1
|
Yusaf ZZ, Egleston BD, Avci G, Jelfs KE, Lewis JEM, Greenaway RL. Organic Cage Rotaxanes. Chemistry 2025:e202501014. [PMID: 40367335 DOI: 10.1002/chem.202501014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/16/2025]
Abstract
Organic cages are a robust class of molecular hosts with a myriad of applications in materials science. Despite this, there has been a paucity of explorations into the modification of their properties via external functionalization. In this work, [n]rotaxanes featuring unoccupied organic cages as stopper components and a small 2,2'-bipyridine macrocycle were constructed using the active metal template (AMT) approach. By exploiting a scrambling methodology, it was possible to synthesize cages with a defined number of interlocked components (n = 2-4). The gas uptake, solubility, and thermal properties of the interlocked systems were compared against those of their constituent, non-interlocked components. In this manner, we were able to demonstrate the potential of exploiting the mechanical bond for modulating the physiochemical properties of these molecular materials.
Collapse
Affiliation(s)
- Zarik Zaheer Yusaf
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Benjamin D Egleston
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Gokay Avci
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James E M Lewis
- School of Chemistry, University of Birmingham, Molecular Sciences Building, Edgbaston, Birmingham, B15 2TT, UK
| | - Rebecca L Greenaway
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
2
|
Fisher S, Huang HH, Sokoliuk L, Prescimone A, Fuhr O, Šolomek T. Kinetic Trapping of Rylene Diimide Covalent Organic Cages. J Org Chem 2025; 90:4158-4166. [PMID: 40098327 PMCID: PMC11959530 DOI: 10.1021/acs.joc.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Formation of imine organic cages relies on the error correction of dynamic covalent chemistry. Here, we demonstrate kinetically trapped rylene diimide [2 + 3] cages formed in high yields, and we investigate the effect of substituents on their formation kinetics and stability. Thereby, we identified that alkoxy groups in 2,4,6-trialkoxy-1,3,5-triformylbenzene, which are used to stabilize covalent organic cages or COFs, act as stereoelectronic chameleons. They increase the electrophilicity of the tritopic aldehyde and the rate of the imine bond formation but simultaneously diminish its kinetic stability in solution. We also show that aldehydes present in the solution may have a detrimental effect on the cage's kinetic stability. In addition, we observed [2 + 2] macrocycles as intermediates in the cage formation and decomposition. We propose that these intermediates represent interesting targets to explore the threshold at which an imine assembly with a rung structure may turn from thermodynamic to kinetic control. Generally, this work underscores critical factors governing the chemistry of kinetically trapped imine assemblies, such as steric bulk, (stereo)electronics, presence of catalysts, and water concentration.
Collapse
Affiliation(s)
- Sergey Fisher
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, XH Amsterdam NL-1098, the Netherlands
| | - Hsin-Hua Huang
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland
| | - Luise Sokoliuk
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland
| | - Olaf Fuhr
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe DE-76131, Germany
| | - Tomáš Šolomek
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, XH Amsterdam NL-1098, the Netherlands
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland
| |
Collapse
|
3
|
Lee H, Dhamija A, Gunnam A, Hwang I, Kim K. Enhancing the Chemical Stability of P 12L 24 Cage: Transformation of the Chemically Labile Imine Cage into a Robust Carbamate Cage. Chemistry 2025; 31:e202403936. [PMID: 39530447 DOI: 10.1002/chem.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Herein, we report enhancement in chemical stability of the imine-based porphyrinic cage P12L24 by converting it into a robust carbamate porphyrinic cage, c-P12L24, through a two-step post-synthetic modification process. First, the imine bonds in P12L24 were reduced to form an amine-based cage, r-P12L24, followed by carbamation using N,N'-carbonyldiimidazole (CDI) to yield c-P12L24. The resulting carbamate cage exhibits high stability under acidic and basic conditions (pH 1-13) and in the presence of moisture. 1H NMR, DOSY NMR, and DFT calculations revealed that reducing the imine bonds to amine increases the framework's flexibility, causing partial structural collapse, whereas the carbamate formation restores structural rigidity. The insertion of a 4.0 nm molecular ruler into the cavity of zinc-metallated c-P12L24 via metal-ligand coordination further confirmed restoration of the cavity size and geometry of the original cage. This enhancement of chemical stability through carbamate formation can pave the way to a wide range of potential applications for the gigantic porphyrinic cage.
Collapse
Affiliation(s)
- Hochan Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Avinash Dhamija
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Anilkumar Gunnam
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ilha Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
4
|
Ge C, Cao Z, Feng T, Wu Y, Xiao M, Tang H, Wang K, Wang L, Li H. Self-Assembly of an Unlikely Occurring Quadrangular Tube by Modulating Intramolecular Forces. Angew Chem Int Ed Engl 2024; 63:e202411401. [PMID: 39038093 DOI: 10.1002/anie.202411401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
One of the central focuses in self-assembly is precisely controlling the self-assembly pathway so that the target molecules can be produced exclusively. Trans-1,2-cyclohexanediamine contains two amino units that form a 60° angle when projected on a plane. This angle naturally favors the formation of triangular products in most cases when trans-1,2-cyclohexanediamine is used as a bisamino building block in the synthesis of macrocycles and tubes. Here, we synthesized a slightly bent tetraformyl precursor bearing a central dibenzothiophene moiety, whose 3,7-positions are functionalized with two m-phthalaldehyde units. We observed that combining this tetraformyl building block with trans-1,2-cyclohexanediamine yielded a quadrangular tube when the concentrations of the precursors were relatively high. Both experimental measurements and theoretical calculations indicate that the formation of this unlikely occurring quadrangular product was driven by the intramolecular C-H⋅⋅⋅π interactions between the dibenzothiophene building blocks within the tube framework. This driving force, however, was disturbed in the triangular tube, a smaller counterpart whose formation was considered previously much more thermodynamically favored. These results improved our fundamental understanding on how to create those products whose syntheses are considered difficult or impossible, by modulating the intramolecular driving forces.
Collapse
Affiliation(s)
- Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ze Cao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Tinglong Feng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yating Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Mingrui Xiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Kun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| |
Collapse
|
5
|
Silva HA, Whitehead BS, Hastings CD, Tiwari CK, Brennessel WW, Barnett BR. Installation of Copper(I) and Silver(I) Sites into TREN-Based Porous Organic Cages via Postsynthetic Metalation. Organometallics 2024; 43:2599-2607. [PMID: 39483129 PMCID: PMC11523223 DOI: 10.1021/acs.organomet.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024]
Abstract
Porous organic cages (POCs) and metal-organic polyhedra (MOPs) function as zero-dimensional porous materials, able to mimic many functions of insoluble framework materials while offering processability advantages. A popular approach to access tailored metal-based motifs in extended network materials is postsynthetic metalation, which allows metal installation to be decoupled from framework assembly. Surprisingly, this approach has only sparingly been reported for molecular porous materials. In this report, we demonstrate postsynthetic metalation of tetrahedral [4 + 4] POCs assembled from tris(2-aminoethyl)amine (TREN) and 1,3,5-tris(4-formylphenyl)benzene. The trigonally symmetric TREN motif is a common chelator in coordination chemistry and, in the POCs explored herein, readily binds copper(I) and silver(I) to form cationic cages bearing discrete mononuclear coordination fragments. Metalation retains cage porosity, allowing us to compare the sorption properties of the parent organic and metalated cages. Interestingly, introduction of copper(I) facilitates activated oxygen chemisorption, demonstrating how targeted metalation can be exploited to tune the sorption characteristics of porous molecular materials.
