1
|
Identifying coupled clusters of allostery participants through chemical shift perturbations. Proc Natl Acad Sci U S A 2019; 116:2078-2085. [PMID: 30679272 DOI: 10.1073/pnas.1811168116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Allosteric couplings underlie many cellular signaling processes and provide an exciting avenue for development of new diagnostics and therapeutics. A general method for identifying important residues in allosteric mechanisms would be very useful, but remains elusive due to the complexity of long-range phenomena. Here, we introduce an NMR method to identify residues involved in allosteric coupling between two ligand-binding sites in a protein, which we call chemical shift detection of allostery participants (CAP). Networks of functional groups responding to each ligand are defined through correlated NMR perturbations. In this process, we also identify allostery participants, groups that respond to both binding events and likely play a role in the coupling between the binding sites. Such residues exhibit multiple functional states with distinct NMR chemical shifts, depending on binding status at both binding sites. Such a strategy was applied to the prototypical ion channel KcsA. We had previously shown that the potassium affinity at the extracellular selectivity filter is strongly dependent on proton binding at the intracellular pH sensor. Here, we analyzed proton and potassium binding networks and identified groups that depend on both proton and potassium binding (allostery participants). These groups are viewed as candidates for transmitting information between functional units. The vital role of one such identified amino acid was validated through site-specific mutagenesis, electrophysiology functional studies, and NMR-detected thermodynamic analysis of allosteric coupling. This strategy for identifying allostery participants is likely to have applications for many other systems.
Collapse
|
2
|
Dingeldein A, Sparrman T, Gröbner G. Oxidatively stressed mitochondria-mimicking membranes: A molecular insight into their organization during apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2644-2654. [DOI: 10.1016/j.bbamem.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
|
3
|
Barnaba C, Ramamoorthy A. Picturing the Membrane-assisted Choreography of Cytochrome P450 with Lipid Nanodiscs. Chemphyschem 2018; 19:2603-2613. [DOI: 10.1002/cphc.201800444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Carlo Barnaba
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor, MI 48109-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor, MI 48109-1055 USA
| |
Collapse
|
4
|
Loquet A, Tolchard J, Berbon M, Martinez D, Habenstein B. Atomic Scale Structural Studies of Macromolecular Assemblies by Solid-state Nuclear Magnetic Resonance Spectroscopy. J Vis Exp 2017:55779. [PMID: 28994783 PMCID: PMC5752270 DOI: 10.3791/55779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13C/15N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.
Collapse
Affiliation(s)
- Antoine Loquet
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux;
| | - James Tolchard
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux
| | - Melanie Berbon
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux
| | - Denis Martinez
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux
| | - Birgit Habenstein
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux;
| |
Collapse
|
5
|
Lalli D, Idso MN, Andreas LB, Hussain S, Baxter N, Han S, Chmelka BF, Pintacuda G. Proton-Based Structural Analysis of a Heptahelical Transmembrane Protein in Lipid Bilayers. J Am Chem Soc 2017; 139:13006-13012. [PMID: 28724288 PMCID: PMC5741281 DOI: 10.1021/jacs.7b05269] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
structures and properties of membrane proteins in lipid bilayers are
expected to closely resemble those in native cell-membrane environments,
although they have been difficult to elucidate. By performing solid-state
NMR measurements at very fast (100 kHz) magic-angle spinning rates
and at high (23.5 T) magnetic field, severe sensitivity and resolution
challenges are overcome, enabling the atomic-level characterization
of membrane proteins in lipid environments. This is demonstrated by
extensive 1H-based resonance assignments of the fully protonated
heptahelical membrane protein proteorhodopsin, and the efficient identification
of numerous 1H–1H dipolar interactions,
which provide distance constraints, inter-residue proximities, relative
orientations of secondary structural elements, and protein–cofactor
interactions in the hydrophobic transmembrane regions. These results
establish a general approach for high-resolution structural studies
of membrane proteins in lipid environments via solid-state NMR.
Collapse
Affiliation(s)
- Daniela Lalli
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon , 69100 Villeurbanne, France
| | - Matthew N Idso
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon , 69100 Villeurbanne, France
| | - Sunyia Hussain
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Naomi Baxter
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States.,Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon , 69100 Villeurbanne, France
| |
Collapse
|
6
|
Yamamoto K, Caporini MA, Im SC, Waskell L, Ramamoorthy A. Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b 5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy. Sci Rep 2017; 7:4116. [PMID: 28646173 PMCID: PMC5482851 DOI: 10.1038/s41598-017-04219-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/11/2017] [Indexed: 01/12/2023] Open
Abstract
The dynamic protein-protein and protein-ligand interactions of integral bitopic membrane proteins with a single membrane-spanning helix play a plethora of vital roles in the cellular processes associated with human health and diseases, including signaling and enzymatic catalysis. While an increasing number of high-resolution structural studies of membrane proteins have successfully manifested an in-depth understanding of their biological functions, intact membrane-bound bitopic protein-protein complexes pose tremendous challenges for structural studies by crystallography or solution NMR spectroscopy. Therefore, there is a growing interest in developing approaches to investigate the functional interactions of bitopic membrane proteins embedded in lipid bilayers at atomic-level. Here we demonstrate the feasibility of dynamic nuclear polarization (DNP) magic-angle-spinning NMR techniques, along with a judiciously designed stable isotope labeling scheme, to measure atomistic-resolution transmembrane-transmembrane interactions of full-length mammalian ~72-kDa cytochrome P450-cytochrome b5 complex in lipid bilayers. Additionally, the DNP sensitivity-enhanced two-dimensional 13C/13C chemical shift correlations via proton driven spin diffusion provided distance constraints to characterize protein-lipid interactions and revealed the transmembrane topology of cytochrome b5. The results reported in this study would pave ways for high-resolution structural and topological investigations of membrane-bound full-length bitopic protein complexes under physiological conditions.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Marc A Caporini
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, USA
| | - Sang-Choul Im
- Department of Anesthesiology, VA Medical Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Lucy Waskell
- Department of Anesthesiology, VA Medical Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
7
|
Barnaba C, Gentry K, Sumangala N, Ramamoorthy A. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature. F1000Res 2017; 6:662. [PMID: 28529725 PMCID: PMC5428493 DOI: 10.12688/f1000research.11015.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome
b
5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s) played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.
