1
|
Wu Q, Wang X, Ni Q. Dearomative Ring-Opening of N-Fused Heteroarenes: Access to Tetrasubstituted Alkenes and Ketimines. J Org Chem 2025; 90:5720-5724. [PMID: 40231730 DOI: 10.1021/acs.joc.5c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
We report a novel and efficient strategy for constructing tetrasubstituted alkenes and α-iminonitriles from 3-aminoindolizines and 3-aminoimidazo[1,2-a]pyridines. This approach involves a dearomative ring-opening of N-fused heteroaromatic amines coupled to a DDQ-mediated oxidative process under mild, metal-free conditions. The methodology demonstrates broad substrate scope, excellent functional group tolerance, and scalability, offering a versatile platform for synthesizing complex alkenes and nitrile-containing frameworks.
Collapse
Affiliation(s)
- Qianling Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| |
Collapse
|
2
|
Zhou PX, Liu Y, Li M, Chen H, Wu T, Chen X, Wang K, Ren F, Fu Y, Liang YM. Palladium-Catalyzed Domino Heck/Decarboxylative Cyanomethylation of Indoles and Alkenes with Cyanoacetate Salts. Org Lett 2025; 27:4389-4395. [PMID: 40208955 DOI: 10.1021/acs.orglett.5c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
A palladium-catalyzed reaction of indoles with cyanoacetate salts enables the synthesis of 2,6-disubstituted indolines via tandem dearomatization/decarboxylative cyanomethylation. Remarkably, this is the first example of indole difunctionalization at the C2 and C6 positions. Moreover, this methodology extends to the palladium-catalyzed cyclization/decarboxylative cyanomethylation of aryl halide-tethered alkenes.
Collapse
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Mengjuan Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Hang Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Tao Wu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xinyang Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Kaikai Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yun Fu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Zhou C, Stepanova EV, Shatskiy A, Kärkäs MD, Dinér P. Visible light-mediated dearomative spirocyclization/imination of nonactivated arenes through energy transfer catalysis. Nat Commun 2025; 16:3610. [PMID: 40240355 PMCID: PMC12003774 DOI: 10.1038/s41467-025-58808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Aromatic compounds serve as key feedstocks in the chemical industry, typically undergoing functionalization or full reduction. However, partial reduction via dearomative sequences remains underexplored despite its potential to rapidly generate complex three-dimensional scaffolds and the existing dearomative strategies often require metal-mediated multistep processes or suffer from limited applicability. Herein, a photocatalytic radical cascade approach enabling dearomative difunctionalization through selective spirocyclization/imination of nonactivated arenes is reported. The method employs bifunctional oxime esters and carbonates to introduce multiple functional groups in a single step, forming spirocyclic motifs and iminyl functionalities via N-O bond cleavage, hydrogen-atom transfer, radical addition, spirocyclization, and radical-radical cross-coupling. The reaction constructs up to four bonds (C-O, C-C, C-N) from simple starting materials. Its broad applicability is demonstrated on various substrates, including pharmaceuticals, and it is compatible with scale-up under flow conditions, offering a streamlined approach to synthesizing highly decorated three-dimensional frameworks.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elena V Stepanova
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Dinér
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
4
|
Pratap A, Maji B. A stepwise dearomatization/nitration/enantioselective homoenolate reaction of quinolines to construct C 3-nitro-substituted tetrahydroquinolines. Org Biomol Chem 2025; 23:3812-3818. [PMID: 40152553 DOI: 10.1039/d5ob00247h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Herein, we describe a stepwise 1,2-reductive dearomatization/selective C3-nitration of quinoline and a subsequent catalytic enantioselective homoenolate addition reaction using a NHC catalyst strategy to construct N-acetyl 3,4-disubstituted tetrahydroquinoline in good yields with remarkably high diastereo- and enantioselectivities (dr >99 : 1, ee up to >99%). An efficient metal- and base-free method for 3-nitroquinoline synthesis from readily accessible quinoline has also been realized.
Collapse
Affiliation(s)
- Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India.
| |
Collapse
|
5
|
Zou Q, Zhou ZZ, Wan YR, Tang JW, Chen Z. Highly Diastereoselective Synthesis of Oxindole-Bearing Pyrroloindoline via Gold Catalyzed Carbophilic Carbene Transfer Reaction. Chemistry 2025; 31:e202500229. [PMID: 40022469 DOI: 10.1002/chem.202500229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/28/2025] [Indexed: 03/03/2025]
Abstract
A new type of gold catalyzed intermolecular dearomative cyclization reaction between diazo oxindole and tryptamine has been developed by utilizing the combination of L3AuCl/Ag3PO4 (L3=hexamethyl phosphane triamine) as the catalyst. This method allows for the facile preparation of a series of C-3-oxindole fused pyrroloindoline products in moderate to good yields with high diastereoselectivities. A plausible reaction mechanism, involving a cascade process of regioselective nucleophilic addition of the carbophilic gold carbenoid intermediate onto tryptamine, followed by an intramolecular cyclization, has been proposed, in which, the high diastereoselectivity is attributed to a preferred transition state. Moreover, three oxindole-bearing indolo[2,3-b] quinoline derivatives were synthesized through dearomative cyclization of homotryptamine derivative 4a with the respective 3-diazoindolin-2-one substrates using a similar strategy. A gram-scale experiment successfully yielded 1.95 g of 3 aa in 85 % yield with a diastereomeric ratio (dr) of 10.4/1, ultimately enabling a five-step synthesis of the natural product (±)-folicanthine.
Collapse
Affiliation(s)
- Qiang Zou
- School of Chemistry & Life resources, Renmin University of China, 59# Zhongguancun St., Beijing, 100872, China
| | - Zhuang-Zhi Zhou
- School of Chemistry & Life resources, Renmin University of China, 59# Zhongguancun St., Beijing, 100872, China
| | - Ya-Ru Wan
- School of Chemistry & Life resources, Renmin University of China, 59# Zhongguancun St., Beijing, 100872, China
| | - Jia-Wei Tang
- School of Chemistry & Life resources, Renmin University of China, 59# Zhongguancun St., Beijing, 100872, China
| | - Zili Chen
- School of Chemistry & Life resources, Renmin University of China, 59# Zhongguancun St., Beijing, 100872, China
| |
Collapse
|
6
|
Shen WJ, Zou XX, Li M, Cheng YZ, You SL. Enantioselective Dearomative [2π + 2σ] Photocycloaddition of Naphthalene Derivatives with Bicyclo[1.1.0]butanes Enabled by Gd(III) Catalysis. J Am Chem Soc 2025; 147:11667-11674. [PMID: 40152547 DOI: 10.1021/jacs.5c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The cycloaddition reactions of bicyclo[1.1.0]butanes with alkenes, imines, nitrones, or aziridines have served as an efficient platform to create conformationally restricted saturated bicyclic scaffolds. However, the use of readily available aromatics in such reactions, especially in an asymmetric manner, remains underexplored. Herein, we report a highly regio- and enantioselective dearomative [2π + 2σ] photocycloaddition reaction between naphthalene derivatives and bicyclo[1.1.0]butanes, enabled by Gd(III) catalysis. Bicyclo[1.1.0]butanes and naphthalenes adorned with a diverse array of functional groups are well-tolerated under mild conditions, affording enantioenriched pharmaceutically important bicyclo[2.1.1]hexanes in 30-96% yields with 81-93% ee and 12:1 → >20:1 rr. The synthetic versatility of this reaction is further demonstrated by the facile removal of directing group and derivatizations of the dearomatized product. UV-vis absorption spectroscopy studies suggest the involvement of an excited naphthalene species in the reaction process.
