1
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
2
|
Coffman RE, Bidone TC. Application of Funnel Metadynamics to the Platelet Integrin αIIbβ3 in Complex with an RGD Peptide. Int J Mol Sci 2024; 25:6580. [PMID: 38928286 PMCID: PMC11203998 DOI: 10.3390/ijms25126580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Integrin αIIbβ3 mediates platelet aggregation by binding the Arginyl-Glycyl-Aspartic acid (RGD) sequence of fibrinogen. RGD binding occurs at a site topographically proximal to the αIIb and β3 subunits, promoting the conformational activation of the receptor from bent to extended states. While several experimental approaches have characterized RGD binding to αIIbβ3 integrin, applying computational methods has been significantly more challenging due to limited sampling and the need for a priori information regarding the interactions between the RGD peptide and integrin. In this study, we employed all-atom simulations using funnel metadynamics (FM) to evaluate the interactions of an RGD peptide with the αIIb and β3 subunits of integrin. FM incorporates an external history-dependent potential on selected degrees of freedom while applying a funnel-shaped restraint potential to limit RGD exploration of the unbound state. Furthermore, it does not require a priori information about the interactions, enhancing the sampling at a low computational cost. Our FM simulations reveal significant molecular changes in the β3 subunit of integrin upon RGD binding and provide a free-energy landscape with a low-energy binding mode surrounded by higher-energy prebinding states. The strong agreement between previous experimental and computational data and our results highlights the reliability of FM as a method for studying dynamic interactions of complex systems such as integrin.
Collapse
Affiliation(s)
- Robert E. Coffman
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Tamara C. Bidone
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Gu Y, Dong B, He X, Qiu Z, Zhang J, Zhang M, Liu H, Pang X, Cui Y. The challenges and opportunities of αvβ3-based therapeutics in cancer: From bench to clinical trials. Pharmacol Res 2023; 189:106694. [PMID: 36775082 DOI: 10.1016/j.phrs.2023.106694] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Integrins are main cell adhesion receptors serving as linker attaching cells to extracellular matrix (ECM) and bidirectional hubs transmitting biochemical and mechanical signals between cells and their environment. Integrin αvβ3 is a critical family member of integrins and interacts with ECM proteins containing RGD tripeptide sequence. Accumulating evidence indicated that the abnormal expression of integrin αvβ3 was associated with various tumor progressions, including tumor initiation, sustained tumor growth, distant metastasis, drug resistance development, maintenance of stemness in cancer cells. Therefore, αvβ3 has been explored as a therapeutic target in various types of cancers, but there is no αvβ3 antagonist approved for human therapy. Targeting-integrin αvβ3 therapeutics has been a challenge, but lessons from the past are valuable to the development of innovative targeting approaches. This review systematically summarized the structure, signal transduction, regulatory role in cancer, and drug development history of integrin αvβ3, and also provided new insights into αvβ3-based therapeutics in cancer from bench to clinical trials, which would contribute to developing effective targeting αvβ3 agents for cancer treatment.
Collapse
Affiliation(s)
- Yanlun Gu
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Xishiku street, Xicheng District, 100034 Beijing, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Juqi Zhang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Mo Zhang
- Department of traditional Chinese and Western medicine,Peking University Of First Hospital, Xishiku street 8th,Xicheng District,10034 Beijing, China
| | - Haitao Liu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, 100191 Beijing, China.
| |
Collapse
|
4
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
5
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 216.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
6
|
Bodero L, Parente S, Arrigoni F, Klimpel A, Neundorf I, Gazzola S, Piarulli U. Synthesis and Biological Evaluation of an
iso
DGR‐Paclitaxel Conjugate Containing a Cell‐Penetrating Peptide to Promote Cellular Uptake. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lizeth Bodero
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Federico Arrigoni
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Annika Klimpel
- University of Cologne Department of Chemistry Institute for Biochemistry Zuelpicher Str. 47a 50674 Cologne Germany
| | - Ines Neundorf
- University of Cologne Department of Chemistry Institute for Biochemistry Zuelpicher Str. 47a 50674 Cologne Germany
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| |
Collapse
|
7
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
8
|
Catignas KK, Frick LR, Pellegatta M, Hurley E, Kolb Z, Addabbo K, McCarty JH, Hynes RO, van der Flier A, Poitelon Y, Wrabetz L, Feltri ML. α V integrins in Schwann cells promote attachment to axons, but are dispensable in vivo. Glia 2021; 69:91-108. [PMID: 32744761 PMCID: PMC8491627 DOI: 10.1002/glia.23886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners β3 or β8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.
Collapse
Affiliation(s)
- Kathleen K. Catignas
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Luciana R. Frick
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Marta Pellegatta
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary Kolb
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Kathryn Addabbo
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Joseph H. McCarty
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Richard O. Hynes
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Boston, Massachusetts
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Boston, Massachusetts
- Sanofi, Boston, Massachusetts
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Maria Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
9
|
Panzeri S, Arosio D, Gazzola S, Belvisi L, Civera M, Potenza D, Vasile F, Kemker I, Ertl T, Sewald N, Reiser O, Piarulli U. Cyclic RGD and isoDGR Integrin Ligands Containing cis-2-amino-1-cyclopentanecarboxylic ( cis-β-ACPC) Scaffolds. Molecules 2020; 25:molecules25245966. [PMID: 33339382 PMCID: PMC7766232 DOI: 10.3390/molecules25245966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly- Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid (cis-β-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were examined in vitro in competitive binding assays to the purified αvβ3 and α5β1 receptors using biotinylated vitronectin (αvβ3) and fibronectin (α5β1) as natural displaced ligands. The IC50 values of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with a pronounced selectivity for αvβ3 over α5β1. In vitro cell adhesion assays were also performed using the human skin melanoma cell line WM115 (rich in integrin αvβ3). The two RGD ligands showed IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and computational studies (MC/EM and MD), followed by docking simulations performed in the αVβ3 integrin active site, provided a rationale for the behavior of these ligands toward the receptor.