Collapse
Affiliation(s)
- Carlo Barnaba
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Katherine Gentry
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nirupama Sumangala
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Zhang R, Mroue KH, Ramamoorthy A. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 266:59-66. [PMID: 27040936 PMCID: PMC4851575 DOI: 10.1016/j.jmr.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/13/2016] [Accepted: 03/24/2016] [Indexed: 05/05/2023]
Abstract
Heteronuclear cross polarization (CP) has been commonly used to enhance the sensitivity of dilute low-γ nuclei in almost all solid-state NMR experiments. However, CP relies on heteronuclear dipolar couplings, and therefore the magnetization transfer efficiency becomes inefficient when the dipolar couplings are weak, as is often the case for mobile components in solids. Here, we demonstrate methods that combine CP with heteronuclear Overhauser effect (referred to as CP-NOE) or with refocused-INEPT (referred to as CP-RINEPT) to overcome the efficiency limitation of CP and enhance the signal-to-noise ratio (S/N) for mobile components. Our experimental results reveal that, compared to the conventional CP, significant S/N ratio enhancement can be achieved for resonances originating from mobile components, whereas the resonance signals associated with rigid groups are not significantly affected due to their long spin-lattice relaxation times. In fact, the S/N enhancement factor is also dependent on the temperature, CP contact time as well as on the system under investigation. Furthermore, we also demonstrate that CP-RINEPT experiment can be successfully employed to independently detect mobile and rigid signals in a single experiment without affecting the data collection time. However, the resolution of CP spectrum obtained from the CP-RINEPT experiment could be slightly compromised by the mandatory use of continuous wave (CW) decoupling during the acquisition of signals from rigid components. In addition, CP-RINEPT experiment can be used for spectral editing utilizing the difference in dynamics of different regions of a molecule and/or different components present in the sample, and could also be useful for the assignment of resonances from mobile components in poorly resolved spectra. Therefore, we believe that the proposed approaches are beneficial for the structural characterization of multiphase and heterogeneous systems, and could be used as a building block in multidimensional solid-state NMR experiments.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Kamal H Mroue
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
9
|
Dai C, Wu X, Li W, You Q, Zhao M, Du M, Liu Y, Li Y. The role of hydroxyethyl groups in the construction of wormlike micelles in the system of quaternary ammonium surfactant and sodium salicylate. SOFT MATTER 2015; 11:7817-26. [PMID: 26314927 DOI: 10.1039/c5sm01698c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To understand the role of electrostatic interactions and hydrogen bonds in the formation of wormlike micelles with the aid of sodium salicylate, two quaternary ammonium surfactants with the headgroup decorated by one hydroxyethyl group N-cetyl-N-(2-hydroxyethyl)dimethylammonium bromide and two hydroxyethyl groups N-cetyl-N,N-di(2-hydroxyethyl)methylammonium bromide, abbreviated as CHEMAB and CDHAB, respectively, were synthesized in this work. Single crystal X-ray diffraction was used to study the intermolecular interactions of surfactants, and (1)H NMR and rheological measurements were employed to investigate the molecular arrangement and morphology of the wormlike micelles. The synergistic interactions of hydrogen bonding and more effective shielding of electrostatic repulsion contribute to the formation and viscoelastic behavior of wormlike micelles. The results also revealed the aggregation behavior of surfactants with hydroxyethyl headgroups in aqueous solutions.
Collapse
Affiliation(s)
- Caili Dai
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Probing the gel to liquid-crystalline phase transition and relevant conformation changes in liposomes by (13)C magic-angle spinning NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3134-9. [PMID: 26375416 DOI: 10.1016/j.bbamem.2015.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 11/24/2022]
Abstract
A straightforward way to visualize gel to liquid-crystalline phase transition in phospholipid membranes is presented by using ¹³C magic-angle spinning NMR. The changes in the 13C isotropic chemical shifts with increasing temperature are shown to be a sensitive probe of the main thermotropic phase transition related to lipid hydrocarbon chain dynamics and relevant conformational changes. The average value of the energy difference between trans and gauche states in the central C4–11 fragment of the DMPC acyl chain was estimated to be 4.02 ± 0.2 kJ mol⁻¹ in the liquid crystalline phase. The reported spectral features will be useful in 13C solid state NMR studies for direct monitoring of the effective lipid chain melting allowing rapid uniaxial rotation of membrane proteins in the biologically relevant liquid-crystalline phase.
