1
|
Liu WL, Wen ZH, Li QY, Liu HB, Li QL, Deng SZ, Zeng ZY, Luo MC, Tang AX, Liu YY. New insights into exploring new functional enzymes through the enzyme promiscuity. Int J Biol Macromol 2025; 304:140576. [PMID: 39904435 DOI: 10.1016/j.ijbiomac.2025.140576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Enzyme promiscuity, defined as the ability of enzymes to catalyze reactions beyond their primary physiological functions, has emerged as a pivotal concept in modern enzyme engineering. This review provides a comprehensive exploration of enzyme promiscuity and its implications for the discovery and development of novel functional enzymes. Through targeted strategies such as (semi-)rational design, directed evolution, and de novo design, enzyme promiscuity has been harnessed to broaden substrate scopes, enhance catalytic efficiencies, and adapt enzymes to diverse reaction conditions. These modifications often involve subtle alterations to the active site, which impact catalytic mechanisms and open new pathways for the synthesis and degradation of complex organic compounds. Striking a balance between maintaining native activity and enhancing promiscuous functions remains a significant challenge in enzyme engineering. Nevertheless, advances in structural biology and computational modeling offer promising strategies to overcome these obstacles. By elucidating the mechanistic basis of enzyme promiscuity, this review aims to deepen our understanding of this phenomenon. It underscores the necessity of further investigating the mechanisms underlying promiscuous enzymatic activity and highlights the importance of leveraging promiscuous enzymes to address industrial application demands and drive the development of next-generation biocatalysts.
Collapse
Affiliation(s)
- Wen-Long Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zong-Hong Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qing-Yun Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qun-Liang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Shun-Zhang Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zheng-Yun Zeng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Meng-Cheng Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Ai-Xing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China.
| | - You-Yan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China.
| |
Collapse
|
2
|
Pinto GP, Corbella M, Demkiv AO, Kamerlin SCL. Exploiting enzyme evolution for computational protein design. Trends Biochem Sci 2021; 47:375-389. [PMID: 34544655 DOI: 10.1016/j.tibs.2021.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
Recent years have seen an explosion of interest in understanding the physicochemical parameters that shape enzyme evolution, as well as substantial advances in computational enzyme design. This review discusses three areas where evolutionary information can be used as part of the design process: (i) using ancestral sequence reconstruction (ASR) to generate new starting points for enzyme design efforts; (ii) learning from how nature uses conformational dynamics in enzyme evolution to mimic this process in silico; and (iii) modular design of enzymes from smaller fragments, again mimicking the process by which nature appears to create new protein folds. Using showcase examples, we highlight the importance of incorporating evolutionary information to continue to push forward the boundaries of enzyme design studies.
Collapse
Affiliation(s)
- Gaspar P Pinto
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Andrey O Demkiv
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
3
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
4
|
Shukla RD, Rai B, Kumar A. Exploration of Catalytic Activity of Trypsin for C(sp3
)-H Functionalization and Consequent C-C Bond Formation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ratnakar Dutt Shukla
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CDRI); 226031 Lucknow India
- Academy of Scientific & Innovative Research (AcSIR); New Delhi India
| | - Byanju Rai
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CDRI); 226031 Lucknow India
| | - Atul Kumar
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CDRI); 226031 Lucknow India
- Academy of Scientific & Innovative Research (AcSIR); New Delhi India
| |
Collapse
|
5
|
van Loo B, Berry R, Boonyuen U, Mohamed MF, Golicnik M, Hengge AC, Hollfelder F. Transition-State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis by Pseudomonas aeruginosa Arylsulfatase. Biochemistry 2019; 58:1363-1378. [PMID: 30810299 PMCID: PMC11098524 DOI: 10.1021/acs.biochem.8b00996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa arylsulfatase (PAS) hydrolyzes sulfate and, promiscuously, phosphate monoesters. Enzyme-catalyzed sulfate transfer is crucial to a wide variety of biological processes, but detailed studies of the mechanistic contributions to its catalysis are lacking. We present linear free energy relationships (LFERs) and kinetic isotope effects (KIEs) of PAS and analyses of active site mutants that suggest a key role for leaving group (LG) stabilization. In LFERs PASWT has a much less negative Brønsted coefficient (βleaving groupobs-Enz = -0.33) than the uncatalyzed reaction (βleaving groupobs = -1.81). This situation is diminished when cationic active site groups are exchanged for alanine. The considerable degree of bond breaking during the transition state (TS) is evidenced by an 18Obridge KIE of 1.0088. LFER and KIE data for several active site mutants point to leaving group stabilization by active site K375, in cooperation with H211. 15N KIEs and the increased sensitivity to leaving group ability of the sulfatase activity in neat D2O (Δβleaving groupH-D = +0.06) suggest that the mechanism for S-Obridge bond fission shifts, with decreasing leaving group ability, from charge compensation via Lewis acid interactions toward direct proton donation. 18Ononbridge KIEs indicate that the TS for PAS-catalyzed sulfate monoester hydrolysis has a significantly more associative character compared to the uncatalyzed reaction, while PAS-catalyzed phosphate monoester hydrolysis does not show this shift. This difference in enzyme-catalyzed TSs appears to be the major factor favoring specificity toward sulfate over phosphate esters by this promiscuous hydrolase, since other features are either too similar (uncatalyzed TS) or inherently favor phosphate (charge).