Collapse
Affiliation(s)
- Silvia Panzeri
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Daniela Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze e Tecnologie Chimiche (SCITEC), Giulio Natta, Via C. Golgi 19, 20133 Milan, Italy;
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Donatella Potenza
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Isabell Kemker
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany; (I.K.); (N.S.)
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany; (I.K.); (N.S.)
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
- Correspondence:
| |
Collapse
|
10
|
Guest EE, Oatley SA, Macdonald SJF, Hirst JD. Molecular Simulation of αvβ6 Integrin Inhibitors. J Chem Inf Model 2020; 60:5487-5498. [PMID: 32421320 DOI: 10.1021/acs.jcim.0c00254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The urgent need for new treatments for the chronic lung disease idiopathic pulmonary fibrosis (IPF) motivates research into antagonists of the RGD binding integrin αvβ6, a protein linked to the initiation and progression of the disease. Molecular dynamics (MD) simulations of αvβ6 in complex with its natural ligand, pro-TGF-β1, show the persistence over time of a bidentate Arg-Asp ligand-receptor interaction and a metal chelate interaction between an aspartate on the ligand and an Mg2+ ion in the active site. This is typical of RGD binding ligands. Additional binding site interactions, which are not observed in the static crystal structure, are also identified. We investigate an RGD mimetic, which serves as a framework for a series of potential αvβ6 antagonists. The scaffold includes a derivative of the widely utilized 1,8-naphthyridine moiety, for which we present force field parameters, to enable MD and relative free energy perturbation (FEP) simulations. The MD simulations highlight the importance of hydrogen bonding and cation-π interactions. The FEP calculations predict relative binding affinities, within 1.5 kcal mol-1, on average, of experiments.
Collapse
Affiliation(s)
- Ellen E Guest
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Steven A Oatley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
11
|
Han Z, Lian C, Ma Y, Zhang C, Liu Z, Tu Y, Ma Y, Gu Y. A frog-derived bionic peptide with discriminative inhibition of tumors based on integrin αvβ3 identification. Biomater Sci 2020; 8:5920-5930. [PMID: 32959810 DOI: 10.1039/d0bm01187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aureins, natural active peptides extracted from skin secretions of Australian bell frogs, have become a research focus due to the antitumor effects caused by lysing cell membranes. However, clinical translation of Aureins is still limited by non-selective toxicity between normal and cancer cells. Herein, by structure-activity relationship analysis and rational linker design, a dual-function fusion peptide RA3 is designed by tactically fusing Aurein peptide A1 with strong anticancer activity, with a tri-peptide with integrin αvβ3-binding ability which was screened in our previous work. Rational design and selection of fusion linkers ensures α-helical conformation and active functions of this novel fusion peptide, inducing effective membrane rupture and selective apoptosis of cancer cells. The integrin binding and tumor recognition ability of the fusion peptide is further validated by fluorescence imaging in cell and mouse models, in comparison with the non-selective A1 peptide. Meanwhile, increased stability and superior therapeutic efficacy are achieved in vivo for the RA3 fusion peptide. Our study highlights that aided by computational simulation technologies, the biomimetic fusion RA3 peptide has been successfully designed, surmounting the poor tumor-selectivity of the natural defensive peptide, serving as a promising therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Zhihao Han
- State Key Laboratory of Natural Medicines, Department of Biomedicine Engineering, School of Engineering, China Pharmaceutical University, Nanjing, No. 24 Tongjia Lane, 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Borbély A, Figueras E, Martins A, Bodero L, Raposo Moreira Dias A, López Rivas P, Pina A, Arosio D, Gallinari P, Frese M, Steinkühler C, Gennari C, Piarulli U, Sewald N. Conjugates of Cryptophycin and RGD or isoDGR Peptidomimetics for Targeted Drug Delivery. ChemistryOpen 2019; 8:737-742. [PMID: 31275795 PMCID: PMC6587324 DOI: 10.1002/open.201900110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
RGD-cryptophycin and isoDGR-cryptophycin conjugates were synthetized by combining peptidomimetic integrin ligands and cryptophycin, a highly potent tubulin-binding antimitotic agent across lysosomally cleavable Val-Ala or uncleavable linkers. The conjugates were able to effectively inhibit binding of biotinylated vitronectin to integrin αvβ3, showing a binding affinity in the same range as that of the free ligands. The antiproliferative activity of the novel conjugates was evaluated on human melanoma cells M21 and M21-L with different expression levels of integrin αvβ3, showing nanomolar potency of all four compounds against both cell lines. Conjugates containing uncleavable linker show reduced activity compared to the corresponding cleavable conjugates, indicating efficient intracellular drug release in the case of cryptophycin-based SMDCs. However, no significant correlation between the in vitro biological activity of the conjugates and the integrin αvβ3 expression level was observed, which is presumably due to a non-integrin-mediated uptake. This reveals the complexity of effective and selective αvβ3 integrin-mediated drug delivery.