Collapse
|
11
|
Wang T, Hong M. Investigation of the curvature induction and membrane localization of the influenza virus M2 protein using static and off-magic-angle spinning solid-state nuclear magnetic resonance of oriented bicelles. Biochemistry 2015; 54:2214-26. [PMID: 25774685 DOI: 10.1021/acs.biochem.5b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A wide variety of membrane proteins induce membrane curvature for function; thus, it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state nuclear magnetic resonance (NMR) methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static (31)P NMR spectra of magnetically oriented 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the ability to generate a high-curvature phase. Two-dimensional (2D) (31)P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. (31)P- and (13)C-detected (1)H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the (31)P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. On the basis of this resolution, 2D (1)H-(31)P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not DHPC (31)P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the amphipathic helix induces high membrane curvature and localizes the protein to this phase, in good agreement with the membrane scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are generally applicable to curvature-inducing membrane proteins such as those involved in membrane trafficking, membrane fusion, and cell division.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Yamamoto K, Pearcy P, Lee DK, Yu C, Im SC, Waskell L, Ramamoorthy A. Temperature-resistant bicelles for structural studies by solid-state NMR spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1496-1504. [PMID: 25565453 DOI: 10.1021/la5043876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three-dimensional structure determination of membrane proteins is important to fully understand their biological functions. However, obtaining a high-resolution structure has been a major challenge mainly due to the difficulties in retaining the native folding and function of membrane proteins outside of the cellular membrane environment. These challenges are acute if the protein contains a large soluble domain, as it needs bulk water unlike the transmembrane domains of an integral membrane protein. For structural studies on such proteins either by nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallography, bicelles have been demonstrated to be superior to conventional micelles, yet their temperature restrictions attributed to their thermal instabilities are a major disadvantage. Here, we report an approach to overcome this drawback through searching for an optimum combination of bicellar compositions. We demonstrate that bicelles composed of 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholin (DHepPC), without utilizing additional stabilizing chemicals, are quite stable and are resistant to temperature variations. These temperature-resistant bicelles have a robust bicellar phase and magnetic alignment over a broad range of temperatures, between -15 and 80 °C, retain the native structure of a membrane protein, and increase the sensitivity of solid-state NMR experiments performed at low temperatures. Advantages of two-dimensional separated-local field (SLF) solid-state NMR experiments at a low temperature are demonstrated on magnetically aligned bicelles containing an electron carrier membrane protein, cytochrome b5. Morphological information on different DDPC-based bicellar compositions, varying q ratio/size, and hydration levels obtained from (31)P NMR experiments in this study is also beneficial for a variety of biophysical and spectroscopic techniques, including solution NMR and magic-angle-spinning (MAS) NMR for a wide range of temperatures.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Department of Chemistry and Biophysics, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Vivekanandan S, Ahuja S, Im SC, Waskell L, Ramamoorthy A. ¹H, ¹³C and ¹⁵N resonance assignments for the full-length mammalian cytochrome b₅ in a membrane environment. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:409-13. [PMID: 24105099 PMCID: PMC3981966 DOI: 10.1007/s12104-013-9528-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/28/2013] [Indexed: 05/12/2023]
Abstract
Microsomal cytochrome b5 plays a key role in the oxidation of a variety of exogenous and endogenous compounds, including drugs, fatty acids, cholesterol and steroid hormones. To better understand its functional properties in a membrane mimic environment, we carried out high-resolution solution NMR studies. Here we report resonance assignments for full-length rabbit cytochrome b5 embedded in dodecylphosphocholine micelles.
Collapse
Affiliation(s)
| | - Shivani Ahuja
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan, and VA Medical Center, Ann Arbor, MI 48105, USA
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, and VA Medical Center, Ann Arbor, MI 48105, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- To whom the correspondence should be addressed: Ayyalusamy Ramamoorthy, Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA, Tel.: (734) 647-6572; Fax: (734) 764-3323;
| |
Collapse
|
14
|
Dai C, Yan Z, You Q, Du M, Zhao M. Formation of worm-like micelles in mixed N-hexadecyl-N-methylpyrrolidinium bromide-based cationic surfactant and anionic surfactant systems. PLoS One 2014; 9:e102539. [PMID: 25019152 PMCID: PMC4097072 DOI: 10.1371/journal.pone.0102539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022] Open
Abstract
Through the descriptive and rheological characterization of worm-like micelles formed by N-hexadecyl-N-methylpyrrolidinium bromide and sodium laurate, the formation and properties of the worm-like micelles were affected by the concentrations of sodium laurate and temperature. Additionally, cryogenic transmission electron microscopy images further validated the formation of worm-like micelles.
Collapse
Affiliation(s)
- Caili Dai
- School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, Shandong, P. R. China
| | - Zhihu Yan
- School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, Shandong, P. R. China
| | - Qing You
- School of Energy Resources, China University of Geoscience, Beijing, P. R. China
| | - Mingyong Du
- School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, Shandong, P. R. China
| | - Mingwei Zhao
- School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, Shandong, P. R. China
- * E-mail:
| |
Collapse
|
15
|
Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:342-9. [PMID: 25017802 DOI: 10.1016/j.bbamem.2014.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 12/16/2022]
Abstract
While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is considerable interest in developing NMR approaches to obtain such information in a cellular setting. As long as the proteins inside the living cell tumble rapidly in the NMR timescale, recently developed in-cell solution NMR approaches can provide 3D structural information. However, there are numerous challenges to study membrane proteins inside a cell. Research in our laboratory is focused on developing a combination of solid-state NMR and biological approaches to overcome these challenges in order to obtain high-resolution structural insights into electron transfer processes mediated by membrane-bound proteins like mammalian cytochrome-b5, cytochrome-P450 and cytochrome-P450-reductase. In this study, we demonstrate the feasibility of using dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR spectroscopy for in-cell studies on a membrane-anchored protein. Our experimental results obtained from ¹³C-labeled membrane-anchored cytochrome-b5 in native Escherichia coli cells show a ~16-fold DNP signal enhancement. Further, results obtained from a 2D ¹³C/¹³C chemical shift correlation MAS experiment demonstrate the feasibility of suppressing the background signals from other cellular contents for high-resolution structural studies on membrane proteins. We believe that this study would pave new avenues for high-resolution structural studies on a variety of membrane-associated proteins and their complexes in the cellular context to fully understand their functional roles in physiological processes.