Collapse
Affiliation(s)
- Wen-Jie Shen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xin-Xuan Zou
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
7
|
Zhang XX, Xu ST, Li XT, Song TT, Ji DW, Chen QA. Dearomative Skeletal Editing of Benzenoids via Diradical. J Am Chem Soc 2025; 147:11533-11542. [PMID: 40129311 DOI: 10.1021/jacs.5c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Dearomative skeletal editing of benzenoids represents a promising yet challenging strategy for the rapid construction of high-value carbon frameworks from readily accessible starting materials. Büchner reaction is a unique type of expansive skeletal editing that transforms benzenoids into functionalized cycloheptatrienes. However, due to challenges in compatibility and selectivity, achieving seamless integration of this reaction with dearomative cycloaddition within a unified system remains undeveloped. Here, we demonstrated an energy-transfer-induced intermolecular dearomative skeletal editing reaction of benzenoids with a range of electronically diverse alkynes. This protocol employed N-acylimines as diradical precursors to efficiently construct various structurally diverse polycyclic frameworks in high chemo-, regio-, and diastereoselectivities that have been previously inaccessible. The challenges related to general reactivity and selectivity issues were circumvented through the smooth merging of photoinduced skeletal editing with dearomative cycloaddition. Experimental and computational studies were performed to support the diradical mechanism and interpret the origins of the observed chemo-, regio-, and diastereoselectivities.
Collapse
Affiliation(s)
- Xiang-Xin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shan-Tong Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xue-Ting Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Begum A, Akram MO, Martin CD. Dearomative C2-borylation of indoles. Dalton Trans 2025; 54:5664-5667. [PMID: 40110640 DOI: 10.1039/d5dt00579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The dearomative borylation of indoles is challenging and typically requires transition metal catalysts, strong bases, or harsh conditions. We report the metal- and base-free C2-borylation of indoles using bis(1-methyl-ortho-carboranyl)borane as an electrophilic borylating reagent to generate borylated indolenium species under mild conditions.
Collapse
Affiliation(s)
- Ayesha Begum
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | - Manjur O Akram
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| |
Collapse
|
9
|
Liu X, Zhang J. Progress in Double Dearomatization Reactions. Chemistry 2025; 31:e202404640. [PMID: 39887834 DOI: 10.1002/chem.202404640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Dearomatization reactions are among the most straightforward and efficient methods for creating sp3-rich cyclic systems from simple, readily available arenes. These reactions have been widely applied in the total synthesis of natural products, medicinal chemistry, and material sciences. The fruitful development of dearomatization strategies and methodologies targeting single aromatic substrate over the past decades has paved the way for more sophisticated multiple dearomatization processes, which offer greater advantages in constructing molecular complexity. Double dearomatization reactions have made significant pioneering strides in recent years. This review will provide an overview of the strategies and detailed examples of multiple dearomatization reactions involving various aromatic compounds, along with a discussion of the related mechanisms and the major challenges that remain in this intriguing yet formidable field.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
10
|
Sheng X, Yang L, Han JY, Yu X, Cui HL. CuI-Catalyzed Dearomatization/Peroxidation/Cyclization Cascade of Pyrrole-Tethered Indoles. J Org Chem 2025; 90:3639-3652. [PMID: 40014766 DOI: 10.1021/acs.joc.4c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A mild CuI-catalyzed dearomatization/peroxidation/cyclization cascade of pyrrole-tethered indoles has been reached, providing peroxide-incorporated indolizino[8,7-b]indole derivatives in acceptable to good yields (46-76%). Dehydrogenated peroxide can be obtained by the use of a FeCl3/TBHP (tBuOOH)/2,2,2-trifluoroethanol (TFE) system at 50 °C.
Collapse
Affiliation(s)
- Xue Sheng
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Liu Yang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Jia-Yi Han
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Xin Yu
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
11
|
Zhou J, Sheng X, Jiang M, Cui HL. FeCl 3-catalyzed oxidative diselenylation of pyrrole-tethered indoles. Org Biomol Chem 2025; 23:2254-2262. [PMID: 39887177 DOI: 10.1039/d4ob01929f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
A mild and efficient FeCl3-catalyzed oxidative diselenylation of pyrrole-tethered indoles has been achieved by using RSeSeR as the source of selenium and m-chloroperoxybenzoic acid (mCPBA) as the oxidant (17-70% yields). In addition, this selenylation reaction system can be expanded to the functionalization of tryptophan derivatives and melatonin at the C-2 position of the indole moiety (55-58% yields).
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| | - Xue Sheng
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| | - Man Jiang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| |
Collapse
|
12
|
Sayapin YA, Gusakov EA, Tupaeva IO, Dubonosov AD, Dorogan IV, Tkachev VV, Goncharova AS, Shilov GV, Kuznetsova NS, Filippova SY, Krasnikova TA, Boumber YA, Maksimov AY, Aldoshin SM, Minkin VI. Synthesis, structure, ionochromic and cytotoxic properties of new 2-(indolin-2-yl)-1,3-tropolones. Beilstein J Org Chem 2025; 21:358-368. [PMID: 39996166 PMCID: PMC11849549 DOI: 10.3762/bjoc.21.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
The acid-catalyzed reaction of benzo[e(g)] derivatives of 2,3,3-trimethylindolenines with o-chloranil leads to new 2-(benzo[e(g)]indolin-2-yl)-5,6,7-trichloro-1,3-tropolones and 2-(benzo[e(g)]indolin-2-yl)-4,5,6,7-tetrachloro-1,3-tropolones. Based on the results of PBE0/6-311+G(d,p) calculations, the structural and energetic characteristics of the tautomeric forms of the obtained 1,3-tropolones were determined. The structure of 2-(3,3-dimethyl-3H-benzo[g]indolin-2-yl)-5,6,7-trichloro-1,3-tropolone was determined by X-ray diffraction analysis. The compounds obtained are capable of switching emission at 420-440 nm and 476-530 nm upon successive exposure to CN- and Hg2+ ions in an acetonitrile solution. 2-(1,1-Dimethyl-1H-benzo[e]indolin-2-yl)-5,6,7-trichloro-1,3-tropolone exhibited high in vitro cytotoxic activity against A431 skin cancer and H1299 lung cancer cell lines.