Collapse
Affiliation(s)
- Adina Borbély
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | - Ana Martins
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
- Exiris s.r.l.Via di Castel Romano 100IT-00128RomeItaly
| | - Lizeth Bodero
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 11IT-22100ComoItaly
| | | | - Paula López Rivas
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Arianna Pina
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM)CNRVia C. Golgi, 19IT-20133MilanoItaly
| | | | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | | | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 11IT-22100ComoItaly
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| |
Collapse
|
13
|
Raposo Moreira Dias A, Bodero L, Martins A, Arosio D, Gazzola S, Belvisi L, Pignataro L, Steinkühler C, Dal Corso A, Gennari C, Piarulli U. Synthesis and Biological Evaluation of RGD and isoDGR-Monomethyl Auristatin Conjugates Targeting Integrin α V β 3. ChemMedChem 2019; 14:938-942. [PMID: 30840356 PMCID: PMC6593765 DOI: 10.1002/cmdc.201900049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Indexed: 11/09/2022]
Abstract
This work reports the synthesis of a series of small-molecule-drug conjugates containing the αV β3 -integrin ligand cyclo[DKP-RGD] or cyclo[DKP-isoDGR], a lysosomally cleavable Val-Ala (VA) linker or an "uncleavable" version devoid of this sequence, and monomethyl auristatin E (MMAE) or F (MMAF) as the cytotoxic agent. The conjugates were obtained via a straightforward synthetic scheme taking advantage of a copper-catalyzed azide-alkyne cycloaddition as the key step. The conjugates were tested for their binding affinity for the isolated αv β3 receptor and were shown to retain nanomolar IC50 values, in the same range as those of the free ligands. The cytotoxic activity of the conjugates was evaluated in cell viability assays with αv β3 integrin overexpressing human glioblastoma (U87) and human melanoma (M21) cells. The conjugates possess markedly lower cytotoxic activity than the free drugs, which is consistent with inefficient integrin-mediated internalization. In almost all cases the conjugates featuring isoDGR as integrin ligand exhibited higher potency than their RGD counterparts. In particular, the cyclo[DKP-isoDGR]-VA-MMAE conjugate has low nanomolar IC50 values in cell viability assays with both cancer cell lines tested (U87: 11.50±0.13 nm; M21: 6.94±0.09 nm) and is therefore a promising candidate for in vivo experiments.
Collapse
Affiliation(s)
| | - Lizeth Bodero
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| | - Ana Martins
- Exiris SrlVia di Castel Romano, 10000128RomeItaly
| | - Daniela Arosio
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Silvia Gazzola
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| | - Laura Belvisi
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Luca Pignataro
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
| | | | - Alberto Dal Corso
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
| | - Cesare Gennari
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Umberto Piarulli
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| |
Collapse
|
14
|
Paladino A, Civera M, Curnis F, Paolillo M, Gennari C, Piarulli U, Corti A, Belvisi L, Colombo G. The Importance of Detail: How Differences in Ligand Structures Determine Distinct Functional Responses in Integrin α
v
β
3. Chemistry 2019; 25:5959-5970. [DOI: 10.1002/chem.201900169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare CNR via Mario Bianco 9 20131 Milan Italy
| | - Monica Civera
- Dipartimento di ChimicaUniversità degli Studi di Milano via Golgi 19 20133 Milan Italy
| | - Flavio Curnis
- IRCCS Ospedale San Raffaele Via Olgettina 60 20132 Milan Italy
| | - Mayra Paolillo
- Dipartimento di Scienze del FarmacoUniversità degli Studi di Pavia Viale Taramelli 6 27100 Pavia Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via Golgi 19 20133 Milan Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Angelo Corti
- IRCCS Ospedale San Raffaele Via Olgettina 60 20132 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via Golgi 19 20133 Milan Italy
| | - Giorgio Colombo
- Dipartimento di ChimicaUniversità degli Studi di Pavia Viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
15
|
Affiliation(s)
- Carsten Höltke
- Institut für Klinische Radiologie, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer Campus 1, D-48149 Münster, Germany
| |
Collapse
|
16
|
Paissoni C, Nardelli F, Zanella S, Curnis F, Belvisi L, Musco G, Ghitti M. A critical assessment of force field accuracy against NMR data for cyclic peptides containing β-amino acids. Phys Chem Chem Phys 2018; 20:15807-15816. [PMID: 29845162 DOI: 10.1039/c8cp00234g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid cyclic α/β-peptides, in which one or more β-amino acids are incorporated into the backbone, are gaining increasing interest as potential therapeutics, thanks to their ability to achieve enhanced binding affinities for a biological target through pre-organization in solution. The in silico prediction of their three dimensional structure through strategies such as MD simulations would substantially advance the rational design process. However, whether the molecular mechanics force fields are accurate in sampling highly constrained cyclopeptides containing β-amino acids remains to be verified. Here, we present a systematic assessment of the ability of 8 widely used force fields to reproduce 79 NMR observables (including chemical shifts and 3J scalar couplings) on five cyclic α/β-peptides that contain the integrin recognition motif isoDGR. Most of the investigated force fields, which include force fields from AMBER, OPLS, CHARMM and GROMOS families, display very good agreement with experimental 3J(HN,Hα), suggesting that MD simulations could be an appropriate tool in the rational design of therapeutic cyclic α-peptides. However, for NMR observables directly related to β-amino acids, we observed a poor agreement with experiments and a remarkable dependence of our evaluation on the choice of Karplus parameters. The force field weaknesses herein unveiled might constitute a source of inspiration for further force field optimization.
