem.1c02241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The reductive reactivity of a Ln(II) ion with a nontraditional 4fn5d1 electron configuration has been investigated by studying reactions of the {GdII(N(SiMe3)2)3]}- anion with a variety of reagents that survey the many reaction pathways available to this ion. The chemistry of both [K(18-c-6)2]+ and [K(crypt)]+ salts (18-c-6 = 18-crown-6; crypt = 2.2.2-cryptand) was examined to study the effect of the countercation. CS2 reacts with the crown salt [K(18-c-6)2][Gd(NR2)3] (1) to generate the bimetallic (CS3)2- complex {[K(18-c-6)](μ3-CS3-κS,κ2S',S'')Gd(NR2)2]}2, which contains two trithiocarbonate dianions that bridge Gd(III) centers and a potassium ion coordinated by 18-c-6. In contrast, the only crystalline product isolated from the reaction of CS2 with the crypt salt [K(crypt)][Gd(NR2)3] (2) is [K(crypt)]{(R2N)2Gd[SCS(CH2)Si(Me2)N(SiMe3)-κN,κS]}, which has a CS2 unit inserted into a cyclometalated amide ligand. Complexes 1 and 2 reductively couple pyridine to form bridging dipyridyl moieties, (NC5H4-C5H4N)2-, that generate bimetallic complexes differing only in the countercation, {[K(18-c-6)(C5H5N)2]}2{[(R2N)3Gd]2[μ-(NC5H4-C5H4N)2]} and [K(crypt)]2{[(R2N)3Gd]2[μ-(NC5H4-C5H4N)2]}. Complexes 1 and 2 also show similar reactivity with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to form the (TEMPO)- complexes [K(18-c-6)][(R2N)3Gd(η1-ONC5H6Me4)] and [K(crypt)][(R2N)3Gd(η1-ONC5H6Me4)], respectively. The first example of a bimetallic coordination complex containing a Bi-Gd bond, [K(crypt)][(R2N)3Gd(BiPh2)], was obtained by treating 2 with BiPh3.
Collapse
Affiliation(s)
- Amanda B Chung
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Austin J Ryan
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Ming Fang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
48
|
Huh DN, Bruce JP, Ganesh Balasubramani S, Ciccone SR, Furche F, Hemminger JC, Evans WJ. High-Resolution X-ray Photoelectron Spectroscopy of Organometallic (C 5H 4SiMe 3) 3Ln III and [(C 5H 4SiMe 3) 3Ln II] 1- Complexes (Ln = Sm, Eu, Gd, Tb). J Am Chem Soc 2021; 143:16610-16620. [PMID: 34586787 DOI: 10.1021/jacs.1c06980] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The capacity of X-ray photoelectron spectroscopy (XPS) to provide information on the electronic structure of molecular organometallic complexes of Ln(II) ions (Ln = lanthanide) has been examined for the first time. XPS spectra were obtained on the air-sensitive molecular trivalent 4fn Cp'3LnIII complexes (Ln = Sm, Eu, Gd, Tb; Cp' = C5H4SiMe3) and compared to those of the highly reactive divalent complexes, [K(crypt)][Cp'3LnII] (crypt = 2.2.2-cryptand), which have either 4fn+1 (Sm, Eu) or 4fn5d1 electron configurations (Gd, Tb). The Ln 4d, Si 2p, and C 1s regions of the Ln(III) and Ln(II) complexes were identified and compared. The metal 4d peaks of these molecular lanthanide complexes were used diagnostically to compare oxidation states. The valence region of the Gd(III) and Gd(II) complexes was also examined with XPS and density function theory/random phase approximation (DFT/RPA) calculations, and this led to the tentative assignment of a signal from the 5d1 electron consistent with a 4f75d1 electron configuration for Gd(II).
Collapse
Affiliation(s)
- Daniel N Huh
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jared P Bruce
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Sierra R Ciccone
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - John C Hemminger
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
49
|
Réant BLL, Berryman VEJ, Basford AR, Nodaraki LE, Wooles AJ, Tuna F, Kaltsoyannis N, Mills DP, Liddle ST. 29Si NMR Spectroscopy as a Probe of s- and f-Block Metal(II)-Silanide Bond Covalency. J Am Chem Soc 2021; 143:9813-9824. [PMID: 34169713 DOI: 10.1021/jacs.1c03236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the use of 29Si NMR spectroscopy and DFT calculations combined to benchmark the covalency in the chemical bonding of s- and f-block metal-silicon bonds. The complexes [M(SitBu3)2(THF)2(THF)x] (1-M: M = Mg, Ca, Yb, x = 0; M = Sm, Eu, x = 1) and [M(SitBu2Me)2(THF)2(THF)x] (2-M: M = Mg, x = 0; M = Ca, Sm, Eu, Yb, x = 1) have been synthesized and characterized. DFT calculations and 29Si NMR spectroscopic analyses of 1-M and 2-M (M = Mg, Ca, Yb, No, the last in silico due to experimental unavailability) together with known {Si(SiMe3)3}--, {Si(SiMe2H)3}--, and {SiPh3}--substituted analogues provide 20 representative examples spanning five silanide ligands and four divalent metals, revealing that the metal-bound 29Si NMR isotropic chemical shifts, δSi, span a wide (∼225 ppm) range when the metal is kept constant, and direct, linear correlations are found between δSi and computed delocalization indices and quantum chemical topology interatomic exchange-correlation energies that are measures of bond covalency. The calculations reveal dominant s- and d-orbital character in the bonding of these silanide complexes, with no significant f-orbital contributions. The δSi is determined, relatively, by paramagnetic shielding for a given metal when the silanide is varied but by the spin-orbit shielding term when the metal is varied for a given ligand. The calculations suggest a covalency ordering of No(II) > Yb(II) > Ca(II) ≈ Mg(II), challenging the traditional view of late actinide chemical bonding being equivalent to that of the late lanthanides.
Collapse
Affiliation(s)
- Benjamin L L Réant
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Victoria E J Berryman
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Annabel R Basford
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Lydia E Nodaraki
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Floriana Tuna
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
50
|
Celis-Barros C, Albrecht-Schönzart T, Windorff CJ. Computational Investigation of the Bonding in [(η 5–Cp′) 3(η 1–Cp′)M] 1– (M = Pu, U, Ce). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
| | - Thomas Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
| | - Cory J. Windorff
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, PO Box 3001, Las Cruces, New Mexico 88003, United States
| |
Collapse
|