Collapse
Affiliation(s)
- Yurii A Sayapin
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russian Federation
| | - Eugeny A Gusakov
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Inna O Tupaeva
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Alexander D Dubonosov
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russian Federation
| | - Igor V Dorogan
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Valery V Tkachev
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Anna S Goncharova
- National Medical Research Center of Oncology, Rostov-on-Don 344037, Russian Federation
| | - Gennady V Shilov
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Natalia S Kuznetsova
- National Medical Research Center of Oncology, Rostov-on-Don 344037, Russian Federation
| | - Svetlana Y Filippova
- National Medical Research Center of Oncology, Rostov-on-Don 344037, Russian Federation
| | - Tatyana A Krasnikova
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Yanis A Boumber
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russian Federation
- O'Neil Comprehensive Cancer Center at University of Alabama at Birmingham, Department of Medicine, Section of Hematology/Oncology, Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Alexey Y Maksimov
- National Medical Research Center of Oncology, Rostov-on-Don 344037, Russian Federation
| | - Sergey M Aldoshin
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Vladimir I Minkin
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| |
Collapse
|
13
|
Zhang SX, Long L, Li Z, He YM, Li S, Chen H, Hao W, Fan QH. Rhodium-Catalyzed Homogeneous Asymmetric Hydrogenation of Naphthol Derivatives. J Am Chem Soc 2025; 147:5197-5211. [PMID: 39879104 DOI: 10.1021/jacs.4c15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Due to their strong aromaticity and difficulties in chemo-, regio-, and enantioselectivity control, asymmetric hydrogenation of naphthol derivatives to 1,2,3,4-tetrahydronaphthols has remained a long-standing challenge. Herein, we report the first example of homogeneous asymmetric hydrogenation of naphthol derivatives catalyzed by tethered rhodium-diamine catalysts, affording a wide array of optically pure 1,2,3,4-tetrahydronaphthols in high yields with excellent regio-, chemo-, and enantioselectivities (up to 98% yield and >99% ee). Mechanistic studies with experimental and computational approaches reveal that fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) plays vital roles in the control of reactivity and selectivity, and 1-naphthol is reduced via a cascade reaction pathway, including dearomative tautomerization, 1,4-hydride addition, and 1,2-hydride addition in sequence. A novel synergistic activation mode was proposed in which HFIP assists a synergistic activation of both the hydrogen molecule and naphthol in the presence of a base, and the in situ-generated fleeting keto tautomer is immediately trapped and reduced by the Rh(III)-H species before it escapes from the solvent cage. This protocol provides a straightforward and practical pathway for the synthesis of key intermediates for several chiral drugs. Particularly, optically pure Nadolol, a drug for the treatment of hypertension, angina pectoris, congestive heart failure, and certain arrhythmias, is enantioselectively synthesized for the first time.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Linhong Long
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zeyu Li
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Mei He
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Shan Li
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Wei Hao
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Qing-Hua Fan
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Lei J, Xu ZG. Reaction strategies for the meta-selective functionalization of pyridine through dearomatization. Mol Divers 2025; 29:849-869. [PMID: 38647989 DOI: 10.1007/s11030-024-10861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The pyridine moiety is a crucial structural component in various pharmaceuticals. While the direct ortho- and para-functionalization of pyridines is relatively straightforward, the meta-selective C-H functionalization remains a significant challenge. This review highlights dearomatization strategies as a key area of interest in expanding the application of meta-C-H functionalization of pyridines. Dearomatization enables the meta-functionalization through various catalytic methods that directly generate dearomatization products, and some products can be rearomatized back to pyridine derivatives. Furthermore, this article also covers the dearomatization of multiple positions of pyridine in the synthesis of polycyclic compounds. It offers a comprehensive overview of the latest advancements in dearomatization at different positions of pyridine, aiming to provide a valuable resource for researchers in this field. It also highlights the advantages and limitations of existing technologies, aiming to inform a broader audience about this important field and foster its future development.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
15
|
Zhang X, Song Q, Liu S, Sivaguru P, Liu Z, Yang Y, Ning Y, Anderson EA, de Ruiter G, Bi X. Asymmetric dearomative single-atom skeletal editing of indoles and pyrroles. Nat Chem 2025; 17:215-225. [PMID: 39609530 DOI: 10.1038/s41557-024-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
Heterocycle skeletal editing has recently emerged as a powerful tactic for achieving heterocycle-to-heterocycle transmutation without the need for multistep de novo heterocycle synthesis. However, the enantioselective skeletal editing of heteroarenes through single-atom logic remains challenging. Here we report the enantiodivergent dearomative skeletal editing of indoles and pyrroles via an asymmetric carbon-atom insertion, using trifluoromethyl N-triftosylhydrazones as carbene precursors. This strategy provides a straightforward methodology to access enantiomerically enriched six-membered N-heterocycles containing a trifluoromethylated quaternary stereocentre from planar N-heteroarenes. The synthetic utility of this enantiodivergent methodology was demonstrated by a broad evaluation of reaction scope, product derivatization and concise syntheses of drug analogues. Mechanistic studies reveal that the excellent asymmetric induction arises from the initial cyclopropanation step. The asymmetric single-atom insertion strategy is expected to have a broad impact on the field of single-atom skeletal editing and catalytic asymmetric dearomatization of aromatic compounds.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | | | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yongyue Ning
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Edward A Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Matsui K, Uyanik M, Ishihara K. Electrochemical oxidative dearomatization of electron-deficient phenols using Br +/Br - catalysis. Chem Commun (Camb) 2025; 61:2075-2078. [PMID: 39790034 DOI: 10.1039/d4cc06472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
An electrochemical method for the oxidative dearomatization of electron-deficient phenols by employing tetrabutylammonium bromide as a mediator under aqueous biphasic conditions is reported. This approach represents a safer alternative to the use of stoichiometric chemical oxidants and enables oxidative dearomative spirolactonization and spiroetherification reactions. Compared to previous approaches based on direct electrolysis, this strategy expands the substrate scope to electron-deficient phenols. Cyclic-voltammetry analysis suggests that the bromide ions might be oxidized to Br2 or Br3- ions that are in equilibrium with the catalytically active hypobromite under aqueous conditions.
Collapse
Affiliation(s)
- Kai Matsui
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| |
Collapse
|
17
|
Liu X, Zhu B, Chu A, Wang R. Organocatalyzed Enantioselective Double Dearomatization of Tricyclic Phenols and Alkoxybenzenes. Org Lett 2024; 26:10827-10832. [PMID: 39641758 DOI: 10.1021/acs.orglett.4c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
To advance more efficient dearomatization approaches, we present herein an organocatalyzed asymmetric double dearomatization reaction of tricyclic phenols and alkoxybenzenes by leveraging a novel steric hindrance-regulated dearomatization strategy for nonfunctionalized phenols. This protocol allows the efficient synthesis of structurally complex polycyclic diketones with four tertiary carbon centers under mild conditions while also showcasing the potential of multiple dearomatizations for building intricate molecular frameworks from simple starting materials.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Boyan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Chen L, Li P. Organocatalytic Stereodivergent Dearomatization and N-Acylation of 2-Amino-3-subsituted Indoles. Org Lett 2024; 26:10988-10992. [PMID: 39635880 DOI: 10.1021/acs.orglett.4c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organocatalytic chemo- and enantioselective reactions of 2-amino-3-subsituted indoles have been achieved for the first time. Via asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates, organocatalytic enantioselective dearomatization of 2-amino-3-subsituted indoles afforded an array of enantioenriched 3,3-disubstituted indolin-2-imines bearing a quaternary carbon stereocenter in 34-79% yields with 61-91% ee. With Boc2O as reaction partner, the organocatalytic enantioselective N-acylation of 2-amino-3-subsituted indoles was established to furnish C-N axially chiral products in 22-98% yields with 73-92% ee.