Collapse
|
16
|
Pandey MK, Vivekanandan S, Yamamoto K, Im S, Waskell L, Ramamoorthy A. Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b(5). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:169-79. [PMID: 24657390 PMCID: PMC4020179 DOI: 10.1016/j.jmr.2014.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 05/08/2023]
Abstract
Solid-state NMR spectroscopy is increasingly used in the high-resolution structural studies of membrane-associated proteins and peptides. Most such studies necessitate isotopically labeled ((13)C, (15)N and (2)H) proteins/peptides, which is a limiting factor for some of the exciting membrane-bound proteins and aggregating peptides. In this study, we report the use of a proton-based slow magic angle spinning (MAS) solid-state NMR experiment that exploits the unaveraged (1)H-(1)H dipolar couplings from a membrane-bound protein. We have shown that the difference in the buildup rates of cross-peak intensities against the mixing time - obtained from 2D (1)H-(1)H radio frequency-driven recoupling (RFDR) and nuclear Overhauser effect spectroscopy (NOESY) experiments on a 16.7-kDa micelle-associated full-length rabbit cytochrome-b5 (cytb5) - can provide insights into protein dynamics and could be useful to measure (1)H-(1)H dipolar couplings. The experimental buildup curves compare well with theoretical simulations and are used to extract relaxation parameters. Our results show that due to fast exchange of amide protons with water in the soluble heme-containing domain of cyb5, coherent (1)H-(1)H dipolar interactions are averaged out for these protons while alpha and side chain protons show residual dipolar couplings that can be obtained from (1)H-(1)H RFDR experiments. The appearance of resonances with distinct chemical shift values in (1)H-(1)H RFDR spectra enabled the identification of residues (mostly from the transmembrane region) of cytb5 that interact with micelles.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Subramanian Vivekanandan
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Sangchoul Im
- Department of Anesthesiology, University of Michigan, VA Medical Center, Ann Arbor, MI 48105, United States
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, VA Medical Center, Ann Arbor, MI 48105, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, United States.
| |
Collapse
|
17
|
Nomura K, Harada E, Sugase K, Shimamoto K. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning. J Phys Chem B 2014; 118:2405-13. [PMID: 24517164 DOI: 10.1021/jp4124106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.
Collapse
Affiliation(s)
- Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences , 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan
| | | | | | | |
Collapse
|
18
|
Yamamoto K, Pearcy P, Ramamoorthy A. Bicelles exhibiting magnetic alignment for a broader range of temperatures: a solid-state NMR study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1622-1629. [PMID: 24460179 DOI: 10.1021/la404331t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bicelles are increasingly used as model membranes to suitably mimic the biological cell membrane for biophysical and biochemical studies by a variety of techniques including NMR and X-ray crystallography. Recent NMR studies have successfully utilized bicelles for atomic-resolution structural and dynamic studies of antimicrobial peptides, amyloid peptides, and membrane-bound proteins. Though bicelles composed with several different types of lipids and detergents have been reported, the NMR requirement of magnetic alignment of bicelles limits the temperature range in which they can be used and subsequently their composition. Because of this restriction, low-temperature experiments desirable for heat-sensitive membrane proteins have not been conducted because bicelles could not be aligned. In this study, we characterize the magnetic alignment of bicelles with various compositions for a broad range of temperatures using (31)P static NMR spectroscopy in search of temperature-resistant bicelles. Our systematic investigation identified a temperature range of magnetic alignment for bicelles composed of 4:1 DLPC:DHexPC, 4:1:0.2 DLPC:DHexPC:cholesterol, 4:1:0.13 DLPC:DHexPC:CTAB, 4:1:0.13:0.2 DLPC:DHexPC:CTAB:cholesterol, and 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate. The amount of cholesterol-3-sulfate used was based on mole percent and was varied in order to determine the optimal amount. Our results indicate that the presence of 75 wt % or more water is essential to achieve maximum magnetic alignment, while the presence of cholesterol and cholesterol-3-sulfate stabilizes the alignment at extreme temperatures and the positively charged CTAB avoids the mixing of bicelles. We believe that the use of magnetically aligned 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate bicelles at as low as -15 °C would pave avenues to study the structure, dynamics, and membrane orientation of heat-sensitive proteins such as cytochrome P450 and could also be useful to investigate protein-protein interactions in a membrane environment.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | |
Collapse
|
19
|
Probing the transmembrane structure and topology of microsomal cytochrome-p450 by solid-state NMR on temperature-resistant bicelles. Sci Rep 2014; 3:2556. [PMID: 23989972 PMCID: PMC3757361 DOI: 10.1038/srep02556] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/15/2013] [Indexed: 01/03/2023] Open
Abstract
Though the importance of high-resolution structure and dynamics of membrane proteins has been well recognized, optimizing sample conditions to retain the native-like folding and function of membrane proteins for Nuclear Magnetic Resonance (NMR) or X-ray measurements has been a major challenge. While bicelles have been shown to stabilize the function of membrane proteins and are increasingly utilized as model membranes, the loss of their magnetic-alignment at low temperatures makes them unsuitable to study heat-sensitive membrane proteins like cytochrome-P450 and protein-protein complexes. In this study, we report temperature resistant bicelles that can magnetically-align for a broad range of temperatures and demonstrate their advantages in the structural studies of full-length microsomal cytochrome-P450 and cytochrome-b5 by solid-state NMR spectroscopy. Our results reveal that the N-terminal region of rabbit cytochromeP4502B4, that is usually cleaved off to obtain crystal structures, is helical and has a transmembrane orientation with ~17° tilt from the lipid bilayer normal.
Collapse
|
20
|
Maltsev S, Lorigan GA. Membrane proteins structure and dynamics by nuclear magnetic resonance. Compr Physiol 2013; 1:2175-87. [PMID: 23733702 DOI: 10.1002/cphy.c110022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Membrane proteins represent a challenging class of biological systems to study. They are extremely difficult to crystallize and in most cases they retain their structure and functions only in membrane environments. Therefore, commonly used diffraction methods fail to give detailed molecular structure and other approaches have to be utilized to obtain biologically relevant information. Nuclear magnetic resonance (NMR) spectroscopy, however, can provide powerful structural and dynamical constraints on these complicated systems. Solution- and solid-state NMR are powerful methods for investigating membrane proteins studies. In this work, we briefly review both solution and solid-state NMR techniques for membrane protein studies and illustrate the applications of these methods to elucidate proteins structure, conformation, topology, dynamics, and function. Recent advances in electronics, biological sample preparation, and spectral processing provided opportunities for complex biological systems, such as membrane proteins inside lipid vesicles, to be studied faster and with outstanding quality. New analysis methods therefore have emerged, that benefit from the combination of sample preparation and corresponding specific high-end NMR techniques, which give access to more structural and dynamic information.