Collapse
Affiliation(s)
- C Paissoni
- Biomolecular NMR Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Nardelli F, Paissoni C, Quilici G, Gori A, Traversari C, Valentinis B, Sacchi A, Corti A, Curnis F, Ghitti M, Musco G. Succinimide-Based Conjugates Improve IsoDGR Cyclopeptide Affinity to α vβ 3 without Promoting Integrin Allosteric Activation. J Med Chem 2018; 61:7474-7485. [PMID: 29883545 DOI: 10.1021/acs.jmedchem.8b00745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The isoDGR sequence is an integrin-binding motif that has been successfully employed as a tumor-vasculature-homing molecule or for the targeted delivery of drugs and diagnostic agents to tumors. In this context, we previously demonstrated that cyclopeptide 2, the product of the conjugation of c(CGisoDGRG) (1) to 4-( N-maleimidomethyl)cyclohexane-1-carboxamide, can be successfully used as a tumor-homing ligand for nanodrug delivery to neoplastic tissues. Here, combining NMR, computational, and biochemical methods, we show that the succinimide ring contained in 2 contributes to stabilizing interactions with αvβ3, an integrin overexpressed in the tumor vasculature. Furthermore, we demonstrate that various cyclopeptides containing the isoDGR sequence embedded in different molecular scaffolds do not induce αvβ3 allosteric activation and work as pure integrin antagonists. These results could be profitably exploited for the rational design of novel isoDGR-based ligands and tumor-targeting molecules with improved αvβ3-binding properties and devoid of adverse integrin-activating effects.
Collapse
Affiliation(s)
| | - Cristina Paissoni
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy.,Dipartimento di Chimica , Università degli Studi di Milano , Via Golgi 19 , 20133 Milan , Italy
| | - Giacomo Quilici
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9 , 20131 Milan , Italy
| | | | | | - Angelina Sacchi
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Angelo Corti
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Flavio Curnis
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Michela Ghitti
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Giovanna Musco
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| |
Collapse
|
18
|
Kapp TG, Di Leva FS, Notni J, Räder AFB, Fottner M, Reichart F, Reich D, Wurzer A, Steiger K, Novellino E, Marelli UK, Wester HJ, Marinelli L, Kessler H. N-Methylation of isoDGR Peptides: Discovery of a Selective α5β1-Integrin Ligand as a Potent Tumor Imaging Agent. J Med Chem 2018; 61:2490-2499. [DOI: 10.1021/acs.jmedchem.7b01752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tobias G. Kapp
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Andreas F. B. Räder
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Maximilian Fottner
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Dominik Reich
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Alexander Wurzer
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Katja Steiger
- Department of Pathology, Technische Universität München, Trogerstraße 18, 81675 München, Germany
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Udaya Kiran Marelli
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
19
|
Bodero L, López Rivas P, Korsak B, Hechler T, Pahl A, Müller C, Arosio D, Pignataro L, Gennari C, Piarulli U. Synthesis and biological evaluation of RGD and isoDGR peptidomimetic-α-amanitin conjugates for tumor-targeting. Beilstein J Org Chem 2018. [PMID: 29520305 PMCID: PMC5827777 DOI: 10.3762/bjoc.14.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
RGD-α-amanitin and isoDGR-α-amanitin conjugates were synthesized by joining integrin ligands to α-amanitin via various linkers and spacers. The conjugates were evaluated for their ability to inhibit biotinylated vitronectin binding to the purified αVβ3 receptor, retaining good binding affinity, in the same nanomolar range as the free ligands. The antiproliferative activity of the conjugates was evaluated in three cell lines possessing different levels of αVβ3 integrin expression: human glioblastoma U87 (αVβ3+), human lung carcinoma A549 (αVβ3−) and breast adenocarcinoma MDA-MB-468 (αVβ3−). In the U87, in the MDA-MB-468, and partly in the A549 cancer cell lines, the cyclo[DKP-isoDGR]-α-amanitin conjugates bearing the lysosomally cleavable Val-Ala linker were found to be slightly more potent than α-amanitin. Apparently, for all these α-amanitin conjugates there is no correlation between the cytotoxicity and the expression of αVβ3 integrin. To determine whether the increased cytotoxicity of the cyclo[DKP-isoDGR]-α-amanitin conjugates is governed by an integrin-mediated binding and internalization process, competition experiments were carried out in which the conjugates were tested with U87 (αVβ3+, αVβ5+, αVβ6−, α5β1+) and MDA-MB-468 (αVβ3−, αVβ5+, αVβ6+, α5β1−) cells in the presence of excess cilengitide, with the aim of blocking integrins on the cell surface. Using the MDA-MB-468 cell line, a fivefold increase of the IC50 was observed for the conjugates in the presence of excess cilengitide, which is known to strongly bind not only αVβ3, but also αVβ5, αVβ6, and α5β1. These data indicate that in this case the cyclo[DKP-isoDGR]-α-amanitin conjugates are possibly internalized by a process mediated by integrins different from αVβ3 (e.g., αVβ5).