Collapse
Affiliation(s)
- Lunfeng Chen
- School of Chemistry and Chemical Engineering, Heilongjiang Provincial, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
19
|
Kadarauch M, Moss TA, Phipps RJ. Intermolecular Asymmetric Arylative Dearomatization of 1-Naphthols. J Am Chem Soc 2024; 146:34970-34978. [PMID: 39631941 DOI: 10.1021/jacs.4c14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arylative dearomatization forms quaternary stereocenters in cyclic systems with the concomitant introduction of an aromatic ring. Pd-catalyzed arylative dearomatization, which uses conditions analogous to cross-coupling, has emerged as a powerful method in an intramolecular context. But translating this from intramolecular cyclizations to an intermolecular process has proven extremely challenging: examples are scarce, and those that exist have not been rendered enantioselective, despite the potential for broad application in medicinal chemistry and natural product synthesis. We describe a strategy that utilizes attractive interactions between the ligand and substrate to overcome this challenge and promote intermolecular, highly enantioselective arylative dearomatization of naphthols using a broad range of aryl bromide electrophiles. Crucial to success is the use of the readily accessed sulfonated chiral phosphine sSPhos, which we believe engages in attractive electrostatic interactions with the substrate. Not only does sSPhos control enantioselectivity but it also drastically accelerates the reaction, most likely by facilitating the challenging palladation step that initiates dearomatization.
Collapse
Affiliation(s)
- Max Kadarauch
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Thomas A Moss
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Trumpington, Cambridge CB2 0AA, U.K
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
20
|
Sano K, Mori A, Okano K. Three-Component Synthesis of Multiply Functionalized 5,6-Dehydroisoquinuclidines through Dearomatization of Pyridine. J Org Chem 2024; 89:17834-17843. [PMID: 39587924 DOI: 10.1021/acs.joc.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
A three-component synthesis of multiply functionalized 5,6-dehydroisoquinuclidines is described. After the formation of an N-alkylpyridinium salt, Grignard addition led to the formation of the corresponding 1,2-dihydropyridine bearing an alkyl, alkene, aryl, or alkynyl group. Subsequent Diels-Alder reaction with a dienophile provided functionalized dehydroisoquinuclidines in high yields (up to 93%) with endo selectivities (73:27 to >99:1). This reaction was applicable to the synthesis of an N-(4-methoxybenzyl)pyridinium salt, where the 4-methoxybenzyl group was switched to a benzyloxycarbonyl group after the formation of the dehydroisoquinuclidine.
Collapse
Affiliation(s)
- Kenshin Sano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
21
|
Fu W, Fu Y, Zhao Y, Wang H, Liu P, Yang Y. A metalloenzyme platform for catalytic asymmetric radical dearomatization. Nat Chem 2024; 16:1999-2008. [PMID: 39198700 PMCID: PMC11840339 DOI: 10.1038/s41557-024-01608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Catalytic asymmetric dearomatization represents a powerful means to convert flat aromatic compounds into stereochemically well-defined three-dimensional molecular scaffolds. Using new-to-nature metalloredox biocatalysis, we describe an enzymatic strategy for catalytic asymmetric dearomatization via a challenging radical mechanism that has eluded small-molecule catalysts. Enabled by directed evolution, new-to-nature radical dearomatases P450rad1-P450rad5 facilitated asymmetric dearomatization of a broad spectrum of aromatic substrates, including indoles, pyrroles and phenols, allowing both enantioconvergent and enantiodivergent radical dearomatization reactions to be accomplished with excellent enzymatic control. Computational studies revealed the importance of additional hydrogen bonding interactions between the engineered metalloenzyme and the reactive intermediate in enhancing enzymatic activity and enantiocontrol. Furthermore, designer non-ionic surfactants were found to significantly accelerate this biotransformation, providing an alternative means to promote otherwise sluggish new-to-nature biotransformations. Together, this evolvable metalloenzyme platform opens up new avenues to advance challenging catalytic asymmetric dearomatization processes involving free radical intermediates.
Collapse
Affiliation(s)
- Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Huanan Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
22
|
Fu YD, Zhang H, Li BB, Huang L, Xiao X, Wang MC, Wei D, Mei GJ. Azocarboxamide-enabled enantioselective regiodivergent unsymmetrical 1,2-diaminations. Nat Commun 2024; 15:10225. [PMID: 39587096 PMCID: PMC11589106 DOI: 10.1038/s41467-024-54598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Enantioenriched unsymmetrical vicinal diamines are important basic structural motifs. While catalytic asymmetric intermolecular 1,2-diamination of carbon-carbon double bonds represents the most straightforward approach for preparing enantioenriched vicinal-diamine-containing heterocycles, these reactions are often limited to the installation of undifferentiated amino functionalities through metal catalysis and/or the use of stoichiometric amounts of oxidants. Here, we report organocatalytic enantioselective unsymmetrical 1,2-diaminations based on the rational design of a bifunctional 1,2-diamination reagent, namely, azocarboxamides (ACAs). Under the catalysis of chiral phosphoric acid, unsymmetrical 1,2-diaminations of ACAs with various electron-rich double bonds readily occur in a regiodivergent manner. Indoles prefer dual hydrogen-bonding mode to give dearomative (4 + 2) products, and 3-vinylindoles and azlactones are inclined to undergo unsymmetrical 1,2-diamination via the (3 + 2) process. DFT calculations are performed to reveal the reaction mechanism and the origin of the regio- and enantioselectivity. Guided by computational design, we are able to reverse the regioselectivity of the dearomative unsymmetrical 1,2-diamination of indoles using Lewis acid catalysis.
Collapse
Affiliation(s)
- Yun-Dong Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Henan Academy of Sciences, Institute of Chemistry, Zhengzhou, 450046, China
| | - Han Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bei-Bei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Min-Can Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guang-Jian Mei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou, 450001, China.
| |
Collapse
|
23
|
Chu A, Zhu B, Zhang X, Zhu H, Zhang J, Liu X. Catalytic kinetic resolution of helical polycyclic phenols via an organocatalyzed enantioselective dearomative amination reaction. SCIENCE ADVANCES 2024; 10:eadr1628. [PMID: 39576850 PMCID: PMC11584004 DOI: 10.1126/sciadv.adr1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Despite the considerable potential applications for helically chiral molecules across various sectors, their catalytic asymmetric synthesis remains nascent and has seen very limited advancement compared to that of central and axial chiral compounds, primarily owing to the scarcity of available starting materials and the immense challenges associated with achieving stereochemical control. Herein, we report an innovative approach to the facile synthesis and catalytic kinetic resolution of uniquely structured and stereochemically complex helical polycyclic phenols by using a steric hindrance-regulated enantioselective dearomative amination reaction. The distinguished aspects of this method include the exceptional stability of the dearomatized products and impressive versatility of the recovered substrates in the construction of enantioenriched helical frameworks. This work showcases that the strategic incorporation of appropriate steric groups near the reaction site of an electron-rich aromatic compound can indeed enable an interrupted Friedel-Crafts reaction, thus opening an alternate avenue for the study of dearomatization in nonfunctionalized arenes.
