1
|
Feng H, Kwok CK. Spectroscopic analysis reveals the effect of hairpin loop formation on G-quadruplex structures. RSC Chem Biol 2022; 3:431-435. [PMID: 35441140 PMCID: PMC8984947 DOI: 10.1039/d2cb00045h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
We study and uncover the effect of hairpin structures in loops of G-quadruplexes using spectroscopic methods. Notably, we show that the sequence, structure, and position of the hairpin loop control the spectroscopic properties of long loop G-quadruplexes, and highlight that intrinsic fluorescence can be used to monitor the formation of non-canonical G-quadruplexes. This work studies the intrinsic fluorescence properties of long-loop G-quadruplexes (G4) with hairpin loop structures, revealing the unique information of G4 provided by intrinsic fluorescence compared to other spectroscopic assays.![]()
Collapse
Affiliation(s)
- Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
LaCasse Z, Briscoe JR, Nesterov EE, Nesterova IV. Multidimensional Tunability of Nucleic Acids Enables Sensing over Unknown Backgrounds. Anal Chem 2019; 91:14275-14280. [PMID: 31651140 DOI: 10.1021/acs.analchem.9b02420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A longstanding challenge in quantitative analysis is the relationship between a sensor's dynamic range and a background: the response range must align with the target's background value. If this condition is not met, a reliable measurement is impossible. The requirement is especially critical for sensing systems displaying sharp responses. In this work, we have solved the problem of response range/background misalignment via design of sensing systems that adjust their response to actual unknown backgrounds. The sensing systems are based on nucleic acid scaffolds: due to an intrinsic trait of multidimensional tunability, the sensors can assess the actual background and adjust response range accordingly. We established a general methodology and demonstrated, as a proof-of-concept, a practically meaningful example of detecting very small changes in proton concentrations over unknown aqueous backgrounds using a DNA i-motif sensor. Owing to multidimensional tunability of a DNA i-motif, this sensor could reliably measure changes in proton concentration that are 3 orders of magnitude below currently available methodologies.
Collapse
Affiliation(s)
- Zane LaCasse
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - James R Briscoe
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Evgueni E Nesterov
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States.,Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| |
Collapse
|
3
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
4
|
Chan CY, Umar MI, Kwok CK. Spectroscopic analysis reveals the effect of a single nucleotide bulge on G-quadruplex structures. Chem Commun (Camb) 2019; 55:2616-2619. [PMID: 30724299 DOI: 10.1039/c8cc09929d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we investigate and reveal the effect of bulge position and bulge identity on G-quadruplexes using label-free spectroscopic techniques. Notably, we report significant differences in the spectroscopic features of bulged DNA and RNA G-quadruplexes, and demonstrate that intrinsic fluorescence can be generally used to detect the formation of canonical and non-canonical G-quadruplexes.
Collapse
Affiliation(s)
- Chun-Yin Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | | | | |
Collapse
|
5
|
Majerová T, Streckerová T, Bednárová L, Curtis EA. Sequence Requirements of Intrinsically Fluorescent G-Quadruplexes. Biochemistry 2018; 57:4052-4062. [PMID: 29898365 DOI: 10.1021/acs.biochem.8b00252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-Quadruplexes are four-stranded nucleic acid structures typically stabilized by GGGG tetrads. These structures are intrinsically fluorescent, which expands the known scope of nucleic acid function and raises the possibility that they could eventually be used as signaling components in label-free sensors constructed from DNA or RNA. In this study, we systematically investigated the effects of mutations in tetrads, loops, and overhanging nucleotides on the fluorescence intensity and maximum emission wavelength of >500 sequence variants of a reference DNA G-quadruplex. Some of these mutations modestly increased the fluorescence intensity of this G-quadruplex, while others shifted its maximum emission wavelength. Mutations that increased the fluorescence intensity were distinct from those that increased the maximum emission wavelength, suggesting a trade-off between these two biochemical properties. The fluorescence intensity and maximum emission wavelength were also correlated with multimeric state: the most fluorescent G-quadruplexes were monomers, while those with the highest maximum emission wavelengths typically formed dimeric structures. Oligonucleotides containing multiple G-quadruplexes were in some cases more fluorescent than those containing a single G-quadruplex, although this depended on the length and sequence of the spacer linking the G-quadruplexes. These experiments provide new insights into the properties of fluorescent G-quadruplexes and should aid in the development of improved label-free nucleic acid sensors.
Collapse
Affiliation(s)
- Tat'ána Majerová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Prague 166 10 , Czech Republic
| | - Tereza Streckerová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Prague 166 10 , Czech Republic.,Department of Biochemistry and Microbiology , University of Chemistry and Technology , Prague 166 10 , Czech Republic
| | - Lucie Bednárová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Prague 166 10 , Czech Republic
| | - Edward A Curtis
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Prague 166 10 , Czech Republic
| |
Collapse
|
6
|
Hu S, Li N, Liu F. Combining cooperativity with sequestration: a novel strategy for discrimination of single nucleotide variants. Chem Commun (Camb) 2018. [PMID: 29528359 DOI: 10.1039/c8cc00838h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a novel strategy for the discrimination of single nucleotide variants (SNVs) by combining cooperativity with sequestration, which displays remarkably high specificity (discrimination factors ranging from 67 to 618 with a median of 194) against 12 model SNVs and can be easily integrated with PCR amplification to detect KRAS G12D mutation.