Collapse
Affiliation(s)
- Bert van Loo
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Berry
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Usa Boonyuen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark F. Mohamed
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Marko Golicnik
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
van Loo B, Bayer CD, Fischer G, Jonas S, Valkov E, Mohamed MF, Vorobieva A, Dutruel C, Hyvönen M, Hollfelder F. Balancing Specificity and Promiscuity in Enzyme Evolution: Multidimensional Activity Transitions in the Alkaline Phosphatase Superfamily. J Am Chem Soc 2018; 141:370-387. [PMID: 30497259 DOI: 10.1021/jacs.8b10290] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly proficient, promiscuous enzymes can be springboards for functional evolution, able to avoid loss of function during adaptation by their capacity to promote multiple reactions. We employ a systematic comparative study of structure, sequence, and substrate specificity to track the evolution of specificity and reactivity between promiscuous members of clades of the alkaline phosphatase (AP) superfamily. Construction of a phylogenetic tree of protein sequences maps out the likely transition zone between arylsulfatases (ASs) and phosphonate monoester hydrolases (PMHs). Kinetic analysis shows that all enzymes characterized have four chemically distinct phospho- and sulfoesterase activities, with rate accelerations ranging from 1011- to 1017-fold for their primary and 109- to 1012-fold for their promiscuous reactions, suggesting that catalytic promiscuity is widespread in the AP-superfamily. This functional characterization and crystallography reveal a novel class of ASs that is so similar in sequence to known PMHs that it had not been recognized as having diverged in function. Based on analysis of snapshots of catalytic promiscuity "in transition", we develop possible models that would allow functional evolution and determine scenarios for trade-off between multiple activities. For the new ASs, we observe largely invariant substrate specificity that would facilitate the transition from ASs to PMHs via trade-off-free molecular exaptation, that is, evolution without initial loss of primary activity and specificity toward the original substrate. This ability to bypass low activity generalists provides a molecular solution to avoid adaptive conflict.
Collapse
Affiliation(s)
- Bert van Loo
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Christopher D Bayer
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Gerhard Fischer
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Stefanie Jonas
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Eugene Valkov
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Mark F Mohamed
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Anastassia Vorobieva
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Celine Dutruel
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| |
Collapse
|
7
|
Uduwela DR, Pabis A, Stevenson BJ, Kamerlin SCL, McLeod MD. Enhancing the Steroid Sulfatase Activity of the Arylsulfatase from Pseudomonas aeruginosa. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dimanthi R. Uduwela
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Anna Pabis
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Bradley J. Stevenson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Shina C. L. Kamerlin
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Malcolm D. McLeod
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
8
|
Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset. Proc Natl Acad Sci U S A 2018; 115:E7293-E7302. [PMID: 30012610 DOI: 10.1073/pnas.1607817115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The recruitment and evolutionary optimization of promiscuous enzymes is key to the rapid adaptation of organisms to changing environments. Our understanding of the precise mechanisms underlying enzyme repurposing is, however, limited: What are the active-site features that enable the molecular recognition of multiple substrates with contrasting catalytic requirements? To gain insights into the molecular determinants of adaptation in promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate hydrolase activity. The evolutionary trajectory led to a 100,000-fold enhancement of phenylphosphonate hydrolysis, while the native sulfate and promiscuous phosphate mono- and diester hydrolyses were only marginally affected (≤50-fold). Structural, kinetic, and in silico characterizations of the evolutionary intermediates revealed that two key mutations, T50A and M72V, locally reshaped the active site, improving access to the catalytic machinery for the phosphonate. Measured transition state (TS) charge changes along the trajectory suggest the creation of a new Michaelis complex (E•S, enzyme-substrate), with enhanced leaving group stabilization in the TS for the promiscuous phosphonate (βleavinggroup from -1.08 to -0.42). Rather than altering the catalytic machinery, evolutionary repurposing was achieved by fine-tuning the molecular recognition of the phosphonate in the Michaelis complex, and by extension, also in the TS. This molecular scenario constitutes a mechanistic alternative to adaptation solely based on enzyme flexibility and conformational selection. Instead, rapid functional transitions between distinct chemical reactions rely on the high reactivity of permissive active-site architectures that allow multiple substrate binding modes.