Collapse
Affiliation(s)
- Hope A. Silva
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - Bevan S. Whitehead
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - Christopher D. Hastings
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - Chandan Kumar Tiwari
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - William W. Brennessel
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| | - Brandon R. Barnett
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0001, United
States
| |
Collapse
|
6
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
7
|
Yang M, Su K, Yuan D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem Commun (Camb) 2024; 60:10476-10487. [PMID: 39225058 DOI: 10.1039/d4cc04150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Porous organic cages (POCs) are constructed from purely organic synthons by covalent linkages with intrinsic cavities and have shown potential applications in many areas. However, the majority of POC synthesis methods reported thus far have relied on dynamically reversible imine linkages, which can be metastable and unstable under humid or harsh chemical conditions. This instability significantly hampers their research prospects and practical applications. Consequently, strategies to enhance the chemical stability of POCs by modifying imine bonds and developing robust covalent linkages are imperative for realizing the full potential of these materials. In this review, we aim to highlight recent advancements in synthesizing chemical-stable POCs through these approaches and their associated applications. Additionally, we propose further strategies for creating stable POCs and discuss future opportunities for practical applications.
Collapse
Affiliation(s)
- Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Kong Q, Liu LL, Li Z. Synthesis of Calix[4]arene-Based Porous Organic Cages and Their Gas Adsorption. Chemistry 2024; 30:e202400947. [PMID: 38622630 DOI: 10.1002/chem.202400947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Two crystalline large-sized porous organic cages (POCs) based on conical calix[4]arene (C4A) were designed and synthesized. The four-jaw C4A unit tends to follow the face-directed self-assembly law with the planar triangular building blocks such as tris(4-aminophenyl)amine (TAPA) or 1,3,5-tris(4-aminophenyl)benzene (TAPB) to generate a predictable cage with a stoichiometry of [6+8]. The formation of the large cages is confirmed through their relative molecular mass measured using MALDI-TOF/TOF spectra. The protonated molecular ion peaks of C4A-TAPA and C4A-TAPB were observed at m/z 5109.0 (calculated for C336H240O24N32: m/z 5109.7) and m/z 5594.2 (calculated for C384H264O24N24: m/z 5598.4). C4A-POCs exhibit I-type N2 adsorption-desorption isotherms with the BET surface areas of 1444.9 m2 ⋅ g-1 and 1014.6 m2 ⋅ g-1. The CO2 uptakes at 273 K are 62.1 cm3 ⋅ g-1 and 52.4 cm3 ⋅ g-1 at a pressure of 100 KPa. The saturated iodine vapor static uptakes at 348 K are 3.9 g ⋅ g-1 and 3.5 g ⋅ g-1. The adsorption capacity of C4A-TAPA for SO2 reaches to 124.4 cm3 ⋅ g-1 at 298 K and 1.3 bar. Additionally, the adsorption capacities of C4A-TAPA for C2H2, C2H4, and C2H6 were evaluated.
Collapse
Affiliation(s)
- Qidi Kong
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Zhongyue Li
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
9
|
Basford AR, Bennett SK, Xiao M, Turcani L, Allen J, Jelfs KE, Greenaway RL. Streamlining the automated discovery of porous organic cages. Chem Sci 2024; 15:6331-6348. [PMID: 38699265 PMCID: PMC11062116 DOI: 10.1039/d3sc06133g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/12/2024] [Indexed: 05/05/2024] Open
Abstract
Self-assembly through dynamic covalent chemistry (DCC) can yield a range of multi-component organic assemblies. The reversibility and dynamic nature of DCC has made prediction of reaction outcome particularly difficult and thus slows the discovery rate of new organic materials. In addition, traditional experimental processes are time-consuming and often rely on serendipity. Here, we present a streamlined hybrid workflow that combines automated high-throughput experimentation, automated data analysis, and computational modelling, to accelerate the discovery process of one particular subclass of molecular organic materials, porous organic cages. We demonstrate how the design and implementation of this workflow aids in the identification of organic cages with desirable properties. The curation of a precursor library of 55 tri- and di-topic aldehyde and amine precursors enabled the experimental screening of 366 imine condensation reactions experimentally, and 1464 hypothetical organic cage outcomes to be computationally modelled. From the screen, 225 cages were identified experimentally using mass spectrometry, 54 of which were cleanly formed as a single topology as determined by both turbidity measurements and 1H NMR spectroscopy. Integration of these characterisation methods into a fully automated Python pipeline, named cagey, led to over a 350-fold decrease in the time required for data analysis. This work highlights the advantages of combining automated synthesis, characterisation, and analysis, for large-scale data curation towards an accessible data-driven materials discovery approach.
Collapse
Affiliation(s)
- Annabel R Basford
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Steven K Bennett
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Muye Xiao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Lukas Turcani
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Jasmine Allen
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Rebecca L Greenaway
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| |
Collapse
|
10
|
Pausch T, David T, Fleck-Kunde T, Pols H, Gurke J, Schmidt BM. Multifold Post-Modification of Macrocycles and Cages by Isocyanate-Induced Azadefluorination Cyclisation. Angew Chem Int Ed Engl 2024; 63:e202318362. [PMID: 38294139 DOI: 10.1002/anie.202318362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
We present the multiple post-modification of organic macrocycles and cages, introducing functional groups into two- and three-dimensional supramolecular scaffolds bearing fluorine substituents, which opens up new possibilities in multi-step supramolecular chemistry employing the vast chemical space of readily available isocyanates. The mechanism and scope of the reaction that proceeds after isocyanate addition to the benzylamine motif via an azadefluorination cyclisation (ADFC) were investigated using DFT calculations, and a series of aromatic isocyanates with different electronic properties were tested. The compounds show excellent chemical stability and were fully characterised. They can be used for subsequent cross-coupling reactions, and ADFC can be used directly to generate cross-linked membranes from macrocycles or cages when using ditopic isocyanates. Single-crystal X-ray (SC-XRD) analysis shows the proof of the formation of the desired supramolecular entity together with the connectivity predicted by calculations and from 19F NMR shifts, allowing the late-stage functionalisation of self-assembled macrocycles and cages by ADFC.