Collapse
Affiliation(s)
- Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
21
|
Yamamoto K, Caporini MA, Im S, Waskell L, Ramamoorthy A. Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:175-181. [PMID: 24246881 PMCID: PMC3868731 DOI: 10.1016/j.jmr.2013.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/19/2013] [Accepted: 10/24/2013] [Indexed: 05/21/2023]
Abstract
Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to study biomolecules like membrane proteins. Recent studies have successfully demonstrated the advantages of performing solid-state NMR experiments at very low and ultralow temperatures to enhance the sensitivity. However, the long spin-lattice relaxation time, T1, at very low temperatures is a major limitation. To overcome this difficulty, we demonstrate the use of a copper-chelated lipid for magic angle spinning solid-state NMR measurements on cytochrome-b5 reconstituted in multilamellar vesicles. Our results on multilamellar vesicles containing as small as 0.5mol% of a copper-chelated lipid can significantly shorten T1 of protons, which can be used to considerably reduce the data collection time or to enhance the signal-to-noise ratio. We also monitored the effect of slow cooling on the resolution and sensitivity of (13)C and (15)N signals from the protein and (13)C signals from lipids.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Marc A Caporini
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States
| | - Sangchoul Im
- Department of Anesthesiology, University of Michigan, VA Medical Center, Ann Arbor, MI, United States
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, VA Medical Center, Ann Arbor, MI, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, United States.
| |
Collapse
|
22
|
Hou G, Yan S, Trebosc J, Amoureux JP, Polenova T. Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 232:18-30. [PMID: 23685715 PMCID: PMC3703537 DOI: 10.1016/j.jmr.2013.04.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/30/2013] [Accepted: 04/15/2013] [Indexed: 05/08/2023]
Abstract
We recently described a family of experiments for R2n(v) Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions [G. Hou, S. Yan, S.J. Sun, Y. Han, I.J. Byeon, J. Ahn, J. Concel, A. Samoson, A.M. Gronenborn, T. Polenova, Spin diffusion drive by R-symmetry sequencs: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids, J. Am. Chem. Soc. 133 (2011) 3943-3953]. In these RDSD experiments, since the broadened second-order rotational resonance conditions are dominated by the radio frequency field strength and the phase shifts, as well as the size of reintroduced dipolar couplings, the different R2n(v) sequences display unique polarization transfer behaviors and different recoupling frequency bandwidths. Herein, we present a series of modified R2n(v) sequences, dubbed COmbined R2n(v)-Driven (CORD), that yield broadband homonuclear dipolar recoupling and give rise to uniform distribution of cross peak intensities across the entire correlation spectrum. We report NMR experiments and numerical simulations demonstrating that these CORD spin diffusion sequences are suitable for broadband recoupling at a wide range of magnetic fields and MAS frequencies, including fast-MAS conditions (νr=40 kHz and above). Since these CORD sequences are largely insensitive to dipolar truncation, they are well suited for the determination of long-range distance constraints, which are indispensable for the structural characterization of a broad range of systems. Using U-(13)C,(15)N-alanine and U-(13)C,(15)N-histidine, we show that under fast-MAS conditions, the CORD sequences display polarization transfer efficiencies within broadband frequency regions that are generally higher than those offered by other existing spin diffusion pulse schemes. A 89-residue U-(13)C,(15)N-dynein light chain (LC8) protein has also been used to demonstrate that the CORD sequences exhibit uniformly high cross peak intensities across the entire chemical shift range.
Collapse
Affiliation(s)
- Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- , Tel. (302) 831-1968, FAX (302) 831-6335;
| | - Si Yan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Julien Trebosc
- Unit of Catalysis and Chemistry of Solids (UCCS), CNRS-8181, University Lille Nord de France, 59652 Villeneuve d’Ascq, France
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS), CNRS-8181, University Lille Nord de France, 59652 Villeneuve d’Ascq, France
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- , Tel. (302) 831-1968, FAX (302) 831-6335;
| |
Collapse
|
23
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
24
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
25
|
Magic angle spinning NMR study of interaction of N-terminal sequence of dermorphin (Tyr-d-Ala-Phe-Gly) with phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2579-87. [DOI: 10.1016/j.bbamem.2012.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/05/2012] [Accepted: 06/18/2012] [Indexed: 01/02/2023]
|
26
|
Li S, Su Y, Hong M. Intramolecular 1H-13C distance measurement in uniformly 13C, 15N labeled peptides by solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2012; 45-46:51-58. [PMID: 22749432 PMCID: PMC3414644 DOI: 10.1016/j.ssnmr.2012.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/29/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
A (1)H-(13)C frequency-selective REDOR (FS-REDOR) experiment is developed for measuring intramolecular (1)H-(13)C distances in uniformly (13)C, (15)N-labeled molecules. Theory and simulations show that the experiment removes the interfering homonuclear (1)H-(1)H, (13)C-(13)C and heteronuclear (1)H-(15)N, (13)C-(15)N dipolar interactions while retaining the desired heteronuclear (1)H-(13)C dipolar interaction. Our results indicate that this technique, combined with the numerical fitting, can be used to measure a (1)H-(13)C distance up to 5Å. We also demonstrate that the measured intramolecular (1)H-(13)C distances are useful to determine dihedral angles in proteins.