Collapse
|
9
|
van Loo B, Schober M, Valkov E, Heberlein M, Bornberg-Bauer E, Faber K, Hyvönen M, Hollfelder F. Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester. J Mol Biol 2018; 430:1004-1023. [PMID: 29458126 PMCID: PMC5870055 DOI: 10.1016/j.jmb.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (kcat/KM=4.8×103s-1M-1) as well as arylsulfate 4-nitrophenyl sulfate (kcat/KM=12s-1M-1). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H218O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency.
Collapse
Affiliation(s)
- Bert van Loo
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Markus Schober
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Eugene Valkov
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Magdalena Heberlein
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| |
Collapse
|
10
|
Petrović D, Szeler K, Kamerlin SCL. Challenges and advances in the computational modeling of biological phosphate hydrolysis. Chem Commun (Camb) 2018; 54:3077-3089. [PMID: 29412205 DOI: 10.1039/c7cc09504j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphate ester hydrolysis is fundamental to many life processes, and has been the topic of substantial experimental and computational research effort. However, even the simplest of phosphate esters can be hydrolyzed through multiple possible pathways that can be difficult to distinguish between, either experimentally, or computationally. Therefore, the mechanisms of both the enzymatic and non-enzymatic reactions have been historically controversial. In the present contribution, we highlight a number of technical issues involved in reliably modeling these computationally challenging reactions, as well as proposing potential solutions. We also showcase examples of our own work in this area, discussing both the non-enzymatic reaction in aqueous solution, as well as insights obtained from the computational modeling of organophosphate hydrolysis and catalytic promiscuity amongst enzymes that catalyze phosphoryl transfer.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| | - Klaudia Szeler
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| | | |
Collapse
|
11
|
Sunden F, AlSadhan I, Lyubimov A, Doukov T, Swan J, Herschlag D. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution. J Biol Chem 2017; 292:20960-20974. [PMID: 29070681 DOI: 10.1074/jbc.m117.788240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/19/2017] [Indexed: 11/06/2022] Open
Abstract
Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. We mutated distinguishing active-site residues to generate enzymes that had a common Zn2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of these pruned enzymes with a series of substrates. A substantial rate enhancement of ∼1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 107-108-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.
Collapse
Affiliation(s)
- Fanny Sunden
- From the Department of Biochemistry, Beckman Center
| | | | - Artem Lyubimov
- the Departments of Molecular and Cellular Physiology.,Neurology and Neurological Science.,Structural Biology, and.,Photon Science.,Howard Hughes Medical Institute
| | - Tzanko Doukov
- the Macromolecular Crystallographic Group, Stanford Synchrotron Radiation Lightsource, National Accelerator Laboratory, Stanford University, Stanford, California 94309
| | - Jeffrey Swan
- From the Department of Biochemistry, Beckman Center
| | - Daniel Herschlag
- From the Department of Biochemistry, Beckman Center, .,the Departments of Chemical Engineering and Chemistry, and.,Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305 and
| |
Collapse
|
12
|
Korban SA, Bobrov KS, Maynskova MA, Naryzhny SN, Vlasova OL, Eneyskaya EV, Kulminskaya AA. Heterologous expression in Pichia pastoris and biochemical characterization of the unmodified sulfatase from Fusarium proliferatum LE1. Protein Eng Des Sel 2017. [PMID: 28651356 DOI: 10.1093/protein/gzx033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sulfatases are a family of enzymes (sulfuric ester hydrolases, EC 3.1.6.-) that catalyze the hydrolysis of a wide array of sulfate esters. To date, despite the discovery of many sulfatase genes and the accumulation of data on numerous sulfated molecules, the number of characterized enzymes that are key players in sulfur metabolism remains extremely limited. While mammalian sulfatases are well studied due to their involvement in a wide range of normal and pathological biological processes, lower eukaryotic sulfatases, especially fungal sulfatases, have not been thoroughly investigated at the biochemical and structural level. In this paper, we describe the molecular cloning of Fusarium proliferatum sulfatase (F.p.Sulf-6His), its recombinant expression in Pichia pastoris as a soluble and active cytosolic enzyme and its detailed characterization. Gel filtration and native electrophoretic experiments showed that this recombinant enzyme exists as a tetramer in solution. The enzyme is thermo-sensitive, with an optimal temperature of 25°C. The optimal pH value for the hydrolysis of sulfate esters and stability of the enzyme was 6.0. Despite the absence of the post-translational modification of cysteine into Cα-formylglycine, the recombinant F.p.Sulf-6His has remarkably stable catalytic activity against p-nitrophenol sulfate, with kcat = 0.28 s-1 and Km = 2.45 mM, which indicates potential use in the desulfating processes. The currently proposed enzymatic mechanisms of sulfate ester hydrolysis do not explain the appearance of catalytic activity for the unmodified enzyme. According to the available models, the unmodified enzyme is not able to perform multiple catalytic acts; therefore, the enzymatic mechanism of sulfate esters hydrolysis remains to be fully elucidated.