Collapse
Affiliation(s)
- Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tim David
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tom Fleck-Kunde
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hendrik Pols
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Johannes Gurke
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
11
|
Xu Z, Ye Y, Liu Y, Liu H, Jiang S. Design and assembly of porous organic cages. Chem Commun (Camb) 2024; 60:2261-2282. [PMID: 38318641 DOI: 10.1039/d3cc05091b] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Porous organic cages (POCs) represent a notable category of porous materials, showing remarkable material properties due to their inherent porosity. Unlike extended frameworks which are constructed by strong covalent or coordination bonds, POCs are composed of discrete molecular units held together by weak intermolecular forces. Their structure and chemical traits can be systematically tailored, making them suitable for a range of applications including gas storage and separation, molecular separation and recognition, catalysis, and proton and ion conduction. This review provides a comprehensive overview of POCs, covering their synthesis methods, structure and properties, computational approaches, and applications, serving as a primer for those who are new to the domain. A special emphasis is placed on the growing role of computational methods, highlighting how advanced data-driven techniques and automation are increasingly aiding the rapid exploration and understanding of POCs. We conclude by addressing the prevailing challenges and future prospects in the field.
Collapse
Affiliation(s)
- Zezhao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yangzhi Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yilan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Huiyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
12
|
Yang Z, Nandi R, Orieshyna A, Gershoni-Poranne R, Zhang S, Amdursky N. Light-Triggered Enhancement of Fluorescence Efficiency in Organic Cages. J Phys Chem Lett 2024; 15:136-141. [PMID: 38147826 DOI: 10.1021/acs.jpclett.3c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The fluorescence efficiency of excited molecules can be enhanced by many external factors. Here, we showcase a surprising phenomenon whereby light is used as a gating source to increase the fluorescence efficiency of organic cages composed of biphenyl subunits. We show that the enhancement of fluorescence is not due to structural changes or ground-state events. Cryo-fluorescence measurements and kinetic studies suggest a restriction of the phenyl-based structures in the excited state, leading to increased fluorescence, which is also supported by time-resolved measurements. Through computational calculations, we propose that the planarization of the biphenyl units within the cages contributes to emission enhancement. This phenomenon offers insights into the design of optoelectronic structures with improved fluorescence properties.
Collapse
Affiliation(s)
- Zhenyu Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200400, China
| | - Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Orieshyna
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Renana Gershoni-Poranne
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200400, China
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
13
|
La Cognata S, Amendola V. Recent applications of organic cages in sensing and separation processes in solution. Chem Commun (Camb) 2023; 59:13668-13678. [PMID: 37902039 DOI: 10.1039/d3cc04522f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Organic cages are three-dimensional polycyclic compounds of great interest in the scientific community due to their unique features, which generally include simple synthesis based on the dynamic covalent chemistry strategies, structural tunability and high selectivity. In this feature article, we present the advances over the last ten years in the application of organic cages as chemosensors or components in chemosensing devices for the determination of analytes (pollutants, analytes of biological interest) in complex aqueous media including wine, fruit juice, urine. Details on the recent applications of organic cages as selective (back-)extractants or masking agents for potential applications in relevant separation processes, such as the plutonium and uranium recovery by extraction, are also provided. Over the last ten years, organic cages with permanent porosity in the liquid and solid states have been highly appreciated as porous materials able to discriminate molecules of different sizes. These features, combined with good solvent processability and film-forming tendency, have proved useful in the fabrication of membranes for gas separation, solvent nanofiltration and water remediation processes. An overview of the recent applications of organic cages in membrane separation technologies is given.
Collapse
Affiliation(s)
- Sonia La Cognata
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy.
| | - Valeria Amendola
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy.
| |
Collapse
|
14
|
Chen Y, Tang H, Chen H, Li H. Self-Assembly via Condensation of Imine or Its N-Substituted Derivatives. Acc Chem Res 2023; 56:2838-2850. [PMID: 37751270 DOI: 10.1021/acs.accounts.3c00475] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
ConspectusCompared to traditionally used irreversible chemical reactions, dynamic covalent chemistry (DCC) including imine formation represents a more advanced technique in the preparation of molecules with complex structures and topologies, whose syntheses require the formation of many bonds. By allowing the occurrence of error checking and self-correcting, it is likely that the target molecules with high enough thermodynamic stability could be self-assembled in high or even quantitative yield. Two questions are raised herein. First, it becomes a central problem in self-assembly that how to endow a target product with high enough thermodynamic stability so that it can be produced as the major or the only product within the self-assembly library. Second, the reversible nature of dynamic bonds jeopardizes the intrinsic stability of the products. More specifically, the imine bond which represents the mostly used dynamic covalent bond, is apt to undergo hydrolysis in the presence of water. Developing new approaches to make imine more robust and compatible with water is thus of importance. In this account, we summarized the progress made in our group in the field of self-assembly based on C═N bond formation. In organic solvent where an imine bond is relatively robust, we focus on studying how to enhance the thermodynamic stability of a target molecule by introducing intramolecular forces. These noncovalent interactions either release enthalpy to favor the formation of the target molecule or preorganize the building blocks into specific conformations that mimic the product, so that the entropy loss of the formation of the latter is thus suppressed. In water, which often leads to imine hydrolysis, we developed two strategies to enhance the water-compatibility. By taking advantage of multivalency, namely, multiple bonds are often more robust than a single bond, self-assembly via condensation of imine was performed successfully in water, a solvent that is considered as forbidden zone of imine. Another approach is to replace typical imine with its more robust and water compatible derivatives, namely, either hydrazone or oxime, whose C═N bonds are generally less electrophilic compared to typical imine. With the water-compatible dynamic bonds in hand, a variety topological nontrivial molecules such as catenanes and knots was self-assembled successfully in aqueous media, driven by hydrophobic effect. When the self-assembled molecules in the form of rings and cages were designed for supramolecular purposes, water-compatibility endows a merit that allows the hosts to take advantage of hydrophobic effect to drive host-guest recognition, enabling various tasks to be accomplished, such as separation of guest isomers with similar physical properties, recognition of highly hydrated anions, as well as stabilization of guest dimers.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hongliang Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 31125, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 31125, China
| |
Collapse
|
15
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
16
|
Qin Y, Ling QH, Wang YT, Hu YX, Hu L, Zhao X, Wang D, Yang HB, Xu L, Tang BZ. Construction of Covalent Organic Cages with Aggregation-Induced Emission Characteristics from Metallacages for Mimicking Light-Harvesting Antenna. Angew Chem Int Ed Engl 2023; 62:e202308210. [PMID: 37452485 DOI: 10.1002/anie.202308210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
A series of covalent organic cages built from fluorophores capable of aggregation-induced emission (AIE) were elegantly prepared through the reduction of preorganized M2 (LA )3 (LB )2 -type metallacages, simultaneously taking advantage of the synthetic accessibility and well-defined shapes and sizes of metallacages, the good chemical stability of the covalent cages as well as the bright emission of AIE fluorophores. Moreover, the covalent cages could be further post-synthetically modified into an amide-functionalized cage with a higher quantum yield. Furthermore, these presented covalent cages proved to be good energy donors and were used to construct light-harvesting systems employing Nile Red as an energy acceptor. These light-harvesting systems displayed efficient energy transfer and relatively high antenna effect, which enabled their use as efficient photocatalysts for a dehalogenation reaction. This research provides a new avenue for the development of luminescent covalent cages for light-harvesting and photocatalysis.