Collapse
Affiliation(s)
- Shenhui Li
- Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Yongchao Su
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Mei Hong
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
27
|
Barbosa-Barros L, Rodríguez G, Barba C, Cócera M, Rubio L, Estelrich J, López-Iglesias C, de la Maza A, López O. Bicelles: lipid nanostructured platforms with potential dermal applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:807-818. [PMID: 22114051 DOI: 10.1002/smll.201101545] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/26/2011] [Indexed: 05/31/2023]
Abstract
Bicelles emerge as promising membrane models, and because of their attractive combination of lipid composition, small size and morphological versatility, they become new targets in skin research. Bicelles are able to modify skin biophysical parameters and modulate the skin's barrier function, acting to enhance drug penetration. Because of their nanostructured assemblies, bicelles have the ability to penetrate through the narrow intercellular spaces of the stratum corneum of the skin to reinforce its lipid lamellae. The bicelle structure also allows for the incorporation of different molecules that can be carried through the skin layers. All of these characteristics can be modulated by varying the lipid composition and experimental conditions. The remarkable versatility of bicelles is their most important characteristic, which makes their use possible in various fields. This system represents a platform for dermal applications. In this review, an overview of the main properties of bicelles and their effects on the skin are presented.
Collapse
Affiliation(s)
- Lucyanna Barbosa-Barros
- Dept. of Chemical Technology and Surfactants, Institut de Química Avançada de Catalunya-I.Q.A.C., Consejo Superior de Investigaciones Científicas-C.S.I.C., C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sakamoto Y, Miura M, Takeuchi F, Park SY, Tsubaki M. Interaction of modified tail-anchored proteins with liposomes: effect of extensions of hydrophilic segment at the COOH-terminus of holo-cytochromes b₅. J Biosci Bioeng 2011; 113:322-31. [PMID: 22138382 DOI: 10.1016/j.jbiosc.2011.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/27/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022]
Abstract
A group of membrane proteins having a single COOH-terminal hydrophobic domain capable of post-translational insertion into lipid bilayer is known as tail-anchored (TA) proteins. To clarify the insertion mechanism of the TA-domain of human cytochrome b(5) (Hcytb5) into ER membranes, we produced and purified various membrane-bound forms of Hcytb5 with their heme b-bound, in which various truncated forms of NH(2)-terminal bovine opsin sequence were appended at the COOH-terminus of the native form. We analyzed the integration of the TA-domains of these forms onto protein-free liposomes. The integration occurred efficiently even in the presence of a small amount of sodium cholate and, once incorporated, such proteoliposomes were very stable. The mode of the integration was further analyzed by treatment of the proteoliposomes with trypsin either on the extravesicular side or on the luminal side. LC-MS analyses of the trypsin digests obtained from the proteoliposomes indicated that most of the C-terminal hydrophilic segment of the native Hcytb5 were exposed towards the lumen of the vesicles and, further, a significant part of the population of the extended C-terminal hydrophilic segments of the modified Hcytb5 were exposed in the lumen as well, suggesting efficient translocation ability of the TA-domain without any assistance from other protein factors. Present results opened a route for the use of the C-terminal TA-domain as a convenient tool for the transport of proteins as well as short peptides into artificial liposomes.
Collapse
Affiliation(s)
- Yoichi Sakamoto
- Departmemt of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | |
Collapse
|
29
|
Yamamoto K, Vivekanandan S, Ramamoorthy A. Fast NMR data acquisition from bicelles containing a membrane-associated peptide at natural-abundance. J Phys Chem B 2011; 115:12448-55. [PMID: 21939237 DOI: 10.1021/jp2076098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In spite of recent technological advances in NMR spectroscopy, its low sensitivity continues to be a major limitation particularly for the structural studies of membrane proteins. The need for a large quantity of a membrane protein and acquisition of NMR data for a long duration are not desirable. Therefore, there is considerable interest in the development of methods to speed up the NMR data acquisition from model membrane samples. In this study, we demonstrate the feasibility of acquiring two-dimensional spectra of an antimicrobial peptide (MSI-78; also known as pexiganan) embedded in isotropic bicelles using natural-abundance (15)N nuclei. A copper-chelated lipid embedded in bicelles is used to speed-up the spin-lattice relaxation of protons without affecting the spectral resolution and thus enabling fast data acquisition. Our results suggest that even a 2D SOFAST-HMQC spectrum can be obtained four times faster using a very small amount (∼3 mM) of a copper-chelated lipid. These results demonstrate that this approach will be useful in the structural studies of membrane-associated peptides and proteins without the need for isotopic enrichment for solution NMR studies.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | | | | |
Collapse
|
30
|
Tang M, Berthold DA, Rienstra CM. Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement. J Phys Chem Lett 2011; 2:1836-1841. [PMID: 21841965 PMCID: PMC3153064 DOI: 10.1021/jz200768r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane proteins play an important role in many biological functions. Solid-state NMR spectroscopy is uniquely suited for studying structure and dynamics of membrane proteins in a membranous environment. The major challenge to obtain high quality solid-state NMR spectra of membrane proteins is sensitivity, due to limited quantities of labeled high-molecular-weight proteins. Here we demonstrate the incorporation of paramagnetic metal (Cu(2+)) ions, through either EDTA or a chelator lipid, into membrane protein samples for rapid data collection under fast magic-angle spinning (MAS) and low power (1)H decoupling. Spectral sensitivity of DsbB (20 kDa), an integral membrane protein, more than doubles in the same experimental time due to (1)H T(1) relaxation enhancement by Cu(2+) ions, with DsbB native fold and active site intact. This technique can be implemented to acquire multidimensional solid-state NMR spectra for chemical shift assignments and structure elucidation of large membrane proteins with small sample quantities.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Deborah A. Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| |
Collapse
|
31
|