Collapse
Affiliation(s)
- Lizeth Bodero
- Dipartimento di Scienza e Alta Tecnologia, Via Valleggio, 11, 22100, Como, Italy
| | - Paula López Rivas
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Barbara Korsak
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Torsten Hechler
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Christoph Müller
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Molecolare (ITSM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Via Valleggio, 11, 22100, Como, Italy
| |
Collapse
|
20
|
Mastrangeli R, D'amici F, D'Acunto CW, Fiumi S, Rossi M, Terlizzese M, Palinsky W, Bierau H. A deamidated interferon-β variant binds to integrin αvβ3. Cytokine 2018; 104:38-41. [PMID: 29414325 DOI: 10.1016/j.cyto.2018.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/25/2022]
Abstract
Human type I interferons are a family of pleiotropic cytokines with antiviral, anti-proliferative and immunomodulatory activities. They signal through the same cell surface receptors IFNAR1 and IFNAR2 yet evoking markedly different physiological effects. One differentiating factor of interferon-beta (IFN-β) from other type I interferons is the presence of theAsn-Gly-Arg (NGR) sequence motif, which, upon deamidation, converts to Asp-Gly-Arg (DGR) and iso-Asp-Gly-Arg (iso-DGR) motifs. In other proteins, the NGR and iso-DGR motifs are reported as CD13- and αvβ3, αvβ5, αvβ6, αvβ8 and α5β1 integrin-binding motifs, respectively. The scope of this study was to perform exploratory surface plasmon resonance (SPR) experiments to assess the binding properties of a deamidated IFN-β variant to integrins. For this purpose, integrin αvβ3 was selected as a reference model within the iso-DGR- integrin binding members. The obtained results show that deamidated IFN-β binds integrin αvβ3 with nanomolar affinity and that the response was dependent on the deamidation extent. Based on these results, it can be expected that deamidated IFN-β also binds to other integrin family members that are able to bind to the iso-DGR binding motif. The novel binding properties could help elucidate specific IFN-β attributes that under physiological conditions may be modulated by the deamidation.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Fabio D'amici
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Cosimo-Walter D'Acunto
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Sabrina Fiumi
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Mara Rossi
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Mariagrazia Terlizzese
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma (an affiliate of Merck KGaA, Darmstadt, Germany), Zone Industrielle de l'Ouriettaz, Aubonne 1170, Switzerland
| | - Horst Bierau
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy.
| |
Collapse
|
21
|
Dissecting intrinsic and ligand-induced structural communication in the β3 headpiece of integrins. Biochim Biophys Acta Gen Subj 2017; 1861:2367-2381. [DOI: 10.1016/j.bbagen.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
22
|
Monocyte adhesion to atherosclerotic matrix proteins is enhanced by Asn-Gly-Arg deamidation. Sci Rep 2017; 7:5765. [PMID: 28720870 PMCID: PMC5515959 DOI: 10.1038/s41598-017-06202-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/09/2017] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis arises from leukocyte infiltration and thickening of the artery walls and constitutes a major component of vascular disease pathology, but the molecular events underpinning this process are not fully understood. Proteins containing an Asn-Gly-Arg (NGR) motif readily undergo deamidation of asparagine to generate isoDGR structures that bind to integrin αvβ3 on circulating leukocytes. Here we report the identification of isoDGR motifs in human atherosclerotic plaque components including extracellular matrix (ECM) proteins fibronectin and tenascin C, which have been strongly implicated in human atherosclerosis. We further demonstrate that deamidation of NGR motifs in fibronectin and tenascin C leads to increased adhesion of the monocytic cell line U937 and enhanced binding of primary human monocytes, except in the presence of a αvβ3-blocking antibody or the αv-selective inhibitor cilengitide. In contrast, under the same deamidating conditions monocyte-macrophages displayed only weak binding to the alternative ECM component vitronectin which lacks NGR motifs. Together, these findings confirm a critical role for isoDGR motifs in mediating leukocyte adhesion to the ECM via integrin αvβ3 and suggest that protein deamidation may promote the pathological progression of human atherosclerosis by enhancing monocyte recruitment to developing plaques.
Collapse
|
23
|
Zanella S, Angerani S, Pina A, López Rivas P, Giannini C, Panzeri S, Arosio D, Caruso M, Gasparri F, Fraietta I, Albanese C, Marsiglio A, Pignataro L, Belvisi L, Piarulli U, Gennari C. Tumor Targeting with an isoDGR-Drug Conjugate. Chemistry 2017; 23:7910-7914. [PMID: 28449309 PMCID: PMC5488297 DOI: 10.1002/chem.201701844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/20/2022]
Abstract
Herein we report the first example of an isoDGR-drug conjugate (2), designed to release paclitaxel selectively within cancer cells expressing integrin αV β3 . Conjugate 2 was synthesized by connecting the isoDGR peptidomimetic 5 with paclitaxel via the lysosomally cleavable Val-Ala dipeptide linker. Conjugate 2 displayed a low nanomolar affinity for the purified integrin αV β3 receptor (IC50 =11.0 nm). The tumor targeting ability of conjugate 2 was assessed in vitro in anti-proliferative assays on two isogenic cancer cell lines characterized by different integrin αV β3 expression: human glioblastoma U87 (αV β3 +) and U87 β3 -KO (αV β3 -). The isoDGR-PTX conjugate 2 displayed a remarkable targeting index (TI=9.9), especially when compared to the strictly related RGD-PTX conjugate 4 (TI=2.4).