Collapse
Affiliation(s)
- Svetlana A Korban
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| | - Kirill S Bobrov
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia
| | - Maria A Maynskova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| | - Stanislav N Naryzhny
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| | - Olga L Vlasova
- Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| | - Elena V Eneyskaya
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia
| | - Anna A Kulminskaya
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| |
Collapse
|
13
|
Piazzetta P, Marino T, Russo N, Salahub DR. The role of metal substitution in the promiscuity of natural and artificial carbonic anhydrases. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Lu X, Fang D, Ito S, Okamoto Y, Ovchinnikov V, Cui Q. QM/MM free energy simulations: recent progress and challenges. MOLECULAR SIMULATION 2016; 42:1056-1078. [PMID: 27563170 DOI: 10.1080/08927022.2015.1132317] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Due to the higher computational cost relative to pure molecular mechanical (MM) simulations, hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations particularly require a careful consideration of balancing computational cost and accuracy. Here we review several recent developments in free energy methods most relevant to QM/MM simulations and discuss several topics motivated by these developments using simple but informative examples that involve processes in water. For chemical reactions, we highlight the value of invoking enhanced sampling technique (e.g., replica-exchange) in umbrella sampling calculations and the value of including collective environmental variables (e.g., hydration level) in metadynamics simulations; we also illustrate the sensitivity of string calculations, especially free energy along the path, to various parameters in the computation. Alchemical free energy simulations with a specific thermodynamic cycle are used to probe the effect of including the first solvation shell into the QM region when computing solvation free energies. For cases where high-level QM/MM potential functions are needed, we analyze two different approaches: the QM/MM-MFEP method of Yang and co-workers and perturbative correction to low-level QM/MM free energy results. For the examples analyzed here, both approaches seem productive although care needs to be exercised when analyzing the perturbative corrections.
Collapse
Affiliation(s)
- Xiya Lu
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Dong Fang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Shingo Ito
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Boston, MA 02138
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
15
|
Pabis A, Duarte F, Kamerlin SCL. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer. Biochemistry 2016; 55:3061-81. [PMID: 27187273 PMCID: PMC4899807 DOI: 10.1021/acs.biochem.6b00297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The
enzymes that facilitate phosphate and sulfate hydrolysis are
among the most proficient natural catalysts known to date. Interestingly,
a large number of these enzymes are promiscuous catalysts that exhibit
both phosphatase and sulfatase activities in the same active site
and, on top of that, have also been demonstrated to efficiently catalyze
the hydrolysis of other additional substrates with varying degrees
of efficiency. Understanding the factors that underlie such multifunctionality
is crucial both for understanding functional evolution in enzyme superfamilies
and for the development of artificial enzymes. In this Current Topic,
we have primarily focused on the structural and mechanistic basis
for catalytic promiscuity among enzymes that facilitate both phosphoryl
and sulfuryl transfer in the same active site, while comparing this
to how catalytic promiscuity manifests in other promiscuous phosphatases.
We have also drawn on the large number of experimental and computational
studies of selected model systems in the literature to explore the
different features driving the catalytic promiscuity of such enzymes.
Finally, on the basis of this comparative analysis, we probe the plausible
origins and determinants of catalytic promiscuity in enzymes that
catalyze phosphoryl and sulfuryl transfer.
Collapse
Affiliation(s)
- Anna Pabis
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University , BMC Box 596, S-751 24 Uppsala, Sweden
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K.,Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, U.K
| | - Shina C L Kamerlin
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University , BMC Box 596, S-751 24 Uppsala, Sweden
| |
Collapse
|
16
|
Bredeston LM, González Flecha FL. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1471-8. [PMID: 27086711 DOI: 10.1016/j.bbamem.2016.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 11/19/2022]
Abstract
Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP.