Collapse
Affiliation(s)
- Yi Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu-Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
17
|
Liyana Gunawardana VW, Ward C, Wang H, Holbrook JH, Sekera ER, Cui H, Hummon AB, Badjić JD. Crystalline Nanoparticles of Water-Soluble Covalent Basket Cages (CBCs) for Encapsulation of Anticancer Drugs. Angew Chem Int Ed Engl 2023; 62:e202306722. [PMID: 37332078 PMCID: PMC10528532 DOI: 10.1002/anie.202306722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
We herein describe the preparation, assembly, recognition characteristics, and biocompatibility of novel covalent basket cage CBC-11, composed of four molecular baskets linked to four trivalent aromatic amines through amide groups. The cage is tetrahedral in shape and similar in size to small proteins (Mw =8637 g/mol) with a spacious nonpolar interior for accommodating multiple guests. While 24 carboxylates at the outer surface of CBC-11 render it soluble in aqueous phosphate buffer (PBS) at pH=7.0, the amphiphilic nature prompts its assembly into nanoparticles (d=250 nm, DLS). Cryo-TEM examination of nanoparticles revealed their crystalline nature with wafer-like shapes and hexagonally arranged cages. Nanoparticulate CBC-11 traps anticancer drugs irinotecan and doxorubicin, with each cage binding up to four drug molecules in a non-cooperative manner. The inclusion complexation resulted in nanoparticles growing in size and precipitating. In media containing mammalian cells (HCT 116, human colon carcinoma), the IC50 value of CBC-11 was above 100 μM. While this work presents the first example of a large covalent organic cage operating in water at the physiological pH and forming crystalline nanoparticles, it also demonstrates its biocompatibility and potential to act as a polyvalent binder of drugs for their sequestration or delivery.
Collapse
Affiliation(s)
| | - Carson Ward
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Maryland Hall 221, 3400 North Charles Street, Baltimore, MD, USA
| | - Joseph H Holbrook
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Emily R Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Maryland Hall 221, 3400 North Charles Street, Baltimore, MD, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Chen Q, Li Z, Lei Y, Chen Y, Tang H, Wu G, Sun B, Wei Y, Jiao T, Zhang S, Huang F, Wang L, Li H. The sharp structural switch of covalent cages mediated by subtle variation of directing groups. Nat Commun 2023; 14:4627. [PMID: 37532710 PMCID: PMC10397198 DOI: 10.1038/s41467-023-40255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
It is considered a more formidable task to precisely control the self-assembled products containing purely covalent components, due to a lack of intrinsic templates such as transition metals to suppress entropy loss during self-assembly. Here, we attempt to tackle this challenge by using directing groups. That is, the self-assembly products of condensing a 1:2 mixture of a tetraformyl and a biamine can be precisely controlled by slightly changing the substituent groups in the aldehyde precursor. This is because different directing groups provide hydrogen bonds with different modes to the adjacent imine units, so that the building blocks are endowed with totally different conformations. Each conformation favors the formation of a specific product that is thus produced selectively, including chiral and achiral cages. These results of using a specific directing group to favor a target product pave the way for accomplishing atom economy in synthesizing purely covalent molecules without relying on toxic transition metal templates.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Bin Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Songna Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| |
Collapse
|
19
|
Gong YN, Ma QY, Wang Y, Zhang JH, Zhang YP, Liang RX, Wang BJ, Xie SM, Yuan LM. Preparation of Chiral Porous Organic Cage Clicked Chiral Stationary Phase for HPLC Enantioseparation. Molecules 2023; 28:molecules28073235. [PMID: 37049997 PMCID: PMC10096354 DOI: 10.3390/molecules28073235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Porous organic cages (POCs) are a new subclass of porous materials, which are constructed from discrete cage molecules with permanent cavities via weak intermolecular forces. In this study, a novel chiral stationary phase (CSP) has been prepared by chemically binding a [4 + 6]-type chiral POC (C120H96N12O4) with thiol-functionalized silica gel using a thiol-ene click reaction and applied to HPLC separations. The column packed with this CSP presented good separation capability for chiral compounds and positional isomers. Thirteen racemates have been enantioseparated on this column, including alcohols, diols, ketones, amines, epoxides, and organic acids. Upon comparison with a previously reported chiral POC NC1-R-based column, commercial Chiralpak AD-H, and Chiralcel OD-H columns, this column is complementary to these three columns in terms of its enantiomeric separation; and can also separate some racemic compounds that cannot be separated by the three columns. In addition, eight positional isomers (iodoaniline, bromoaniline, chloroaniline, dibromobenzene, dichlorobenzene, toluidine, nitrobromobenzene, and nitroaniline) have also been separated. The influences of the injection weight and column temperature on separation have been explored. After the column has undergone multiple injections, the relative standard deviations (RSDs) for the retention time and selectivity were below 1.0 and 1.5%, respectively, indicating the good reproducibility and stability of the column for separation. This work demonstrates that POCs are promising materials for HPLC separation.
Collapse
Affiliation(s)
- Ya-Nan Gong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Qi-Yu Ma
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Ying Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - You-Ping Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Rui-Xue Liang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
20
|
Zuo Y, Liu X, Fu E, Zhang S. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angew Chem Int Ed Engl 2023; 62:e202217225. [PMID: 36748582 DOI: 10.1002/anie.202217225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Without chiral induction the emergence of homochirality from achiral molecules is rather serendipitous, as the rationale is somewhat ambiguous. We herein provide a plausible solution. From achiral precursors are formed a pair of interconverting cage conformers that exhibit a C3 -axis as the only symmetry element. When their interconversion is impeded with intramolecular H-bonding, each conformer self-sorts into a homochiral crystal, which is driven by a helical network of multivalent intermolecular interactions during the self-assembly of homochiral cage conformers. As no chiral induction is involved throughout, we believe our study could enlighten the rational design for the emergence of homochirality with several criteria: 1) formation of a molecule without inversion center or mirror plane; 2) suppression of the enantiomeric interconversion, and introduction of multivalent interactions along the helical trajectory of screw symmetry within the resulting superstructure.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoning Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
21
|
La Cognata S, Mobili R, Milanese C, Boiocchi M, Gaboardi M, Armentano D, Jansen JC, Monteleone M, Antonangelo AR, Carta M, Amendola V. CO 2 Separation by Imide/Imine Organic Cages. Chemistry 2022; 28:e202201631. [PMID: 35762229 PMCID: PMC9545214 DOI: 10.1002/chem.202201631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Two novel imide/imine-based organic cages have been prepared and studied as materials for the selective separation of CO2 from N2 and CH4 under vacuum swing adsorption conditions. Gas adsorption on the new compounds showed selectivity for CO2 over N2 and CH4 . The cages were also tested as fillers in mixed-matrix membranes for gas separation. Dense and robust membranes were obtained by loading the cages in either Matrimid® or PEEK-WC polymers. Improved gas-transport properties and selectivity for CO2 were achieved compared to the neat polymer membranes.