Hou G, Yan S, Sun S, Han Y, Byeon IJL, Ahn J, Concel J, Samoson A, Gronenborn AM, Polenova T. Spin diffusion driven by R-symmetry sequences: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids. J Am Chem Soc 2011; 133:3943-53. [PMID: 21361320 PMCID: PMC3148607 DOI: 10.1021/ja108650x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a family of homonuclear (13)C-(13)C magic angle spinning spin diffusion experiments, based on R2(n)(v) (n = 1 and 2, v = 1 and 2) symmetry sequences. These experiments are well suited for (13)C-(13)C correlation spectroscopy in biological and organic systems and are especially advantageous at very fast MAS conditions, where conventional PDSD and DARR experiments fail. At very fast MAS frequencies the R2(1)(1), R2(2)(1), and R2(2)(2) sequences result in excellent quality correlation spectra both in model compounds and in proteins. Under these conditions, individual R2(n)(v) display different polarization transfer efficiency dependencies on isotropic chemical shift differences: R2(2)(1) recouples efficiently both small and large chemical shift differences (in proteins these correspond to aliphatic-to-aliphatic and carbonyl-to-aliphatic correlations, respectively), while R2(1)(1) and R2(2)(2) exhibit the maximum recoupling efficiency for the aliphatic-to-aliphatic or carbonyl-to-aliphatic correlations, respectively. At moderate MAS frequencies (10-20 kHz), all R2(n)(v) sequences introduced in this work display similar transfer efficiencies, and their performance is very similar to that of PDSD and DARR. Polarization transfer dynamics and chemical shift dependencies of these R2-driven spin diffusion (RDSD) schemes are experimentally evaluated and investigated by numerical simulations for [U-(13)C,(15)N]-alanine and the [U-(13)C,(15)N] N-formyl-Met-Leu-Phe (MLF) tripeptide. Further applications of this approach are illustrated for several proteins: spherical assemblies of HIV-1 U-(13)C,(15)N CA protein, U-(13)C,(15)N-enriched dynein light chain DLC8, and sparsely (13)C/uniformly (15)N enriched CAP-Gly domain of dynactin. Due to the excellent performance and ease of implementation, the presented R2(n)(v) symmetry sequences are expected to be of wide applicability in studies of proteins and protein assemblies as well as other organic solids by MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Si Yan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Shangjin Sun
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Yun Han
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - In-Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jinwoo Ahn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jason Concel
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Ago Samoson
- Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
- Physics Department, University of Warwick, Coventry, UK
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
32
|
Nguyen KT, Soong R, Lm SC, Waskell L, Ramamoorthy A, Chen Z. Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy. J Am Chem Soc 2011; 132:15112-5. [PMID: 20932011 DOI: 10.1021/ja106508f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to providing a semipermeable barrier that protects a cell from harmful stimuli, lipid membranes occupy a central role in hosting a variety of biological processes, including cellular communications and membrane protein functions. Most importantly, protein-membrane interactions are implicated in a variety of diseases and therefore many analytical techniques were developed to study the basis of these interactions and their influence on the molecular architecture of the cell membrane. In this study, sum frequency generation (SFG) vibrational spectroscopy is used to investigate the spontaneous membrane insertion process of cytochrome b(5) and its mutants. Experimental results show a significant difference in the membrane insertion and orientation properties of these proteins, which can be correlated with their functional differences. In particular, our results correlate the nonfunctional property of a mutant cytochrome b(5) with its inability to insert into the lipid bilayer. The approach reported in this study could be used as a potential rapid screening tool in measuring the topology of membrane proteins as well as interactions of biomolecules with lipid bilayers in situ.
Collapse
Affiliation(s)
- Khoi Tan Nguyen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
33
|
Shi L, Kawamura I, Jung KH, Brown LS, Ladizhansky V. Conformation of a Seven-Helical Transmembrane Photosensor in the Lipid Environment. Angew Chem Int Ed Engl 2010; 50:1302-5. [DOI: 10.1002/anie.201004422] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/08/2010] [Indexed: 11/08/2022]
|
34
|
Shi L, Kawamura I, Jung KH, Brown LS, Ladizhansky V. Conformation of a Seven-Helical Transmembrane Photosensor in the Lipid Environment. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Yamamoto K, Xu J, Kawulka KE, Vederas JC, Ramamoorthy A. Use of a copper-chelated lipid speeds up NMR measurements from membrane proteins. J Am Chem Soc 2010; 132:6929-31. [PMID: 20433169 DOI: 10.1021/ja102103n] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated the abilities of solid-state NMR techniques to solve atomic-level-resolution structures and dynamics of membrane-associated proteins and peptides. However, high-throughput applications of solid-state NMR spectroscopy are hampered by long acquisition times due to the low sensitivity of the technique. In this study, we demonstrate the use of a paramagnetic copper-chelated lipid to enhance the spin-lattice relaxation and thereby speed up solid-state NMR measurements. Fluid lamellar-phase bicelles composed of a lipid, detergent, and the copper-chelated lipid and containing a uniformly (15)N-labeled antimicrobial peptide, subtilosin A, were used at room temperature. The use of a chelating lipid reduces the concentration of free copper and limits RF-induced heating, a major problem for fluid samples. Our results demonstrate a 6.2-fold speed increase and a 2.7-fold improvement in signal-to-noise ratio for solid-state NMR experiments under magic-angle spinning and static conditions, respectively. Furthermore, solid-state NMR measurements are shown to be feasible even for nanomole concentrations of a membrane-associated peptide.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | |
Collapse
|
36
|
Nunez M, Guittet E, Pompon D, van Heijenoort C, Truan G. NMR structure note: oxidized microsomal human cytochrome b5. JOURNAL OF BIOMOLECULAR NMR 2010; 47:289-295. [PMID: 20532590 DOI: 10.1007/s10858-010-9428-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Affiliation(s)
- Marcela Nunez
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
37
|
Saitô H, Ando I, Ramamoorthy A. Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 57:181-228. [PMID: 20633363 PMCID: PMC2905606 DOI: 10.1016/j.pnmrs.2010.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/26/2010] [Indexed: 05/19/2023]