Collapse
Affiliation(s)
- Shichao Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
7
|
Kolesnikova S, Hubálek M, Bednárová L, Cvacka J, Curtis EA. Multimerization rules for G-quadruplexes. Nucleic Acids Res 2017; 45:8684-8696. [PMID: 28911118 PMCID: PMC5587800 DOI: 10.1093/nar/gkx637] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
G-quadruplexes can multimerize under certain conditions, but the sequence requirements of such structures are not well understood. In this study, we investigated the ability of all possible variants of the central tetrad in a monomeric, parallel-strand G-quadruplex to form higher-order structures. Although most of these 256 variants existed primarily as monomers under the conditions of our screen, ∼10% formed dimers or tetramers. These structures could form in a wide range of monovalent and divalent metal ions, and folding was highly cooperative in both KCl and MgCl2. As was previously shown for G-quadruplexes that bind GTP and promote peroxidase reactions, G-quadruplexes that form dimers and tetramers have distinct sequence requirements. Some mutants could also form heteromultimers, and a second screen was performed to characterize the sequence requirements of these structures. Taken together, these experiments provide new insights into the sequence requirements and structures of both homomultimeric and heteromultimeric G-quadruplexes.
Collapse
Affiliation(s)
- Sofia Kolesnikova
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Martin Hubálek
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Lucie Bednárová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Josef Cvacka
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Edward A Curtis
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
8
|
Kwok CK, Merrick CJ. G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol 2017; 35:997-1013. [PMID: 28755976 DOI: 10.1016/j.tibtech.2017.06.012] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
Guanine (G)-rich sequences in nucleic acids can assemble into G-quadruplex structures that involve G-quartets linked by loop nucleotides. The structural and topological diversity of G-quadruplexes have attracted great attention for decades. Recent methodological advances have advanced the identification and characterization of G-quadruplexes in vivo as well as in vitro, and at a much higher resolution and throughput, which has greatly expanded our current understanding of G-quadruplex structure and function. Accumulating knowledge about the structural properties of G-quadruplexes has helped to design and develop a repertoire of molecular and chemical tools for biological applications. This review highlights how these exciting methods and findings have opened new doors to investigate the potential functions and applications of G-quadruplexes in basic and applied biosciences.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | - Catherine J Merrick
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Keele, Staffordshire, UK.
| |
Collapse
|
9
|
Sherlock ME, Rumble CA, Kwok CK, Breffke J, Maroncelli M, Bevilacqua PC. Steady-State and Time-Resolved Studies into the Origin of the Intrinsic Fluorescence of G-Quadruplexes. J Phys Chem B 2016; 120:5146-58. [PMID: 27267433 DOI: 10.1021/acs.jpcb.6b03790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretches of guanines in DNA and RNA can fold into guanine quadruplex structures (GQSs). These structures protect telomeres in DNA and regulate gene expression in RNA. GQSs have an intrinsic fluorescence that is sensitive to different parameters, including loop sequence and length. However, the dependence of GQS fluorescence on solution and sequence parameters and the origin of this fluorescence are poorly understood. Herein we examine effects of dangling nucleotides and cosolute conditions on GQS fluorescence using both steady-state and time-resolved fluorescence spectroscopy. The quantum yield of dGGGTGGGTGGGTGGG, termed "dG3T", is found to be modest at ∼2 × 10(-3). Nevertheless, dG3T and its variants are significantly brighter than the common nucleic acid fluorophore 2-aminopurine (2AP) largely due to their sizable extinction coefficients. Dangling 5'-end nucleotides generally reduce emission and blue-shift the resultant spectrum, whereas dangling 3'-end nucleotides slightly enhance fluorescence, particularly on the red side of the emission band. Time-resolved fluorescence decays are broadly distributed in time and require three exponential components for accurate fits. Time-resolved emission spectra suggest the presence of two emitting populations centered at ∼330 and ∼390 nm, with the redder component being a well-defined long-lived (∼1 ns) entity. Insights into GQS fluorescence obtained here should be useful in designing brighter intrinsic RNA and DNA quadruplexes for use in label-free biotechnological applications.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher A Rumble
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Chun Kit Kwok
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Jens Breffke
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Abstract
G-quadruplexes are non-canonical secondary structures found in guanine rich regions of DNA and RNA. Reports have indicated the wide occurrence of RNA G-quadruplexes across the transcriptome in various regions of mRNAs and non-coding RNAs. RNA G-quadruplexes have been implicated in playing an important role in translational regulation, mRNA processing events and maintenance of chromosomal end integrity. In this review, we summarize the structural and functional aspects of RNA G-quadruplexes with emphasis on recent progress to understand the protein/trans factors binding these motifs. With the revelation of the importance of these secondary structures as regulatory modules in biology, we have also evaluated the various advancements towards targeting these structures and the challenges associated with them. Apart from this, numerous potential applications of this secondary motif have also been discussed.