Collapse
Affiliation(s)
- Luis M Bredeston
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - F Luis González Flecha
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Martínez-Núñez MA, Pérez-Rueda E. Do lifestyles influence the presence of promiscuous enzymes in bacteria and Archaea metabolism? ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40508-016-0047-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Han M, Yin H, Zou Y, Brock NL, Huang T, Deng Z, Chu Y, Lin S. An Acyl Transfer Reaction Catalyzed by an Epimerase MarH. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mo Han
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haixing Yin
- Sichuan
Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan
Road, Chengdu 610052, China
| | - Yi Zou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nelson L. Brock
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiwen Chu
- Sichuan
Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan
Road, Chengdu 610052, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
19
|
Pabis A, Kamerlin SCL. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily. Curr Opin Struct Biol 2015; 37:14-21. [PMID: 26716576 DOI: 10.1016/j.sbi.2015.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
Catalytic promiscuity, that is, the ability of single enzymes to facilitate the turnover of multiple, chemically distinct substrates, is a widespread phenomenon that plays an important role in the evolution of enzyme function. Additionally, such pre-existing multifunctionality can be harnessed in artificial enzyme design. The members of the alkaline phosphatase superfamily have served extensively as both experimental and computational model systems for enhancing our understanding of catalytic promiscuity. In this Opinion, we present key recent computational studies into the catalytic activity of these highly promiscuous enzymes, highlighting the valuable insight they have provided into both the molecular basis for catalytic promiscuity in general, and its implications for the evolution of phosphatase activity.
Collapse
Affiliation(s)
- Anna Pabis
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
20
|
Barrozo A, Duarte F, Bauer P, Carvalho ATP, Kamerlin SCL. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily. J Am Chem Soc 2015; 137:9061-76. [PMID: 26091851 PMCID: PMC4513756 DOI: 10.1021/jacs.5b03945] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Fernanda Duarte
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Paul Bauer
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Alexandra T P Carvalho
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| |
Collapse
|
21
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
22
|
Copley SD. An evolutionary biochemist's perspective on promiscuity. Trends Biochem Sci 2015; 40:72-8. [PMID: 25573004 DOI: 10.1016/j.tibs.2014.12.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
Abstract
Evolutionary biochemists define enzyme promiscuity as the ability to catalyze secondary reactions that are physiologically irrelevant, either because they are too inefficient to affect fitness or because the enzyme never encounters the substrate. Promiscuous activities are common because evolution of a perfectly specific active site is both difficult and unnecessary; natural selection ceases when the performance of a protein is 'good enough' that it no longer affects fitness. Although promiscuous functions are accidental and physiologically irrelevant, they are of great importance because they provide opportunities for the evolution of new functions in nature and in the laboratory, as well as targets for therapeutic drugs and tools for a wide range of technological applications.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
23
|
Frushicheva MP, Mills MJL, Schopf P, Singh MK, Warshel A. Computer aided enzyme design and catalytic concepts. Curr Opin Chem Biol 2014; 21:56-62. [PMID: 24814389 PMCID: PMC4149935 DOI: 10.1016/j.cbpa.2014.03.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 11/21/2022]
Abstract
Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method.
Collapse
Affiliation(s)
- Maria P. Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Matthew J. L. Mills
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick Schopf
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Manoj K. Singh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Piazzetta P, Marino T, Russo N. Promiscuous Ability of Human Carbonic Anhydrase: QM and QM/MM Investigation of Carbon Dioxide and Carbodiimide Hydration. Inorg Chem 2014; 53:3488-93. [DOI: 10.1021/ic402932y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paolo Piazzetta
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende CS, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende CS, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende CS, Italy
- Departamento de Quimica,
Division de Ciencias Basicas e Ingenieria, Universidad, Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, CP 09340 Mexico D.F., Mexico
| |
Collapse
|
25
|
Williams SJ, Denehy E, Krenske EH. Experimental and theoretical insights into the mechanisms of sulfate and sulfamate ester hydrolysis and the end products of type I sulfatase inactivation by aryl sulfamates. J Org Chem 2014; 79:1995-2005. [PMID: 24555731 DOI: 10.1021/jo4026513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type I sulfatases catalyze the hydrolysis of sulfate esters through S-O bond cleavage and possess a catalytically essential formylglycine (FGly) active-site residue that is post-translationally derived from either cysteine or serine. Type I sulfatases are inactivated by aryl sulfamates in a time-dependent, irreversible, and active-site directed manner consistent with covalent modification of the active site. We report a theoretical (SCS-MP2//B3LYP) and experimental study of the uncatalyzed and enzyme-catalyzed hydrolysis of aryl sulfates and sulfamates. In solution, aryl sulfate monoanions undergo hydrolysis by an S(N)2 mechanism whereas aryl sulfamate monoanions follow an S(N)1 pathway with SO2NH as an intermediate; theory traces this difference to the markedly greater stability of SO2NH versus SO3. For Pseudomonas aeruginosa arylsulfatase-catalyzed aryl sulfate hydrolysis, Brønsted analysis (log(V(max)/K(M)) versus leaving group pK(a) value) reveals β(LG) = -0.86 ± 0.23, consistent with an S(N)2 at sulfur reaction but substantially smaller than that reported for uncatalyzed hydrolysis (β(LG) = -1.81). Common to all proposed mechanisms of sulfatase catalysis is a sulfated FGly intermediate. Theory indicates a ≥26 kcal/mol preference for the intermediate to release HSO4(-) by an E2 mechanism, rather than alkaline phosphatase-like S(N)2 substitution by water. An evaluation of the stabilities of various proposed end-products of sulfamate-induced sulfatase inactivation highlights that an imine N-sulfate derived from FGly is the most likely irreversible adduct.