Collapse
Affiliation(s)
- Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Boyan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Guo S, Deng W, Xiao X, Xia J, Yang X, Liang Y, Yang Y. Palladium-Catalyzed Dearomative Heck/C(sp 2)-H Activation/Decarboxylative Cyclization of C2-Tethered Indoles. Org Lett 2024; 26:9389-9394. [PMID: 39433510 DOI: 10.1021/acs.orglett.4c03663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Until now, palladium-catalyzed dearomative Heck reactions of indoles were largely limited to β-H elimination and nucleophilic capture of the transient alkyl-Pd(II) species. Herein, we disclose a novel palladium-catalyzed dearomative Heck/C(sp2)-H activation/decarboxylative cyclization of C2-tethered indoles. In this protocol, the alkyl-Pd(II) species formed by dearomatization of C2-tethered indoles is not terminated by common β-H elimination or nucleophilic capture, but rather generates C,C-palladacycle via C-H activation. The latter is intercepted by α-bromoacrylic acids to produce pentacyclic and heptacyclic fused indolines.
Collapse
Affiliation(s)
- Shuyi Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Wenbo Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaochang Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jingru Xia
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
25
|
Liu T, Luo Y, Liu Y. Construction of fused heterocycles by visible-light induced dearomatization of nonactivated arenes. Org Biomol Chem 2024. [PMID: 39469871 DOI: 10.1039/d4ob01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A diverse array of fused [6-6-5] tricyclic heterocycles has been synthesized via the dimerization and dearomative cyclization of benzene derivatives under visible light irradiation. The initiation of the cascade process is likely from aryloxy radicals, engendered through proton-coupled electron transfer by the photoexcited vinylidene ortho-quinone methide (VQM) and a Brønsted base.
Collapse
Affiliation(s)
- Tianyu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yong Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
26
|
Yao CZ, Tu XQ, Zhao ZY, Fan SH, Jiang HJ, Li Q, Yu J. Enantioselective Organocatalyzed Cascade Dearomatizing Spirocycloaddition Reactions of Indole-Ynones. Org Lett 2024; 26:8713-8718. [PMID: 39364785 DOI: 10.1021/acs.orglett.4c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
An intramolecular organocatalytic cascade dearomatizing spirocycloaddition reaction of indole-ynone compounds containing O-silyl-naphthol substituents has been developed with the use of a chiral bifunctional thiourea. This process was able to provide various structurally diverse polycyclic spiroindolines in high yields (up to 98%) with excellent stereoselectivities (>20:1 dr, up to 98% ee) involving the formation of carbonylvinylidene ortho-quinone methide intermediates.
Collapse
Affiliation(s)
- Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Xue-Qin Tu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Zi-Yuan Zhao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Sheng-Hui Fan
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| |
Collapse
|
27
|
Shimose A, Ishigaki S, Sato Y, Nogami J, Toriumi N, Uchiyama M, Tanaka K, Nagashima Y. Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Angew Chem Int Ed Engl 2024; 63:e202403461. [PMID: 38803130 DOI: 10.1002/anie.202403461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Dearomative construction of multiply-fused 2D/3D frameworks, composed of aromatic two-dimensional (2D) rings and saturated three-dimensional (3D) rings, from readily available quinolines has greatly contributed to drug discovery. However, dearomative cycloadditions of quinolines in the presence of photocatalysts usually afford 5,6,7,8-tetrahydroquinoline (THQ)-based polycycles, and dearomative access to 1,2,3,4-THQ-based structures remains limited. Herein, we present a chemo-, regio-, diastereo-, and enantioselective dearomative transformation of quinolines into 1,2,3,4-THQ-based 6-6-4-membered rings without any catalyst, through a combination of nucleophilic addition and borate-mediated [2+2] photocycloaddition. Detailed mechanistic studies revealed that the photoexcited borate complex, generated from quinoline, organolithium, and HB(pin), accelerates the cycloaddition and suppresses the rearomatization that usually occurs in conventional photocycloaddition. Based on our mechanistic analysis, we also developed further photoinduced cycloadditions affording other types of 2D/3D frameworks from isoquinoline and phenanthrene.
Collapse
Affiliation(s)
- Asuha Shimose
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
28
|
He C, Song W, Wei D, Zhao W, Yu Q, Tang J, Ning Y, Murali K, Sivaguru P, de Ruiter G, Bi X. Rhodium-Catalyzed Asymmetric Cyclopropanation of Indoles with N-Triftosylhydrazones. Angew Chem Int Ed Engl 2024:e202408220. [PMID: 39363722 DOI: 10.1002/anie.202408220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Herein we report a general rhodium-catalyzed asymmetric intermolecular dearomative cyclopropanation of indoles using trifluoromethyl N-triftosylhydrazones as carbene precursors. The reaction enables the rapid construction of diverse cyclopropane-fused indolines bearing a trifluoromethylated quaternary stereocenter with high enantioselectivity (up to 99 % ee). This mild method exhibits broad substrate scope, tolerating various functional groups, and can even be utilized for the late-stage diversification of complex bioactive molecules. DFT calculations suggest that the formation of a key zwitterionic intermediate is responsible for the chiral induction. Overall, this approach opens up new possibilities for asymmetric cyclopropanation of challenging aromatic heterocyclic compounds.
Collapse
Affiliation(s)
- Caicai He
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dandan Wei
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Zhao
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qianfei Yu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiaqi Tang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
29
|
Teng MY, Liu DY, Mao SY, Wu X, Chen JH, Zhong MY, Huang FR, Yao QJ, Shi BF. Asymmetric Dearomatization of Indoles through Cobalt-Catalyzed Enantioselective C-H Functionalization Enabled by Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202407640. [PMID: 38898602 DOI: 10.1002/anie.202407640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Photocatalysis holds a pivotal position in modern organic synthesis, capable of inducing novel reactivities under mild and environmentally friendly reaction conditions. However, the merger of photocatalysis and transition-metal-catalyzed asymmetric C-H activation as an efficient and sustainable method for the construction of chiral molecules remains elusive and challenging. Herein, we develop a cobalt-catalyzed enantioselective C-H activation reaction enabled by visible-light photoredox catalysis, providing a synergistic catalytic strategy for the asymmetric dearomatization of indoles with high levels of enantioselectivity (96 % to >99 % ee). Mechanistic studies indicate that the excited photocatalyst was quenched by divalent cobalt species in the presence of Salox ligand, leading to the formation of catalytically active chiral Co(III) complex. Moreover, stoichiometric reactions of cobaltacycle intermediate with indole suggest that the irradiation of visible light also play a critical role in the dearomatization step.