Collapse
Affiliation(s)
- Sonia La Cognata
- Department of ChemistryUniversity of PaviaViale Tarquato Taramelli 12Pavia27100Italy
| | - Riccardo Mobili
- Department of ChemistryUniversity of PaviaViale Tarquato Taramelli 12Pavia27100Italy
| | - Chiara Milanese
- Department of ChemistryUniversity of PaviaViale Tarquato Taramelli 12Pavia27100Italy
| | - Massimo Boiocchi
- Centro Grandi StrumentiUniversity of PaviaVia Bassi 21Pavia27100Italy
| | - Mattia Gaboardi
- Elettra sincrotrone Trieste S.C.p.a.Area science parkBasovizza (TS)34149Italy
| | - Donatella Armentano
- Department of Chemistry & Chemical TechnologiesUniversity of CalabriaVia P. Bucci, 13/C87036Rende (CS)Italy
| | - Johannes C. Jansen
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)Via P. Bucci 17/CRende (CS)87036Italy
| | - Marcello Monteleone
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)Via P. Bucci 17/CRende (CS)87036Italy
| | - Ariana R. Antonangelo
- Department of ChemistryCollege of ScienceSwansea UniversitySingleton ParkSwanseaWales, SA2 8PPUK
| | - Mariolino Carta
- Department of ChemistryCollege of ScienceSwansea UniversitySingleton ParkSwanseaWales, SA2 8PPUK
| | - Valeria Amendola
- Department of ChemistryUniversity of PaviaViale Tarquato Taramelli 12Pavia27100Italy
| |
Collapse
|
22
|
Li K, Xiong LX, Wang Y, Zhang YP, Wang BJ, Xie SM, Zhang JH, Yuan LM. Preparation and evaluation of a chiral porous organic cage based chiral stationary phase for enantioseparation in high performance liquid chromatography. J Chromatogr A 2022; 1679:463415. [PMID: 35977455 DOI: 10.1016/j.chroma.2022.463415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Porous organic cages (POCs) are a new kind of porous molecular materials, which have gained widespread interest in many fields due to their intriguing properties, including excellent molecular solubility, inherent molecular cavity and rich host-guest chemistry. To date, many chiral POCs have been explored as chiral stationary phases (CSPs) for gas chromatographic (GC) separation of enantiomers. However, the applications of chiral POCs for high performance liquid chromatography (HPLC) enantiomeric separation is extremely rare. In this study, we report the construction of thiol-ene click reaction for the preparation of CSP for HPLC by using a [4+8]-type chiral POC NC4-R as chiral selector. The fabricated CSP showed good chiral resolution performance not only in normal-phase HPLC (NP-HPLC) but also in reversed-phase HPLC (RP-HPLC). Seventeen and ten racemates were well resolved in the two separation modes, respectively, including ketones, esters, alcohols, phenols, amines, ethers, organic acids, and amino acids. Moreover, the fabricated column also shows good chiral recognition complementarity to two popular chiral HPLC columns (Chiralpak AD-H and Chiralcel OD-H columns) and previously reported chiral POC NC1-R-based HPLC column, which can resolve some racemates that unable to be resolved by the two commercially available chiral HPLC columns and NC1-R-based column. The relative standard deviation (RSD) values (n = 4) of retention time and resolution (Rs) of analytes separated on the column were less than 0.3 % and 0.5 % after it was subjected to different injections, showing the good reproducibility and stability of the NC4-R-based column. This work demonstrated high potentials of chiral POCs for HPLC enantioseparation and the applicability of chiral POC-based HPLC columns can be broadened by developing more chiral POCs with diverse structures as chiral selector for HPLC.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Ling-Xiao Xiong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Ying Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - You-Ping Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China.
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| |
Collapse
|
23
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
24
|
Chen Y, Xia L, Li G. The progress on porous organic materials for chiral separation. J Chromatogr A 2022; 1677:463341. [PMID: 35870277 DOI: 10.1016/j.chroma.2022.463341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Chiral compounds have similar structures and properties, but their pharmacological action is very different or even opposite. Therefore, the separation of chiral compounds has great significance in pharmaceutical and agriculture. Porous organic materials are novel crystalline porous materials, which possess high surface area, controllable pore size, and favorable functionalization. Therefore, porous organic materials are considered to be an ideal material for chiral separation. In this review, we summarized the progress of chiral porous organic materials for chiral separation in recent years. Furthermore, the applications of chiral porous organic materials as chiral separation medias (chromatography stationary phases and membrane materials) in enantioseparation were highlighted. Finally, the remaining challenges and future directions for porous organic materials in chiral separation were also briefly outlined further to promote the development of porous organic materials in chiral separation.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Chen J, Yang Z, Zhu G, Fu E, Li P, Chen F, Yu C, Wang S, Zhang S. Heterochiral Diastereomer-Discriminative Diphanes That Form Hierarchical Superstructures with Nonlinear Optical Properties. JACS AU 2022; 2:1661-1668. [PMID: 35911451 PMCID: PMC9327085 DOI: 10.1021/jacsau.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to study the emergence of homochirality during complex molecular systems, most works mainly concentrated on the resolution of a pair of enantiomers. However, the preference of homochiral over heterochiral isomers has been overlooked, with very limited examples focusing only on noncovalent interactions. We herein report on diastereomeric discrimination of twin-cavity cages (denoted as diphanes) against heterochiral tris-(2-aminopropyl)amine (TRPN) bearing triple stereocenters. This diastereomeric selectivity results from distinct spatial orientation of reactive secondary amines on TRPN. Homochiral TRPNs with all reactive moieties rotating in the same way facilitate the formation of homochiral and achiral meso diphanes with low strain energy, while heterochiral TRPNs with uneven orientation of secondary amines preclude the formation of cage-like entity, since the virtual diphanes exhibit considerably high strain. Moreover, homochiral diphanes self-assemble into an acentric superstructure composed of single-handed helices, which exhibits interesting nonlinear optical behavior. Such a property is a unique occurrence for organic cages, which thus showcases their potential to spawn novel materials with interesting properties and functions.