Collapse
Affiliation(s)
- Spencer J Williams
- School of Chemistry and ‡Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
26
|
Wiersma-Koch H, Sunden F, Herschlag D. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase. Biochemistry 2013; 52:9167-76. [PMID: 24261692 DOI: 10.1021/bi4010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition of side chains that interact with the substrate atoms and substituents that project away from the Zn²⁺ bimetallo core.
Collapse
Affiliation(s)
- Helen Wiersma-Koch
- Department of Biochemistry, Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
27
|
Duarte F, Amrein BA, Kamerlin SCL. Modeling catalytic promiscuity in the alkaline phosphatase superfamily. Phys Chem Chem Phys 2013; 15:11160-77. [PMID: 23728154 PMCID: PMC3693508 DOI: 10.1039/c3cp51179k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/02/2013] [Indexed: 12/19/2022]
Abstract
In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein functional evolution.
Collapse
Affiliation(s)
- Fernanda Duarte
- Uppsala University, Science for Life Laboratory (SciLifeLab), Cell and Molecular Biology, Uppsala, Sweden. ; ;
| | - Beat Anton Amrein
- Uppsala University, Science for Life Laboratory (SciLifeLab), Cell and Molecular Biology, Uppsala, Sweden. ; ;
| | | |
Collapse
|
28
|
Schober M, Toesch M, Knaus T, Strohmeier GA, van Loo B, Fuchs M, Hollfelder F, Macheroux P, Faber K. One-Pot Deracemization of sec-Alcohols: Enantioconvergent Enzymatic Hydrolysis of Alkyl Sulfates Using Stereocomplementary Sulfatases. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 125:3359-3361. [PMID: 25821253 PMCID: PMC4373141 DOI: 10.1002/ange.201209946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Markus Schober
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Michael Toesch
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Tanja Knaus
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Gernot A Strohmeier
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Bert van Loo
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Michael Fuchs
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Florian Hollfelder
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Peter Macheroux
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Kurt Faber
- *Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| |
Collapse
|
29
|
Schober M, Toesch M, Knaus T, Strohmeier GA, van Loo B, Fuchs M, Hollfelder F, Macheroux P, Faber K. One-pot deracemization of sec-alcohols: enantioconvergent enzymatic hydrolysis of alkyl sulfates using stereocomplementary sulfatases. Angew Chem Int Ed Engl 2013; 52:3277-9. [PMID: 23401148 PMCID: PMC3743160 DOI: 10.1002/anie.201209946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/12/2013] [Indexed: 12/03/2022]
Affiliation(s)
- Markus Schober
- Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| | - Michael Toesch
- Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| | - Tanja Knaus
- Institute of Biochemistry, Graz University of Technology
| | - Gernot A Strohmeier
- ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
| | - Bert van Loo
- Department of Biochemistry, University of Cambridge
| | - Michael Fuchs
- Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| | | | | | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| |
Collapse
|
30
|
Gatti-Lafranconi P, Hollfelder F. Flexibility and reactivity in promiscuous enzymes. Chembiochem 2013; 14:285-92. [PMID: 23362046 DOI: 10.1002/cbic.201200628] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 11/10/2022]
Abstract
Best of both worlds: The interplay of active site reactivity and the dynamic character of proteins allows enzymes to be promiscuous and--sometimes--remarkably efficient at the same time. This review analyses the roles structural flexibility and chemical reactivity play in the catalytic mechanism of selected enzymes.
Collapse
|
31
|
Abstract
Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.