Collapse
Affiliation(s)
- Simone Zanella
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Simona Angerani
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Arianna Pina
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Paula López Rivas
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Clelia Giannini
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Silvia Panzeri
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio 1122100ComoItaly
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM)CNRVia C. Golgi 1920133MilanoItaly
| | - Michele Caruso
- Nerviano Medical Sciences (NMS)Via Pasteur 1020014NervianoItaly
| | - Fabio Gasparri
- Nerviano Medical Sciences (NMS)Via Pasteur 1020014NervianoItaly
| | - Ivan Fraietta
- Nerviano Medical Sciences (NMS)Via Pasteur 1020014NervianoItaly
| | - Clara Albanese
- Nerviano Medical Sciences (NMS)Via Pasteur 1020014NervianoItaly
| | | | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio 1122100ComoItaly
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| |
Collapse
|
24
|
Ma Y, Ai G, Zhang C, Zhao M, Dong X, Han Z, Wang Z, Zhang M, Liu Y, Gao W, Li S, Gu Y. Novel Linear Peptides with High Affinity to αvβ3 Integrin for Precise Tumor Identification. Theranostics 2017; 7:1511-1523. [PMID: 28529634 PMCID: PMC5436510 DOI: 10.7150/thno.18401] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
Development of alternative linear peptides for targeting αvβ3 integrin has attracted much attention, as the traditional peptide ligand, cyclic RGD, is limited by inferior water-solubility and complex synthesis. Using pharmacophore-based virtual screening and high-throughput molecular docking, we identified two novel linear small peptides RWr and RWrNM with high affinity and specificity to αvβ3 integrin. The competitive binding with cyclic RGD (c(RGDyK)) and cellular uptake related to the integrin expression levels verified their affinity to αvβ3 integrin. The intermolecular interaction measurement and dynamics simulation demonstrated the high binding affinity and stability, especially for RWrNM. In vivo peptide-guided tumor imaging and targeted therapy further confirmed their specificity. Results indicated that the newly identified small linear peptide RWrNM, with high affinity and specificity to αvβ3 integrin, better water-solubility, and simplified synthetic process, could overcome limitations of the current cyclic RGD peptides, paving the way for diverse use in diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009 (China)
| |
Collapse
|
25
|
Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain. Int J Mol Sci 2017; 18:ijms18020429. [PMID: 28212316 PMCID: PMC5343963 DOI: 10.3390/ijms18020429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/17/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
The Asn-Gly-Arg (NGR) motif and its deamidation product isoAsp-Gly-Arg (isoDGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding isoDGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a succinimide derivative. In the present study, we computationally investigated the mechanism of succinimide formation from a cyclic peptide, c[CH2CO-NGRC]-NH2, which has recently been shown to undergo rapid deamidation in a phosphate buffer. An H2PO4− ion was explicitly included in the calculations. We employed the density functional theory using the B3LYP functional. While geometry optimizations were performed in the gas phase, hydration Gibbs energies were calculated by the SM8 (solvation model 8) continuum model. We have found a pathway leading to the five-membered ring tetrahedral intermediate in which both the H2PO4− ion and the Arg side chain act as catalyst. This intermediate, once protonated at the NH2 group on the five-membered ring, was shown to easily undergo NH3 elimination leading to the succinimide formation. This study is the first to propose a possible catalytic role for the Arg side chain in the NGR deamidation.
Collapse
|
26
|
Huang Y, Cheng Q, Jin X, Ji JL, Guo S, Zheng S, Wang X, Cao H, Gao S, Liang XJ, Du Q, Liang Z. Systemic and tumor-targeted delivery of siRNA by cyclic NGR and isoDGR motif-containing peptides. Biomater Sci 2017; 4:494-510. [PMID: 26783563 DOI: 10.1039/c5bm00429b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The drug development of siRNA has been seriously hindered by the lack of an effective, safe and clinically applicable delivery system. The cyclic NGR motif and its isomerization product isoDGR recruit CD13 and integrin as their specific receptors, both of which are overexpressed by tumor and neovascular cells. In this study, a bi-functional peptide, named NGR-10R, was designed and tested for siRNA delivery in vitro and in vivo. Through the formation of peptide/siRNA nanoparticles, RNase resistance was greatly enhanced for the siRNAs. Both FACS and confocal assays revealed that the peptide/siRNA complexes were effectively internalized by MDA-MB-231 cells. Gene silencing assays indicated that anti-Lamin A/C siRNA delivered by NGR-10R robustly repressed gene expression in MDA-MB-231 and HUVEC (a CD13(+)/αvβ3(+) cell). Importantly, the siRNAs were efficiently delivered into tumor tissues and localized around the nuclei, as revealed by in vivo imaging and cryosection examination. In summary, NGR-10R not only efficiently delivered siRNAs into MDA-MB-231 cells in vitro but also delivered siRNAs into tumor cells in vivo, taking advantage of its specific binding to CD13 (neovascular) or αvβ3 (MDA-MB-231). Therefore, the NGR-10R peptide provides a promising siRNA delivery reagent that could be used for drug development, particularly for anti-tumor therapeutics.