Collapse
Affiliation(s)
- Jiaolong Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenyu Yang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gucheng Zhu
- Key
Laboratory of Artificial Structures and Quantum Control (Ministry
of Education), Shenyang National Laboratory for Materials Science,
School of Physics and Astronomy, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Enguang Fu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pan Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fangyi Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shiyong Wang
- Key
Laboratory of Artificial Structures and Quantum Control (Ministry
of Education), Shenyang National Laboratory for Materials Science,
School of Physics and Astronomy, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaodong Zhang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
26
|
Wang Y, Chen JK, Xiong LX, Wang BJ, Xie SM, Zhang JH, Yuan LM. Preparation of Novel Chiral Stationary Phases Based on the Chiral Porous Organic Cage by Thiol-ene Click Chemistry for Enantioseparation in HPLC. Anal Chem 2022; 94:4961-4969. [PMID: 35306818 DOI: 10.1021/acs.analchem.1c03626] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous organic cages (POCs) are an emerging class of porous materials that have aroused considerable research interest because of their unique characteristics, including good solubility and a well-defined intrinsic cavity. However, there have so far been no reports of chiral POCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC). Herein, we report the first immobilization of a chiral POC, NC1-R, on thiol-functionalized silica using a mild thiol-ene click reaction to prepare novel CSPs for HPLC. Two CSPs (CSP-1 and CSP-2) with different spacers have been prepared. CSP-1, with a cationic imidazolium spacer, exhibited excellent enantioselectivity for the resolution of various racemates. Twenty-three and 12 racemic compounds or chiral drugs were well enantioseparated on the CSP-1-packed column under normal-phase and reversed-phase conditions, respectively, including alcohols, diols, esters, ethers, ketones, epoxides, organic acids, and amines. In contrast, chiral resolution using CSP-2 (without a cationic imidazolium spacer)-packed column B was inferior to that of column A, demonstrating the important role of the cationic imidazolium spacer for chiral separation. The chiral separation capability of column A was also compared with that of two most popular commercial chiral columns, Chiralpak AD-H and Chiralcel OD-H, which exhibits good chiral recognition complementarity with the two commercial chiral columns. In addition, five positional isomers dinitrobenzene, nitroaniline, chloroaniline, bromoaniline, and iodoaniline were also well separated on column A. The effects of temperature, mobile phase composition, and injected analyte mass for separation on column A were investigated. Column A also showed good stability and reproducibility after repeated injections. This work demonstrates that chiral POCs are promising chiral materials for HPLC enantioseparation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Ji-Kai Chen
- Department of Chemistry, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Ling-Xiao Xiong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, People's Republic of China
| |
Collapse
|
27
|
Sakamoto A, Budiutama GP, Takayama Y, Morohashi N, Hattori T. Synthesis and resolution of a chiral open-chain host having a partial structure of p-tert-butylsulfinylcalix[4]arene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Atsuya Sakamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Gekko Patria Budiutama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshihiro Takayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Naoya Morohashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Tetsutaro Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
28
|
Wang D, Zhang L, Zhao Y. Template-Free Synthesis of an Interlocked Covalent Organic Molecular Cage. J Org Chem 2022; 87:2767-2772. [DOI: 10.1021/acs.joc.1c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| | - Lin Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| |
Collapse
|
29
|
Yang W, Sun N, Wang X, Yu B, Wang H. Racemic Porous Organic Cage Crystal with Selective Gas Adsorption Behaviors. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Nana Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Xinxin Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
30
|
Special Issue of Covalent Organic Frameworks(COFs): Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1454-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Ren H, Liu C, Ding X, Fu X, Wang H, Jiang J. High Fluorescence Porous Organic Cage for Sensing Divalent Palladium Ion and Encapsulating Fine Palladium Nanoparticles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huimin Ren
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Xianzhang Fu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
32
|
Wang Z, Yang BB, Fang ZJ, Ou Q, Ma H, Zhang QP, Sun YL, Zhang C. Emissive oxidase-like nanozyme based on an organic molecular cage. Chem Commun (Camb) 2021; 57:11541-11544. [PMID: 34664563 DOI: 10.1039/d1cc04430c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we introduced four "claw-like" units of dipicolylamine (DPA) to a tetraphenylethylene (TPE)-based organic molecular cage (DPA-TPE-Cage). Coordinated with Zn2+ ions, the obtained ZnDPA-TPE-Cage exhibited aggregation induced emission (AIE) effects and oxidase-like properties, which endowed it with the ability to selectively image and kill Gram-positive bacteria S. aureus efficiently.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zi-Jun Fang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qiang Ou
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qing-Pu Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yu-Ling Sun
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
33
|
|
34
|
|
35
|
Yang M, Qiu F, M El-Sayed ES, Wang W, Du S, Su K, Yuan D. Water-stable hydrazone-linked porous organic cages. Chem Sci 2021; 12:13307-13315. [PMID: 34777749 PMCID: PMC8528071 DOI: 10.1039/d1sc04531h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
Although porous organic cages (POCs), particularly imine-linked (C[double bond, length as m-dash]N) ones, have advanced significantly over the last few decades, the reversible nature of imine linkages makes them prone to hydrolysis and structural collapse, severely limiting their applications under moist or water conditions. Herein, seven water-stable hydrazone-linked (C[double bond, length as m-dash]N-N) POCs are prepared through a simple coupling of the same supramolecular tetraformylresorcin[4]arene cavitand with different dihydrazide linkers. Their structures are all determined by single-crystal X-ray crystallography, demonstrating rich structural diversity from the [2 + 4] lantern, [3 + 6] triangular prism, and unprecedented [4 + 8] square prism to the extra-large [6 + 12] octahedron. In addition, they respectively exhibit tunable window diameters and cavity volumes ranging from about 5.4 to 11.1 nm and 580 to 6800 Å3. Moreover, their application in the water environment for pollutant removal was explored, indicating that they can effectively eliminate various types of contaminants from water, including radionuclide waste, toxic heavy metal ions, and organic micropollutants. This work demonstrates a convenient method for rationally constructing versatile robust POCs and presents their great application potentialities in water medium.