Collapse
|
32
|
Marino T, Russo N, Toscano M. Catalytic Mechanism of the Arylsulfatase Promiscuous Enzyme fromPseudomonas Aeruginosa. Chemistry 2012; 19:2185-92. [DOI: 10.1002/chem.201201943] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/06/2012] [Indexed: 11/11/2022]
|
33
|
Kintses B, Hein C, Mohamed MF, Fischlechner M, Courtois F, Lainé C, Hollfelder F. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. ACTA ACUST UNITED AC 2012; 19:1001-9. [PMID: 22921067 DOI: 10.1016/j.chembiol.2012.06.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 11/29/2022]
Abstract
We demonstrate the utility of a microfluidic platform in which water-in-oil droplet compartments serve to miniaturize cell lysate assays by a million-fold for directed enzyme evolution. Screening hydrolytic activities of a promiscuous sulfatase demonstrates that this extreme miniaturization to the single-cell level does not come at a high price in signal quality. Moreover, the quantitative readout delivers a level of precision previously limited to screening methodologies with restricted throughput. The sorting of 3 × 10(7) monodisperse droplets per round of evolution leads to the enrichment of clones with improvements in activity (6-fold) and expression (6-fold). The detection of subtle differences in a larger number of screened clones provides the combination of high sensitivity and high-throughput needed to rescue a stalled directed evolution experiment and make it viable.
Collapse
Affiliation(s)
- Balint Kintses
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Barrozo A, Borstnar R, Marloie G, Kamerlin SCL. Computational protein engineering: bridging the gap between rational design and laboratory evolution. Int J Mol Sci 2012. [PMID: 23202907 PMCID: PMC3497281 DOI: 10.3390/ijms131012428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails: (A.B.); (R.B.); (G.M.)
| | - Rok Borstnar
- Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails: (A.B.); (R.B.); (G.M.)
- Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Gaël Marloie
- Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails: (A.B.); (R.B.); (G.M.)
| | - Shina Caroline Lynn Kamerlin
- Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails: (A.B.); (R.B.); (G.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +46-18-471-4423; Fax: +46-18-530-396
| |
Collapse
|
35
|
Mohamed MF, Hollfelder F. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:417-24. [PMID: 22885024 DOI: 10.1016/j.bbapap.2012.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/19/2012] [Accepted: 07/26/2012] [Indexed: 11/25/2022]
Abstract
The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.
Collapse
Affiliation(s)
- Mark F Mohamed
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, EU, UK
| | | |
Collapse
|
36
|
Probing the mutational interplay between primary and promiscuous protein functions: a computational-experimental approach. PLoS Comput Biol 2012; 8:e1002558. [PMID: 22719242 PMCID: PMC3375227 DOI: 10.1371/journal.pcbi.1002558] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/29/2012] [Indexed: 12/16/2022] Open
Abstract
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes. Interpretations of evolutionary processes at the molecular level have been determined to a significant extent by the concept of “trade-off”, the idea that improving a given feature of a protein molecule by mutation will likely bring about deterioration in other features. For instance, if a protein is able to carry out two different molecular tasks based on the same functional site (competing tasks), optimization for one task could be naively expected to impair its performance for the other task. In this work, we report a computational/experimental approach to assess the potential patterns of modulation of two competing molecular tasks in the course of natural evolution. Contrary to the naïve expectation, we find that diverse modulation patterns are possible, including the simultaneous optimization of the two tasks. We show, however, that this simultaneous optimization is not in conflict with the trade-offs expected for two competing tasks: using the language of the theory of economic efficiency, trade-offs are realized in the Pareto set of optimal variants for the two tasks, while most protein variants do not belong to such Pareto set. That is, most protein variants are not Pareto-efficient and can potentially be improved in terms of several features.
Collapse
|
37
|
Luo J, van Loo B, Kamerlin SC. Catalytic promiscuity inPseudomonas aeruginosaarylsulfatase as an example of chemistry-driven protein evolution. FEBS Lett 2012; 586:1622-30. [DOI: 10.1016/j.febslet.2012.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/30/2012] [Accepted: 04/09/2012] [Indexed: 12/01/2022]
|
38
|
Luo J, van Loo B, Kamerlin SCL. Examining the promiscuous phosphatase activity of Pseudomonas aeruginosa arylsulfatase: a comparison to analogous phosphatases. Proteins 2012; 80:1211-26. [PMID: 22275090 DOI: 10.1002/prot.24020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa arylsulfatase (PAS) is a bacterial sulfatase capable of hydrolyzing a range of sulfate esters. Recently, it has been demonstrated to also show very high proficiency for phosphate ester hydrolysis. Such proficient catalytic promiscuity is significant, as promiscuity has been suggested to play an important role in enzyme evolution. Additionally, a comparative study of the hydrolyses of the p-nitrophenyl phosphate and sulfate monoesters in aqueous solution has demonstrated that despite superficial similarities, the two reactions proceed through markedly different transition states with very different solvation effects, indicating that the requirements for the efficient catalysis of the two reactions by an enzyme will also be very different (and yet they are both catalyzed by the same active site). This work explores the promiscuous phosphomonoesterase activity of PAS. Specifically, we have investigated the identity of the most likely base for the initial activation of the unusual formylglycine hydrate nucleophile (which is common to many sulfatases), and demonstrate that a concerted substrate-as-base mechanism is fully consistent with the experimentally observed data. This is very similar to other related systems, and suggests that, as far as the phosphomonoesterase activity of PAS is concerned, the sulfatase behaves like a "classical" phosphatase, despite the fact that such a mechanism is unlikely to be available to the native substrate (based on pK(a) considerations and studies of model systems). Understanding such catalytic versatility can be used to design novel artificial enzymes that are far more proficient than the current generation of designer enzymes.