Collapse
Affiliation(s)
- Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - De-Yang Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Shi-Yu Mao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xu Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ming-Yu Zhong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
30
|
Bu F, Deng Y, Xu J, Yang D, Li Y, Li W, Lei A. Electrocatalytic reductive deuteration of arenes and heteroarenes. Nature 2024; 634:592-599. [PMID: 39208847 DOI: 10.1038/s41586-024-07989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incorporation of deuterium in organic molecules has widespread applications in medicinal chemistry and materials science1,2. For example, the deuterated drugs austedo3, donafenib4 and sotyktu5 have been recently approved. There are various methods for the synthesis of deuterated compounds with high deuterium incorporation6. However, the reductive deuteration of aromatic hydrocarbons-ubiquitous chemical feedstocks-to saturated cyclic compounds has rarely been achieved. Here we describe a scalable and general electrocatalytic method for the reductive deuteration and deuterodefluorination of (hetero)arenes using a prepared nitrogen-doped electrode and deuterium oxide (D2O), giving perdeuterated and saturated deuterocarbon products. This protocol has been successfully applied to the synthesis of 13 highly deuterated drug molecules. Mechanistic investigations suggest that the ruthenium-deuterium species, generated by electrolysis of D2O in the presence of a nitrogen-doped ruthenium electrode, are key intermediates that directly reduce aromatic compounds. This quick and cost-effective methodology for the preparation of highly deuterium-labelled saturated (hetero)cyclic compounds could be applied in drug development and metabolism studies.
Collapse
Affiliation(s)
- Faxiang Bu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Yuqi Deng
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Jie Xu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Dali Yang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Wu Li
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
31
|
Liu K, Ruan DJ, Wang XY, Zhong Q, Zhao JK. Catalyst-Free Dearomative Allylboration of Ketones with Benzo[ b]thiophenylmethyl Boronic Acids. J Org Chem 2024; 89:13725-13729. [PMID: 39222483 DOI: 10.1021/acs.joc.4c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel approach to the dearomative allylboration of ketones with benzo[b]thiophenylmethyl boronic acids has been developed. By leveraging the inherent reactivity of the boronic acid unit, this process occurs under mild reaction conditions without the need for a catalyst, leading to the efficient formation of homoallylic tertiary alcohols accompanied by the construction of three-dimensional sulfur-containing alicyclic scaffolds in high yields with excellent stereoselectivities.
Collapse
Affiliation(s)
- Kun Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dao-Jin Ruan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiang-Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jian Ken Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
32
|
Yu X, Zheng C, You SL. Chiral Brønsted Acid-Catalyzed Intramolecular Asymmetric Dearomatization Reaction of Indoles with Cyclobutanones via Cascade Friedel-Crafts/Semipinacol Rearrangement. J Am Chem Soc 2024; 146:25878-25887. [PMID: 39226394 DOI: 10.1021/jacs.4c09814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The highly efficient synthesis of chiral indolines fused with an azabicyclo[2.2.1]heptanone moiety is achieved by an asymmetric dearomatization reaction of indoles with cyclobutanones. A new chiral imidodiphosphorimidate (IDPi) catalyst is synthesized and exhibits extraordinary activity in promoting a cascade Friedel-Crafts/semipinacol rearrangement. Target molecules are prepared in good yields (up to 95%) with excellent enantioselectivity (up to 98% ee) with operational convenience. Combined experimental and computational studies provide detailed mechanistic insights into the energy landscape and origin of the stereochemical induction of the reaction.
Collapse
Affiliation(s)
- Xuan Yu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shanghai-Hong Kong Joint Laboratory of Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
33
|
Kato T, Sahara N, Akagawa S, Uyanik M, Ishihara K. Oxidative Dearomative Coupling of Electron-Deficient Arenols Using Hypohalite Catalysis. Org Lett 2024; 26:7255-7260. [PMID: 39158363 DOI: 10.1021/acs.orglett.4c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
We developed performant in situ hypohalite, especially hypobromite, catalysis for the oxidative dearomatization of low-reactivity electron-deficient arenols. The reaction scope encompasses inter- and intramolecular oxidative dearomative C-O, C-N, and C-C coupling reactions. Notably, using a chiral ammonium countercation, we achieved enantioselective hypobromite catalysis for oxidative dearomative coupling reactions. Mechanistic studies revealed that the reaction mechanisms might differ depending on the halide identity.
Collapse
Affiliation(s)
- Takehiro Kato
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Naoto Sahara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Sho Akagawa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
34
|
Hou L, Yang L, Yang G, Luo Z, Xiao W, Yang L, Wang F, Gong LZ, Liu X, Cao W, Feng X. Catalytic Asymmetric Dearomative [2 + 2] Photocycloaddition/Ring-Expansion Sequence of Indoles with Diversified Alkenes. J Am Chem Soc 2024; 146:23457-23466. [PMID: 38993029 DOI: 10.1021/jacs.4c06780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Developing novel strategies for catalytic asymmetric dearomatization (CADA) reactions is highly valuable. Visible light-mediated photocatalysis is demonstrated to be a powerful tool to activate aromatic compounds for further synthetic transformations. Herein, a catalytic asymmetric dearomative [2 + 2] photocycloaddition/ring-expansion sequence of indoles with simple alkenes was reported, providing a facile access to enantioenriched cyclopenta[b]indoles with good to high yields and enantioselectivities by means of chiral lanthanide photocatalysis. This protocol exhibited a broad substrate scope and good functional group tolerance, as well as potential applications in the synthesis of bioactive molecules. Mechanistic studies, including control experiments, UV-vis absorption spectroscopy, emission spectroscopy, and DFT calculations, were carried out, shedding insights into the reaction mechanism and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gaofei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhe Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Linhan Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610061, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610061, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
35
|
Zhang WW, Feng Z, You SL, Zheng C. Electrophile-Arene Affinity: An Energy Scale for Evaluating the Thermodynamics of Electrophilic Dearomatization Reactions. J Org Chem 2024; 89:11487-11501. [PMID: 39077910 DOI: 10.1021/acs.joc.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rational design and development of organic reactions are lofty goals in synthetic chemistry. Quantitative description of the properties of molecules and reactions by physical organic parameters plays an important role in this regard. In this Article, we report an energy scale, namely, electrophile-arene affinity (EAA), for evaluating the thermodynamics of electrophilic dearomatization reactions, a class of important transformations that can rapidly build up molecular complexity and structural diversity by converting planar aromatic compounds into three-dimensional cyclic molecules. The acquisition of EAA data can be readily achieved by theoretically calculating the enthalpy changes (ΔH) of the hypothetical reactions of various (cationic) electrophiles with aromatic systems (taking the 1-methylnaphthalen-2-olate ion as an example in this study). Linear correlations are found between the calculated ΔH values and established physical organic parameters such as the percentage of buried volume %VBur (steric effect), Hammett's σ or Brown's σ+ (electronic effect), and Mayr's E (reaction kinetics). Careful analysis of the ΔH values leads to the rational design of a dearomative alkynylation reaction using alkynyl hypervalent iodonium reagents as the electrophiles.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shanghai-Hong Kong Joint Laboratory of Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
36
|
Yu YH, Sun G, Zhao D, Wu YK, Yuan H, Wen X, Liu L, Xu QL. Synthesis of C(3) SCF 3-Substituted Pyrrolidinoindoline by P III/P V Redox Catalysis Using CF 3SO 2Cl as Electrophilic CF 3S Reagent. J Org Chem 2024; 89:11588-11592. [PMID: 39097903 DOI: 10.1021/acs.joc.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
This work reports a method for the catalytic synthesis of C(3) SCF3-substituted pyrrolidinindoline using a small-ring organophosphorus-based catalyst and a hydrosilane reductant, with trifluoromethanesulfonyl chloride as the electrophilic SCF3 reagent. This method can drive the conversion of tryptamine to the C(3) SCF3-substituted pyrrolidine indoline. The readily available, inexpensive trifluoromethanesulfonyl chloride could be activated as an electrophilic SCF3 source by PIII/PV redox catalysis and could efficiently participate in the reaction of tryptamines, thus providing various substituted C(3) SCF3-substituted pyrrolidinoindoline in moderate to excellent yields. This presented strategy features a broad substrate scope, and the structure has value for in-depth research.