Collapse
Affiliation(s)
- Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China .,College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Fenglei Qiu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China .,College of Chemistry, Fuzhou University Fuzhou 350116 China
| | - El-Sayed M El-Sayed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China .,University of the Chinese Academy of Sciences Beijing 100049 China.,Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute Nasr City 11727 Egypt
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China .,University of the Chinese Academy of Sciences Beijing 100049 China
| | - Shunfu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China .,College of Chemistry, Fuzhou University Fuzhou 350116 China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China .,University of the Chinese Academy of Sciences Beijing 100049 China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China .,University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
36
|
Chen Y, Lei Y, Tong L, Li H. Stabilization of Dynamic Covalent Architectures by Multivalence. Chemistry 2021; 28:e202102910. [PMID: 34591343 DOI: 10.1002/chem.202102910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 01/09/2023]
Abstract
The formation of imine bond is reversible. This feature has been taken advantage of by chemists for accomplishing high yielding self-assembly. On the other hand, it also jeopardizes the intrinsic stability of these self-assembled products. However, some recent discoveries demonstrate that some of these imine bond containing molecules could be rather stable or kinetically inert. A deep investigation indicated that such enhanced stability results from, at least partially, multivalence. Such results also inspire chemists to use imine condensation for self-assembly in water, a solvent that is considered not compatible with imine bond for a long time.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| |
Collapse
|
37
|
Ramakrishna E, Tang JD, Tao JJ, Fang Q, Zhang Z, Huang J, Li S. Self-assembly of chiral BINOL cages via imine condensation. Chem Commun (Camb) 2021; 57:9088-9091. [PMID: 34498622 DOI: 10.1039/d1cc01507a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Condensation of an (S)- or (R)-BINOL-derived dialdehyde and tris(2-aminoethyl)amine produced chiral [2+3] imine cages, which were further reduced to furnish more stable chiral amine cages and applied in the enantioselective recognition of (1R,2R)- and (1S,2S)-1,2-diaminocyclohexane.
Collapse
Affiliation(s)
- E Ramakrishna
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jia-Dong Tang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jia-Ju Tao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China. .,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jianying Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
38
|
Pal R, Poddar A, Chattaraj PK. Atomic Clusters: Structure, Reactivity, Bonding, and Dynamics. Front Chem 2021; 9:730548. [PMID: 34485247 PMCID: PMC8415529 DOI: 10.3389/fchem.2021.730548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Atomic clusters lie somewhere in between isolated atoms and extended solids with distinctly different reactivity patterns. They are known to be useful as catalysts facilitating several reactions of industrial importance. Various machine learning based techniques have been adopted in generating their global minimum energy structures. Bond-stretch isomerism, aromatic stabilization, Rener-Teller effect, improved superhalogen/superalkali properties, and electride characteristics are some of the hallmarks of these clusters. Different all-metal and nonmetal clusters exhibit a variety of aromatic characteristics. Some of these clusters are dynamically stable as exemplified through their fluxional behavior. Several of these cluster cavitands are found to be agents for effective confinement. The confined media cause drastic changes in bonding, reactivity, and other properties, for example, bonding between two noble gas atoms, and remarkable acceleration in the rate of a chemical reaction under confinement. They have potential to be good hydrogen storage materials and also to activate small molecules for various purposes. Many atomic clusters show exceptional opto-electronic, magnetic, and nonlinear optical properties. In this Review article, we intend to highlight all these aspects.
Collapse
Affiliation(s)
- Ranita Pal
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arpita Poddar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
39
|
Wang H, Jin Y, Sun N, Zhang W, Jiang J. Post-synthetic modification of porous organic cages. Chem Soc Rev 2021; 50:8874-8886. [PMID: 34180920 DOI: 10.1039/d0cs01142h] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porous organic cages (POCs) represent an emerging class of organic materials with intrinsic porosity. They have found various applications in supramolecular chemistry, materials science, and many other related disciplines, which stem from their molecular host-guest interactions, intrinsic and inter-cage porosity in solid state as well as the diversity of functionalities. Post-synthetic modification (PSM) has emerged as a highly viable strategy for broadening the functions and applications of POCs. Intricate structures, enhanced stability, tunable porosity and guest binding selectivity and sensitivity have been realized through PSM of POCs, which cannot be directly achieved via the predesign and bottom-up assembly from small molecule building blocks. For example, an unstable imine-linked POC can be transformed into a more stable amine-linked cage, whose cavity size can be further tuned by selective binding of some amine groups, offering unusual gas adsorption selectivity for noble gases (e.g., preferred uptake of Xe over Kr). Such improvement of the chemical stability and gas separation properties through the consolidation of linkage and adjustment of porosity is challenging to achieve otherwise. In this tutorial review, we highlight the importance and impact of PSM in engineering the properties of POC molecules, their frameworks, and composites going beyond the direct predesign synthetic strategy. The primary PSM strategies for exploring new compositions, functions and applications as well as their structure-property relationship have been summarized, including cage-to-cage transformation at the molecular level, covalent or noncovalent assembly of POCs into frameworks, and formation of composites with guest species or other additives encapsulated.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | | | |
Collapse
|
40
|
Holsten M, Feierabend S, Elbert SM, Rominger F, Oeser T, Mastalerz M. Soluble Congeners of Prior Insoluble Shape-Persistent Imine Cages. Chemistry 2021; 27:9383-9390. [PMID: 33848032 PMCID: PMC8362185 DOI: 10.1002/chem.202100666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/12/2022]
Abstract
One of the most applied reaction types to synthesize shape‐persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n‐hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.