Collapse
Affiliation(s)
- Yuanyu Huang
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Qiang Cheng
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Xingyu Jin
- Suzhou Ribo Life Science Co. Ltd, Jiangsu 215300, China
| | - Jia-Li Ji
- Suzhou Ribo Life Science Co. Ltd, Jiangsu 215300, China
| | - Shutao Guo
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Shuquan Zheng
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Xiaoxia Wang
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Huiqing Cao
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Shan Gao
- Suzhou Ribo Life Science Co. Ltd, Jiangsu 215300, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Quan Du
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
| | - Zicai Liang
- Institute of Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
27
|
High Affinity vs. Native Fibronectin in the Modulation of αvβ3 Integrin Conformational Dynamics: Insights from Computational Analyses and Implications for Molecular Design. PLoS Comput Biol 2017; 13:e1005334. [PMID: 28114375 PMCID: PMC5293283 DOI: 10.1371/journal.pcbi.1005334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/06/2017] [Accepted: 12/23/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding how binding events modulate functional motions of multidomain proteins is a major issue in chemical biology. We address several aspects of this problem by analyzing the differential dynamics of αvβ3 integrin bound to wild type (wtFN10, agonist) or high affinity (hFN10, antagonist) mutants of fibronectin. We compare the dynamics of complexes from large-scale domain motions to inter-residue coordinated fluctuations to characterize the distinctive traits of conformational evolution and shed light on the determinants of differential αvβ3 activation induced by different FN sequences. We propose an allosteric model for ligand-based integrin modulation: the conserved integrin binding pocket anchors the ligand, while different residues on the two FN10's act as the drivers that reorganize relevant interaction networks, guiding the shift towards inactive (hFN10-bound) or active states (wtFN10-bound). We discuss the implications of results for the design of integrin inhibitors.
Collapse
|
28
|
De Marco R, Tolomelli A, Juaristi E, Gentilucci L. Integrin Ligands with α/β-Hybrid Peptide Structure: Design, Bioactivity, and Conformational Aspects. Med Res Rev 2016; 36:389-424. [PMID: 26777675 DOI: 10.1002/med.21383] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrins are cell surface receptors for proteins of the extracellular matrix and plasma-borne adhesive proteins. Their involvement in diverse pathologies prompted medicinal chemists to develop small-molecule antagonists, and very often such molecules are peptidomimetics designed on the basis of the short native ligand-integrin recognition motifs. This review deals with peptidomimetic integrin ligands composed of α- and β-amino acids. The roles exerted by the β-amino acid components are discussed in terms of biological activity, bioavailability, and selectivity. Special attention is paid to the synthetic accessibility and efficiency of conformationally constrained heterocyclic scaffolds incorporating α/β-amino acid span.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician,", University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Alessandra Tolomelli
- Department of Chemistry "G. Ciamician,", University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Eusebio Juaristi
- Department of Chemistry, Centro de Investigacion y de Estudios Avanzados del IPN, Avenida IPN 2508, esquina Ticoman, Mexico, D.F., 07360, Mexico
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician,", University of Bologna, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
29
|
Panzeri S, Zanella S, Arosio D, Vahdati L, Dal Corso A, Pignataro L, Paolillo M, Schinelli S, Belvisi L, Gennari C, Piarulli U. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists. Chemistry 2015; 21:6265-71. [PMID: 25761230 DOI: 10.1002/chem.201406567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/18/2023]
Abstract
The cyclo[DKP-isoDGR] peptidomimetics 2-5, containing bifunctional diketopiperazine (DKP) scaffolds that differ in the configuration of the two DKP stereocenters and in the substitution at the DKP nitrogen atoms, were prepared and examined in vitro in competitive binding assays with purified αv β3 and αv β5 integrin receptors. IC50 values ranged from low nanomolar (ligand 3) to submicromolar with αv β3 integrin. The biological activities of ligands cyclo[DKP3-RGD] 1 and cyclo[DKP3-isoDGR] 3, bearing the same bifunctional DKP scaffold and showing similar αV β3 integrin binding values, were compared in terms of their cellular effects in human U373 glioblastoma cells. Compounds 1 and 3 displayed overlapping inhibitory effects on the FAK/Akt integrin activated transduction pathway and on integrin-mediated cell infiltration processes, and qualify therefore, despite the different RGD and isoDGR sequences, as integrin antagonists. Both compounds induced apoptosis in glioma cells after 72 hour treatment.
Collapse
Affiliation(s)
- Silvia Panzeri
- Università degli Studi dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Via Valleggio 11, 22100 Como (Italy)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors. Biochem J 2015; 464:301-13. [PMID: 25333419 DOI: 10.1042/bj20141047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.
Collapse
|
31
|
Spiwok V, Sucur Z, Hosek P. Enhanced sampling techniques in biomolecular simulations. Biotechnol Adv 2014; 33:1130-40. [PMID: 25482668 DOI: 10.1016/j.biotechadv.2014.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 02/01/2023]
Abstract
Biomolecular simulations are routinely used in biochemistry and molecular biology research; however, they often fail to match expectations of their impact on pharmaceutical and biotech industry. This is caused by the fact that a vast amount of computer time is required to simulate short episodes from the life of biomolecules. Several approaches have been developed to overcome this obstacle, including application of massively parallel and special purpose computers or non-conventional hardware. Methodological approaches are represented by coarse-grained models and enhanced sampling techniques. These techniques can show how the studied system behaves in long time-scales on the basis of relatively short simulations. This review presents an overview of new simulation approaches, the theory behind enhanced sampling methods and success stories of their applications with a direct impact on biotechnology or drug design.
Collapse
Affiliation(s)
- Vojtech Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| | - Zoran Sucur
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic
| | - Petr Hosek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic
| |
Collapse
|
32
|
Abstract
For nearly two decades now, the RGD (Arg-Gly-Asp)-binding αvβ3-integrin has been a focus of anti-angiogenic drug design. These inhibitors are well-tolerated, but have shown only limited success in patients. Over the years, studies in β3-integrin-knockout mice have shed some light on possible explanations for disappointing clinical outcomes. However, studying angiogenesis in β3-integrin-knockout mice is a blunt tool to investigate β3-integrin's role in pathological angiogenesis. Since establishing our laboratory at University of East Anglia (UEA), we have adopted more refined models of genetically manipulating the expression of the β3-integrin subunit. The present review will highlight some of our findings from these models and describe how data from them have forced us to rethink how targeting αvβ3-integrin expression affects tumour angiogenesis and cancer progression. Revisiting the fundamental biology behind how this integrin regulates tumour growth and angiogenesis, we believe, is the key not only to understanding how angiogenesis is normally co-ordinated, but also in success with drugs directed against it.