Collapse
Affiliation(s)
- Yi-Han Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Di Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Yi-Kai Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| |
Collapse
|
37
|
Wang MY, Zeng WL, Chen L, Yuan YF, Li W. Umpolung-Enabled Divergent Dearomative Carbonylations. Angew Chem Int Ed Engl 2024; 63:e202403917. [PMID: 38818640 DOI: 10.1002/anie.202403917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Although dearomative functionalizations enable the direct conversion of flat aromatics into precious three-dimensional architectures, the case for simple arenes remains largely underdeveloped owing to the high aromatic stabilization energy. We herein report a dearomative sequential addition of two nucleophiles to arene π-bonds through umpolung of chromium-arene complexes. This mode enables divergent dearomative carbonylation reactions of benzene derivatives by tolerating various nucleophiles in combination with alcohols or amines under CO-gas-free conditions, thus providing modular access to functionalized esters or amides. The tunable synthesis of 1,3- or 1,4-cyclohexadienes as well as the construction of carbon quaternary centers further highlight the versatility of this dearomatization. Diverse late-stage modifications and derivatizations towards synthetically challenging and bioactive molecules reveal the synthetic utility. A possible mechanism was proposed based on control experiments and intermediate tracking.
Collapse
Affiliation(s)
- Ming-Yang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Long Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Fei Yuan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
38
|
Yin X, Wang X, Song L, Zhang J, Wang X. Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers. Molecules 2024; 29:3677. [PMID: 39125080 PMCID: PMC11314154 DOI: 10.3390/molecules29153677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Organic fluorides are widely used in pharmaceuticals, agrochemicals, material sciences, and other fields due to the special physical and chemical properties of fluorine atoms. The synthesis of alkyl fluorinated compounds bearing multiple contiguous stereogenic centers is the most challenging research area in synthetic chemistry and has received extensive attention from chemists. This review summarized the important research progress in the field over the past decade, including asymmetric electrophilic fluorination and the asymmetric elaboration of fluorinated substrates (such as allylic alkylation reactions, hydrofunctionalization reactions, Mannich addition reactions, Michael addition reactions, aldol addition reactions, and miscellaneous reactions), with an emphasis on synthetic methodologies, substrate scopes, and reaction mechanisms.
Collapse
Affiliation(s)
- Xuemei Yin
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Xihong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Song
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Junxiong Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| |
Collapse
|
39
|
Zhao Z, Li Y, Jia S, Peng L, Zhang Z, Wu F, Wang P, Qin W, Lan Y, Yan H. Catalytic asymmetric functionalization and dearomatization of thiophenes. Chem Sci 2024:d4sc03530e. [PMID: 39156933 PMCID: PMC11325187 DOI: 10.1039/d4sc03530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
The asymmetric synthesis of thiophene-derived compounds, including catalytic asymmetric dearomatization of thiophene and atroposelective synthesis of benzothiophene derivatives, has rarely been reported. In this work, the asymmetric transformation of the thiophene motif is investigated. Through the rational design of substrates with a thiophene structure, by using the vinylidene ortho-quinone methide (VQM) intermediate as a versatile tool, axially chiral naphthyl-benzothiophene derivatives and thiophene-dearomatized chiral spiranes were obtained in high yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Zhengxing Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yingxin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Shiqi Jia
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chongqing University FuLing Hospital, Chongqing University Chongqing 408000 P. R. China
| | - Zian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Fengdi Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 400030 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
40
|
Chauhan S, Swamy KCK. Phosphine vs DBU-Catalyzed Annulation Reactions of β'-Acetoxy Allenoates with Acyl-Tethered Benzothiazole Bisnucleophiles: (4 + 3) or (4 + 1) vs (3 + 3) Annulation. J Org Chem 2024; 89:10816-10830. [PMID: 39007762 DOI: 10.1021/acs.joc.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dearomative annulation reaction of acyl-tethered benzothiazole bisnucleophiles with β'-acetoxy allenoates by switching the Lewis base is developed. The DBU-catalyzed reaction gives benzothiazole-fused 1,4-dihydropyridine carboxylates by (3 + 3) annulation chemoselectively. By contrast, the PR3-catalyzed reaction gives benzothiazole-fused azepines by (4 + 3) annulation and cyclopentene carboxylates by (4 + 1) annulation; the ratio of the latter two products depends on the solvent. A possible rationale for the difference in the reactivity, based on the 1,4/1,5-addition of the 2-acyl-tethered benzothiazole to the key phosphonium intermediate, is provided.
Collapse
Affiliation(s)
- Sachin Chauhan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
41
|
Davis CW, Li Y, Zhang Y, Siddiqi Z, Liu P, Sarlah D. Copper-Catalyzed Dearomative trans-1,2-Carboamination. ACS Catal 2024; 14:10132-10137. [PMID: 39981161 PMCID: PMC11839202 DOI: 10.1021/acscatal.4c02656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
We have achieved the arenophile-mediated, copper-catalyzed dearomative trans-1,2-carboamination of nonactivated arenes with alkyl organometallic nucleophiles. This simple and practical procedure was used to prepare diverse, stereochemically rich alkylated cyclohexadienes from readily available arenes. Synthetic utility was demonstrated through the rapid preparation of complex small molecules difficult to access by conventional routes. Finally, we conducted DFT studies to explore the catalytic process, including a study of the reaction pathway and an examination of the divergent regioselectivity observed with substituted arenes.