Collapse
Affiliation(s)
- Mattes Holsten
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sarah Feierabend
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Oeser
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
41
|
Li Y, Wang C, Ma S, Xu J, Li X, Wei Y, Ou J. Facile fabrication of hollow tubular covalent organic frameworks using decomposable monomer as building block. RSC Adv 2021; 11:20899-20910. [PMID: 35479390 PMCID: PMC9034008 DOI: 10.1039/d1ra02104d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, a commercial and low-toxicity hydrazide-containing building block has been used to construct azine-linked covalent organic frameworks (COFs). New style COFs were constructed between flexible formic hydrazide (FH) and 1,3,5-triformylphloroglucinal (Tp) or 1,3,5-triformylbenzene (TFB). The two resulting COFs (TpFH and TFBFH) exhibited uniform hollow tubular morphology (20–50 nm for TpFH, 50–100 nm for TFBFH). Compared to hydrazine, FH has low-toxicity and is a flexible monomer, consisting of amine and aldehyde groups. The decomposition of FH slows down the reaction rate and the as-synthesized FH-series COFs (708 m2 g−1 for TpFH and 888 m2 g−1 for TFBFH) had higher specific surface area than hydrazine-series COFs (617 m2 g−1 for TpAzine and 472 m2 g−1 for TFBAzine). A detailed time-dependent investigation was carried out to interpret the mechanism of hollow structure formation, and Ostwald ripening possibly happens during the formation of hollow COF microstructures. Considering the porous and high density N, O elements of these materials, preliminary applications of the metal ions removal from aqueous solution and gas storage were implemented. In this study, an efficient and green strategy has been used to synthesize chemically stable COFs with a hollow microtubular structure using decomposition aldehyde-containing monomer, and high affinities toward metal ions or gas molecules.![]()
Collapse
Affiliation(s)
- Ya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China +86-411-84379620 +86-411-84379576.,Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Chang Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China +86-411-84379620 +86-411-84379576
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China +86-411-84379620 +86-411-84379576
| | - Junwen Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China +86-411-84379620 +86-411-84379576.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaowei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China +86-411-84379620 +86-411-84379576.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China +86-411-84379620 +86-411-84379576.,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
42
|
Smith PT, Benke BP, An L, Kim Y, Kim K, Chang CJ. A Supramolecular Porous Organic Cage Platform Promotes Electrochemical Hydrogen Evolution from Water Catalyzed by Cobalt Porphyrins. ChemElectroChem 2021. [DOI: 10.1002/celc.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Lun An
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
43
|
Kudo H, Shimoyama D, Sekiya R, Haino T. Programmed Dynamic Covalent Chemistry System of Addition-condensation Reaction of Phenols and Aldehydes. CHEM LETT 2021. [DOI: 10.1246/cl.200773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroto Kudo
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Daisuke Shimoyama
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
44
|
Huang HH, Song KS, Prescimone A, Aster A, Cohen G, Mannancherry R, Vauthey E, Coskun A, Šolomek T. Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence. Chem Sci 2021; 12:5275-5285. [PMID: 34163762 PMCID: PMC8179562 DOI: 10.1039/d1sc00347j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
A simultaneous combination of porosity and tunable optoelectronic properties, common in covalent organic frameworks, is rare in shape-persistent organic cages. Yet, organic cages offer important molecular advantages such as solubility and modularity. Herein, we report the synthesis of a series of chiral imine organic cages with three built-in rylene units by means of dynamic imine chemistry and we investigate their textural and optoelectronic properties. Thereby we demonstrate that the synthesized rylene cages can be reversibly reduced at accessible potentials, absorb from UV up to green light, are porous, and preferentially adsorb CO2 over N2 and CH4 with a good selectivity. In addition, we discovered that the cage incorporating three perylene-3,4:9,10-bis(dicarboximide) units displays an efficient delayed fluorescence. Time-correlated single photon counting and transient absorption spectroscopy measurements suggest that the delayed fluorescence is likely a consequence of a reversible intracage charge-separation event. Rylene cages thus offer a promising platform that allows combining the porosity of processable materials and photochemical phenomena useful in diverse applications such as photocatalysis or energy storage.
Collapse
Affiliation(s)
- Hsin-Hua Huang
- Department of Chemistry, University of Basel St. Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Kyung Seob Song
- Department of Chemistry, University of Fribourg Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel St. Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Alexander Aster
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Gabriel Cohen
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Rajesh Mannancherry
- Department of Chemistry, University of Basel St. Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Ali Coskun
- Department of Chemistry, University of Fribourg Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Tomáš Šolomek
- Department of Chemistry, University of Basel St. Johanns-Ring 19 CH-4056 Basel Switzerland
| |
Collapse
|
45
|
Ding Y, Alimi LO, Moosa B, Maaliki C, Jacquemin J, Huang F, Khashab NM. Selective adsorptive separation of cyclohexane over benzene using thienothiophene cages. Chem Sci 2021; 12:5315-5318. [PMID: 34163764 PMCID: PMC8179544 DOI: 10.1039/d1sc00440a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The selective separation of benzene (Bz) and cyclohexane (Cy) is one of the most challenging chemical separations in the petrochemical and oil industries. In this work, we report an environmentally friendly and energy saving approach to separate Cy over Bz using thienothiophene cages (ThT-cages) with adaptive porosity. Interestingly, cyclohexane was readily captured selectively from an equimolar benzene/cyclohexane mixture with a purity of 94%. This high selectivity arises from the C-H⋯S, C-H⋯π and C-H⋯N interactions between Cy and the thienothiophene ligand. Reversible transformation between the nonporous guest-free structure and the host-guest assembly, endows this system with excellent recyclability with minimal energy requirements.
Collapse
Affiliation(s)
- Yanjun Ding
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Carine Maaliki
- Laboratoire PCM2E, Université de Tours Parc de Grandmont 37200 Tours France
| | - Johan Jacquemin
- Laboratoire PCM2E, Université de Tours Parc de Grandmont 37200 Tours France
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Lei Y, Chen Q, Liu P, Wang L, Wang H, Li B, Lu X, Chen Z, Pan Y, Huang F, Li H. Molecular Cages Self‐Assembled by Imine Condensation in Water. Angew Chem Int Ed Engl 2021; 60:4705-4711. [DOI: 10.1002/anie.202013045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qiong Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Peiren Liu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lingxiang Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hongye Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bingda Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Yuanjiang Pan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Feihe Huang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
47
|
Lei Y, Chen Q, Liu P, Wang L, Wang H, Li B, Lu X, Chen Z, Pan Y, Huang F, Li H. Molecular Cages Self‐Assembled by Imine Condensation in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qiong Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Peiren Liu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lingxiang Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hongye Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bingda Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Yuanjiang Pan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Feihe Huang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
48
|
Yang X, Huang S, Ortiz M, Wang X, Cao Y, Kareem O, Jin Y, Huang F, Wang X, Zhang W. Truxene-based covalent organic polyhedrons constructed through alkyne metathesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00685a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic alkyne metathesis has successfully been employed toward the synthesis of a truxene-based shape-persistent covalent organic polyhedron (COP) with high binding affinity for fullerenes.
Collapse
Affiliation(s)
- Xiye Yang
- State Key Laboratory of Pulp and Paper Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Michael Ortiz
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yunhao Cao
- State Key Laboratory of Pulp and Paper Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Oula Kareem
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Fei Huang
- State Key Laboratory of Pulp and Paper Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
49
|
Gajula RK, Mohanty S, Chakraborty M, Sarkar M, Prakash MJ. An imine linked fluorescent covalent organic cage: the sensing of chloroform vapour and metal ions, and the detection of nitroaromatics. NEW J CHEM 2021. [DOI: 10.1039/d1nj00434d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent covalent organic cage molecule (F-COC) showed enhanced emission intensity in chloroform solution and polymer matrix film form in presence of chloroform vapours.
Collapse
Affiliation(s)
- Ramesh Kumar Gajula
- Department of Chemistry
- National Institute of Technology Rourkela
- Rourkela-769008
- India
| | - Subhrajit Mohanty
- Department of Chemistry
- National Institute of Technology Rourkela
- Rourkela-769008
- India
| | - Manjari Chakraborty
- School of Chemical Sciences
- National Institute of Science Education and Research
- Bhubaneswar
- HBNI
- Bhimpur-Padanpur
| | - Moloy Sarkar
- School of Chemical Sciences
- National Institute of Science Education and Research
- Bhubaneswar
- HBNI
- Bhimpur-Padanpur
| | - M. Jaya Prakash
- Department of Chemistry
- National Institute of Technology Rourkela
- Rourkela-769008
- India
| |
Collapse
|
50
|
|