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Himeji Institute of Technology, University of Hyogo, Kamigori, Hyog, 678-1297, Japan
| | - Isao Ando
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-0033, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
38
|
Cho HS, Dominick JL, Spence MM. Lipid Domains in Bicelles Containing Unsaturated Lipids and Cholesterol. J Phys Chem B 2010; 114:9238-45. [DOI: 10.1021/jp100276u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyo Soon Cho
- Chevron Science Center, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Johnna L. Dominick
- Chevron Science Center, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Megan M. Spence
- Chevron Science Center, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
39
|
Reddy T, Li X, Fliegel L, Sykes BD, Rainey JK. Correlating structure, dynamics, and function in transmembrane segment VII of the Na+/H+ exchanger isoform 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:94-104. [DOI: 10.1016/j.bbamem.2009.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/17/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
40
|
Yang J, Tasayco ML, Polenova T. Dynamics of reassembled thioredoxin studied by magic angle spinning NMR: snapshots from different time scales. J Am Chem Soc 2009; 131:13690-702. [PMID: 19736935 DOI: 10.1021/ja9037802] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-state NMR spectroscopy can be used to probe internal protein dynamics in the absence of the overall molecular tumbling. In this study, we report (15)N backbone dynamics in differentially enriched 1-73(U-(13)C,(15)N)/74-108(U-(15)N) reassembled thioredoxin on multiple time scales using a series of 2D and 3D MAS NMR experiments probing the backbone amide (15)N longitudinal relaxation, (1)H-(15)N dipolar order parameters, (15)N chemical shift anisotropy (CSA), and signal intensities in the temperature-dependent and (1)H T(2)'-filtered NCA experiments. The spin-lattice relaxation rates R(1) (R(1) = 1/T(1)) were observed in the range from 0.012 to 0.64 s(-1), indicating large site-to-site variations in dynamics on pico- to nanosecond time scales. The (1)H-(15)N dipolar order parameters, <S>, and (15)N CSA anisotropies, delta(sigma), reveal the backbone mobilities in reassembled thioredoxin, as reflected in the average <S> = 0.89 +/- 0.06 and delta(sigma) = 92.3 +/- 5.2 ppm, respectively. From the aggregate of experimental data from different dynamics methods, some degree of correlation between the motions on the different time scales has been suggested. Analysis of the dynamics parameters derived from these solid-state NMR experiments indicates higher mobilities for the residues constituting irregular secondary structure elements than for those located in the alpha-helices and beta-sheets, with no apparent systematic differences in dynamics between the alpha-helical and beta-sheet residues. Remarkably, the dipolar order parameters derived from the solid-state NMR measurements and the corresponding solution NMR generalized order parameters display similar qualitative trends as a function of the residue number. The comparison of the solid-state dynamics parameters to the crystallographic B-factors has identified the contribution of static disorder to the B-factors. The combination of longitudinal relaxation, dipolar order parameter, and CSA line shape analyses employed in this study provides snapshots of dynamics and a new insight on the correlation of these motions on multiple time scales.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
41
|
Assessing the size, stability, and utility of isotropically tumbling bicelle systems for structural biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:482-8. [PMID: 19914202 DOI: 10.1016/j.bbamem.2009.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/24/2009] [Accepted: 11/05/2009] [Indexed: 11/23/2022]
Abstract
Aqueous phospholipid mixtures that form bilayered micelles (bicelles) have gained wide use by molecular biophysicists during the past 20 years for spectroscopic studies of membrane-bound peptides and structural refinement of soluble protein structures. Nonetheless, the utility of bicelle systems may be compromised by considerations of cost, chemical stability, and preservation of the bicelle aggregate organization under a broad range of temperature, concentration, pH, and ionic strength conditions. In the current work, (31)P nuclear magnetic resonance (NMR) and atomic force microscopy (AFM) have been used to monitor the size and morphology of isotropically tumbling small bicelles formed by mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DIOMPC) with either 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) or 1,2-di-O-hexyl-sn-glycero-3-phosphocholine (DIOHPC), testing their tolerance of variations in commonly used experimental conditions. (1)H-(15)N 2D NMR has been used to demonstrate the usefulness of the robust DMPC-DIOHPC system for conformational studies of a fatty acid-binding protein that shuttles small ligands to and from biological membranes.
Collapse
|
42
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
- Corresponding Author: ; phone: 615-936-3756; fax: 615-936-2211
| |
Collapse
|
43
|
Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:177-93. [PMID: 19716801 DOI: 10.1016/j.bbamem.2009.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/25/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state (2)H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific (2)H labels have been introduced into the methyl groups of retinal and solid-state (2)H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent (2)H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the beta-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the beta4 strand of the E2 loop and the side chains of Glu(122) and Trp(265) within the binding pocket. The solid-state (2)H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
44
|
Ader C, Pongs O, Becker S, Baldus M. Protein dynamics detected in a membrane-embedded potassium channel using two-dimensional solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:286-90. [PMID: 19595989 DOI: 10.1016/j.bbamem.2009.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/31/2009] [Accepted: 06/29/2009] [Indexed: 11/16/2022]
Abstract
We report longitudinal (15)N relaxation rates derived from two-dimensional ((15)N, (13)C) chemical shift correlation experiments obtained under magic angle spinning for the potassium channel KcsA-Kv1.3 reconstituted in multilamellar vesicles. Thus, we demonstrate that solid-state NMR can be used to probe residue-specific backbone dynamics in a membrane-embedded protein. Enhanced backbone mobility was detected for two glycine residues within the selectivity filter that are highly conserved in potassium channels and that are of core relevance to the filter structure and ion selectivity.
Collapse
Affiliation(s)
- Christian Ader
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|