Collapse
|
33
|
Dattoli SD, De Marco R, Baiula M, Spampinato S, Greco A, Tolomelli A, Gentilucci L. Synthesis and assay of retro-α4β1 integrin-targeting motifs. Eur J Med Chem 2013; 73:225-32. [PMID: 24412498 DOI: 10.1016/j.ejmech.2013.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
In recent years, several research groups proposed new peptidomimetic antagonists of integrins αvβ3, α5β1, αIIbβ3, αvβ6, αvβ5, etc. based on retro sequences of the classic integrin-binding motif RGD. The retro strategy is still largely ignored for the non-RGD-binding α4β1 integrin. Herein we present the first examples of retro sequences for targeting this integrin, composed of Asp or isoAsp equipped with an aromatic cap at the N-terminus, (S)-pyrrolidine-3-carboxylic acid (β(2)-Pro) as a constrained core, and the amino variant (AMPUMP) of the well-known α4-targeting diphenylurea MPUPA. We discuss α4β1 receptor affinity (SPA), cell adhesion assays, stability in mouse serum, and conformational analysis. For their significant ability to inhibit cell adhesion and remarkable stability, the retro-peptide mimetics BnCO-Asp-β-Pro-AMPUMP (3) and BnCO-isoAsp-β-Pro-AMPUMP (4) represent promising candidates for designing small molecules as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Samantha D Dattoli
- Dept. of Pharmacy and BioTechnology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Rossella De Marco
- Dept. of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Monica Baiula
- Dept. of Pharmacy and BioTechnology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Santi Spampinato
- Dept. of Pharmacy and BioTechnology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Arianna Greco
- Dept. of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Alessandra Tolomelli
- Dept. of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Dept. of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
34
|
Corti A, Curnis F, Rossoni G, Marcucci F, Gregorc V. Peptide-mediated targeting of cytokines to tumor vasculature: the NGR-hTNF example. BioDrugs 2013; 27:591-603. [PMID: 23743670 PMCID: PMC3832761 DOI: 10.1007/s40259-013-0048-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A growing body of evidence suggests that the efficacy of cytokines in cancer therapy can be increased by targeting strategies based on conjugation with ligands that recognize receptors expressed by tumor cells or elements of the tumor microenvironment, including the tumor vasculature. The targeting approach is generally conceived to permit administration of low, yet pharmacologically active, doses of drugs, thereby avoiding toxic reactions. However, it is becoming clear that, in the case of cytokines, this strategy has another inherent advantage, i.e. the possibility of administering extremely low doses that do not activate systemic counter-regulatory mechanisms, which may limit their potential therapeutic effects. This review is focused on the use of tumor vasculature-homing peptides as vehicles for targeted delivery of cytokines to tumor blood vessel. In particular, we provide an overview of peptide-cytokine conjugates made with peptides containing the NGR, RGD, isoDGR or RGR sequences and describe, in more details, the biological and pharmacological properties of NGR-hTNF, a peptide-tumor necrosis factor-α conjugate that is currently being tested in phase II and III clinical studies. The results of preclinical and clinical studies performed with these products suggest that peptide-mediated vascular-targeting is indeed a viable strategy for delivering bioactive amounts of cytokines to tumor endothelial cells without causing the activation of counter-regulatory mechanisms and toxic reactions.
Collapse
Affiliation(s)
- Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Molecular Oncology, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy,
| | | | | | | | | |
Collapse
|
35
|
Karmakar T, Periyasamy G, Balasubramanian S. CO2 migration pathways in oxalate decarboxylase and clues about its active site. J Phys Chem B 2013; 117:12451-60. [PMID: 24053484 DOI: 10.1021/jp4074834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxalate decarboxylase catalyzes the decarboxylation of oxalate to formate and CO2 in the presence of molecular oxygen. This enzyme has two domains, each containing a Mn(II) ion coordinated with three histidine residues. The specific domain in which the decarboxylation process takes place is still a matter of investigation. Herein, the transport of the product, i.e., CO2, from the reaction center to the surface of the enzyme is studied using atomistic molecular dynamics simulations. The specific pathway for the migration of the molecule as well as its microscopic interactions with the amino acid residues lining the path is delineated. Further, the transport of CO2 is shown to occur in a facile manner from only domain I and not from domain II, indicating that the former is likely to be the active site of the enzyme.
Collapse
Affiliation(s)
- Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | | | | |
Collapse
|
36
|
Modulation of αvβ3- and α5β1-integrin-mediated adhesion by dehydro-β-amino acids containing peptidomimetics. Eur J Med Chem 2013; 66:258-68. [DOI: 10.1016/j.ejmech.2013.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023]
|
37
|
Mingozzi M, Dal Corso A, Marchini M, Guzzetti I, Civera M, Piarulli U, Arosio D, Belvisi L, Potenza D, Pignataro L, Gennari C. CyclicisoDGR Peptidomimetics as Low-Nanomolar αvβ3Integrin Ligands. Chemistry 2013; 19:3563-7. [DOI: 10.1002/chem.201204639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Indexed: 02/04/2023]
|