Collapse
Affiliation(s)
- Christopher W Davis
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yanrong Li
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zohaib Siddiqi
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, , United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Li M, Huang XL, Zhang ZY, Wang Z, Wu Z, Yang H, Shen WJ, Cheng YZ, You SL. Gd(III)-Catalyzed Regio-, Diastereo-, and Enantioselective [4 + 2] Photocycloaddition of Naphthalene Derivatives. J Am Chem Soc 2024; 146:16982-16989. [PMID: 38870424 DOI: 10.1021/jacs.4c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Catalytic asymmetric dearomatization (CADA) reactions have evolved into an efficient strategy for accessing chiral polycyclic and spirocyclic scaffolds from readily available planar aromatics. Despite the significant developments, the CADA reaction of naphthalenes remains underdeveloped. Herein, we report a Gd(III)-catalyzed asymmetric dearomatization reaction of naphthalene with a chiral PyBox ligand via visible-light-enabled [4 + 2] cycloaddition. This reaction features application of a chiral Gd/PyBox complex, which regulates the reactivity and selectivity simultaneously, in excited-state catalysis. A wide range of functional groups is compatible with this protocol, giving the highly enantioenriched bridged polycycles in excellent yields (up to 96%) and selectivity (up to >20:1 chemoselectivity, >20:1 dr, >99% ee). The synthetic utility is demonstrated by a 2 mmol scale reaction, removal of directing group, and diversifications of products. Preliminary mechanistic experiments are performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zuo-Yu Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhiping Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhuo Wu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
43
|
Wang L, Lv J, Zhang Y, Yang D. Asymmetric magnesium catalysis for important chiral scaffold synthesis. Org Biomol Chem 2024; 22:4778-4800. [PMID: 38809153 DOI: 10.1039/d4ob00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Magnesium catalysts are widely used in catalytic asymmetric reactions, and a series of catalytic strategies have been developed in recent years. Herein, in this review, we have tried to summarize asymmetric magnesium catalysis for the synthesis of important chiral scaffolds. Several important optically active motifs that are present in classic chiral ligands or natural products synthesized by Mg(II) catalytic methods are briefly discussed. Moreover, the representative mechanisms for different magnesium catalytic strategies, including in situ generated magnesium catalysts, are also shown in relation to synthetic routes for obtaining these important chiral scaffolds.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jiaming Lv
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Yongshuo Zhang
- Scientific Research and Innovation Expert Studio of China Inspection and Certification Group Liaoning Co., Ltd, Dalian, 116039, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
44
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
45
|
Subba P, Sahoo SR, Khajuria C, Singh VK. Enantioselective Aminative Dearomatization of Indoles via Electrophilic 1,6-Addition of p-Quinone Diimides ( p-QDIs). Org Lett 2024; 26:4932-4937. [PMID: 38825803 DOI: 10.1021/acs.orglett.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Herein we report the first use of p-quinone diimide for the aminative dearomatization of 2,3-disubstituted indoles to furnish C3 aza-quaternary chiral indolenines. This approach, which proceeds via an electrophilic 1,6-addition of p-quinone diimide, allows the synthesis of an array of optically active aza-quaternary indolenines with high yields and excellent enantioselectivities. A one-pot approach of the same has also been established to further improve the synthetic accessibility of this protocol.
Collapse
Affiliation(s)
- Parbat Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Sushree Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Chhavi Khajuria
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
46
|
Yang TT, Zhang YQ, Xie MS, Tian Y, Wang DC, Guo HM. Dearomative [2 + 1] Spiroannulation of Bromophenols with Electron-Deficient Alkenes. J Org Chem 2024. [PMID: 38757188 DOI: 10.1021/acs.joc.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A base-assisted dearomative [2 + 1] spiroannulation of p/o-bromophenols with activated olefins (methylenemalonates) to construct various cyclopropyl spirocyclohexadienone skeletons is reported. Furthermore, several other halophenols (X = Cl, I) were also tolerated in this process. Control experiments reveal a dearomative Michael addition of phenols at their halogenated positions to methylenemalonates, followed by intramolecular radical-based SRN1 dehalogenative cyclopropanation. However, according to the density functional theory (DFT) calculations, an SN2 dehalogenative cyclopropanation with the same low activation energy barrier should not be excluded. The utility of this method is showcased by gram-scale syntheses and transformations of the dearomatized products.
Collapse
Affiliation(s)
- Ting-Ting Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yun-Qiao Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ming-Sheng Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong-Chao Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
47
|
Wang B, Gao JK, Sun S, Shen ZL, Yang YF, Liang RX, Jia YX. Pd-Catalyzed Asymmetric Intramolecular Dearomatizing Reductive Heck Reaction of Indoles. Org Lett 2024; 26:3739-3743. [PMID: 38679883 DOI: 10.1021/acs.orglett.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
An enantioselective Pd-catalyzed intramolecular dearomative reductive Heck reaction of N-(o-bromoaryl) indole-3-carboxamide is developed. By employing Pd(dba)2/SPINOL-based phosphoramidite as the chiral catalyst and HCO2Na as the hydride source, a series of enantioenriched spiro indolines bearing vicinal stereocenters were afforded in moderate to good yields with excellent enantioselectivities. The reductive Heck reaction of formal tetrasubstituted alkene bearing β-hydrogens is therefore realized by inhibiting β-H elimination.
Collapse
Affiliation(s)
- Bi Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jing-Kun Gao
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Shuo Sun
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Zhen-Lu Shen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
48
|
Chaturvedi AK, Shukla RK, Volla CMR. Rh(iii)-catalyzed sp 3/sp 2-C-H heteroarylations via cascade C-H activation and cyclization. Chem Sci 2024; 15:6544-6551. [PMID: 38699273 PMCID: PMC11062110 DOI: 10.1039/d3sc06955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
The development of an efficient strategy for facile access to quinoline-based bis-heterocycles holds paramount importance in medicinal chemistry. Herein, we describe a unified approach for accessing 8-(indol-3-yl)methyl-quinolines by integrating Cp*Rh(iii)-catalyzed C(sp3)-H bond activation of 8-methylquinolines followed by nucleophilic cyclization with o-ethynylaniline derivatives. Remarkably, methoxybiaryl ynones under similar catalytic conditions delivered quinoline tethered spiro[5.5]enone scaffolds via a dearomative 6-endo-dig C-cyclization. Moreover, leveraging this method for C8(sp2)-H bond activation of quinoline-N-oxide furnished biologically relevant oxindolyl-quinolines. This reaction proceeds via C(sp2)-H bond activation, regioselective alkyne insertion, oxygen-atom-transfer (OAT) and intramolecular nucleophilic cyclization in a cascade manner. One C-C, one C-N and one C[double bond, length as m-dash]O bond were created with concomitant formation of a quaternary center.
Collapse
Affiliation(s)
- Atul K Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
49
|
Bag D, Sawant SD. Diastereoselective synthesis of functionalized spiroindolines via intramolecular ipso-iodocyclization/nucleophile addition cascade reactions of indole-tethered ynones. Org Biomol Chem 2024; 22:3415-3419. [PMID: 38595312 DOI: 10.1039/d4ob00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Herein, we describe a highly diastereoselective approach for synthesizing polyfunctionalized spiroindolines from indolyl-ynones involving an ipso-iodocyclization/nucleophile addition cascade. The developed strategy allows the formation of a spirocyclic core and the installation of two functional groups in a single operation. Also this strategy is accompanied by the generation of two C-C and one C-I bonds and two contiguous stereocenters.
Collapse
Affiliation(s)
- Debojyoti Bag
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| |
Collapse
|
50
|
Zhang Z, Li X, Song Q, Li Y, Tian X, Ali S, Yao Y, Li P, Wang Z, Zheng H. Asymmetric Total Synthesis of (+)-Chuanxiongnolide L1 via a Stereoselective Oxidative Dearomatization/Diels-Alder Strategy. Org Lett 2024; 26:2928-2933. [PMID: 38551465 DOI: 10.1021/acs.orglett.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The first asymmetric total synthesis of chuanxiongnolide L1 was achieved in 16 steps and 1.9% overall yield by employing a bioinspired chiral auxiliary strategy. The key steps involving asymmetric oxidative dearomatization of chiral amino ether and subsequent asymmetric Diels-Alder reaction of the resulting masked chiral ortho-benzoquinone were adopted.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiuhuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Qingyan Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuerong Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiqing Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Sajjad Ali
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuan Yao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Pengfei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengshen Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaiji Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|