Collapse
Affiliation(s)
- Jinghui Luo
- Department of Cell and Molecular Biology (ICM), Uppsala University, Uppsala Biomedical Center (BMC), Uppsala, Sweden
| | | | | |
Collapse
|
39
|
Babtie AC, Lima MF, Kirby AJ, Hollfelder F. Kinetic and computational evidence for an intermediate in the hydrolysis of sulfonate esters. Org Biomol Chem 2012; 10:8095-101. [DOI: 10.1039/c2ob25699a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Creus M, Ward TR. Design and Evolution of Artificial Metalloenzymes: Biomimetic Aspects. PROGRESS IN INORGANIC CHEMISTRY 2011. [DOI: 10.1002/9781118148235.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Li C, Zhou YJ, Wang N, Feng XW, Li K, Yu XQ. Promiscuous protease-catalyzed aldol reactions: A facile biocatalytic protocol for carbon–carbon bond formation in aqueous media. J Biotechnol 2010; 150:539-45. [DOI: 10.1016/j.jbiotec.2010.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/01/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
42
|
Wijte D, van Baar BLM, Heck AJR, Altelaar AFM. Probing the Proteome Response to Toluene Exposure in the Solvent Tolerant Pseudomonas putida S12. J Proteome Res 2010; 10:394-403. [DOI: 10.1021/pr100401n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dorien Wijte
- TNO Defence, Security and Safety, Business Unit Biological and Chemical Protection, P.O. Box 45, 2280 AA Rijswijk, The Netherlands, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA
| | - Ben L. M. van Baar
- TNO Defence, Security and Safety, Business Unit Biological and Chemical Protection, P.O. Box 45, 2280 AA Rijswijk, The Netherlands, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA
| | - Albert J. R. Heck
- TNO Defence, Security and Safety, Business Unit Biological and Chemical Protection, P.O. Box 45, 2280 AA Rijswijk, The Netherlands, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA
| | - A. F. Maarten Altelaar
- TNO Defence, Security and Safety, Business Unit Biological and Chemical Protection, P.O. Box 45, 2280 AA Rijswijk, The Netherlands, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA
| |
Collapse
|
43
|
An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proc Natl Acad Sci U S A 2010; 107:2740-5. [PMID: 20133613 DOI: 10.1073/pnas.0903951107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a catalytically promiscuous enzyme able to efficiently promote the hydrolysis of six different substrate classes. Originally assigned as a phosphonate monoester hydrolase (PMH) this enzyme exhibits substantial second-order rate accelerations ((k(cat)/K(M))/k(w)), ranging from 10(7) to as high as 10(19), for the hydrolyses of phosphate mono-, di-, and triesters, phosphonate monoesters, sulfate monoesters, and sulfonate monoesters. This substrate collection encompasses a range of substrate charges between 0 and -2, transition states of a different nature, and involves attack at two different reaction centers (P and S). Intrinsic reactivities (half-lives) range from 200 days to 10(5) years under near neutrality. The substantial rate accelerations for a set of relatively difficult reactions suggest that efficient catalysis is not necessarily limited to efficient stabilization of just one transition state. The crystal structure of PMH identifies it as a member of the alkaline phosphatase superfamily. PMH encompasses four of the native activities previously observed in this superfamily and extends its repertoire by two further activities, one of which, sulfonate monoesterase, has not been observed previously for a natural enzyme. PMH is thus one of the most promiscuous hydrolases described to date. The functional links between superfamily activities can be presumed to have played a role in functional evolution by gene duplication.
Collapse
|
44
|
Busto E, Gotor-Fernández V, Gotor V. Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem Soc Rev 2010; 39:4504-23. [DOI: 10.1039/c003811c] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|