Collapse
Affiliation(s)
- Prachi Agarwala
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | | | | |
Collapse
|
11
|
Crenshaw E, Leung BP, Kwok CK, Sharoni M, Olson K, Sebastian NP, Ansaloni S, Schweitzer-Stenner R, Akins MR, Bevilacqua PC, Saunders AJ. Amyloid Precursor Protein Translation Is Regulated by a 3'UTR Guanine Quadruplex. PLoS One 2015; 10:e0143160. [PMID: 26618502 PMCID: PMC4664259 DOI: 10.1371/journal.pone.0143160] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
A central event in Alzheimer’s disease is the accumulation of amyloid β (Aβ) peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP). APP overexpression leads to increased Aβ generation and Alzheimer’s disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aβ levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aβ levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes), non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3’UTR (untranslated region) at residues 3008–3027 (NM_201414.2). This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3’UTR G-quadruplex as a novel mechanism regulating APP expression.
Collapse
Affiliation(s)
- Ezekiel Crenshaw
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Brian P. Leung
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Chemistry, Drexel University, Philadelphia, PA, United States of America
| | - Chun Kit Kwok
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
- Department of Biochemistry & Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michal Sharoni
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Kalee Olson
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
| | - Neeraj P. Sebastian
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Sara Ansaloni
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | | | - Michael R. Akins
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
- Department of Biochemistry & Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Aleister J. Saunders
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nesterova IV, Briscoe JR, Nesterov EE. Rational Control of Folding Cooperativity in DNA Quadruplexes. J Am Chem Soc 2015; 137:11234-7. [PMID: 26305404 DOI: 10.1021/jacs.5b06645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Availability of basic tools for engineering molecular systems with precisely defined properties is crucial toward progress in development of new responsive materials. Among such materials are systems capable of generating an ultrasensitive response (i.e., large relative changes in output in response to small changes in input). Herein, we focus on a rational design of DNA quadruplex based structures as ultrasensitive response elements. In particular, we demonstrate how addition of allosteric guiding elements can be engineered into H(+)-responsive i-motif structure to yield maximized response sensitivity.
Collapse
Affiliation(s)
- Irina V Nesterova
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - James R Briscoe
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Evgueni E Nesterov
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
13
|
Kwok CK, Balasubramanian S. Targeted Detection of G-Quadruplexes in Cellular RNAs. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Kwok CK, Balasubramanian S. Targeted Detection of G-Quadruplexes in Cellular RNAs. Angew Chem Int Ed Engl 2015; 54:6751-4. [PMID: 25907625 PMCID: PMC4510783 DOI: 10.1002/anie.201500891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Indexed: 02/03/2023]
Abstract
The G-quadruplex (G4) is a non-canonical nucleic acid structure which regulates important cellular processes. RNA G4s have recently been shown to exist in human cells and be biologically significant. Described herein is a new approach to detect and map RNA G4s in cellular transcripts. This method exploits the specific control of RNA G4-cation and RNA G4-ligand interactions during reverse transcription, by using a selective reverse transcriptase to monitor RNA G4-mediated reverse transcriptase stalling (RTS) events. Importantly, a ligation-amplification strategy is coupled with RTS, and enables detection and mapping of G4s in important, low-abundance cellular RNAs. Strong evidence is provided for G4 formation in full-length cellular human telomerase RNA, offering important insights into its cellular function.
Collapse
Affiliation(s)
- Chun Kit Kwok
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Shankar Balasubramanian
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW (UK).
| |
Collapse
|
15
|
Kwok CK, Ding Y, Shahid S, Assmann SM, Bevilacqua PC. A stable RNA G-quadruplex within the 5'-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem J 2015; 467:91-102. [PMID: 25793418 DOI: 10.1042/bj20141063] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Guanine quadruplex structures (GQSs) play important roles in the regulation of gene expression and cellular processes. Recent studies provide strong evidence for the formation and function of DNA and RNA GQSs in human cells. However, whether GQSs form and are functional in plants remains essentially unexplored. On the basis of circular dichroism (CD)-detected titration, UV-detected melting, in-line probing (ILP) and reporter gene assay studies, we report the first example of a plant RNA GQS that inhibits translation. This GQS is located within the 5'-UTR of the ATAXIA TELANGIECTASIA-MUTATED AND RAD3-RELATED (ATR) mRNA of Arabidopsis thaliana (mouse-ear cress). We show that this GQS is highly stable and is thermodynamically favoured over a competing hairpin structure in the 5'-UTR at physiological K⁺ and Mg²⁺ concentrations. Results from ILP reveal the secondary structure of the RNA and support formation of the GQS in vitro in the context of the complete 5'-UTR. Transient reporter gene assays performed in living plants reveal that the GQS inhibits translation but not transcription, implicating this GQS as a translational repressor in vivo. Our results provide the first complete demonstration of the formation and function of a regulatory RNA GQS in plants and open new avenues to explore potential functional roles of GQS in the plant kingdom.
Collapse
Affiliation(s)
- Chun Kit Kwok
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yiliang Ding
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Saima Shahid
- †Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Sarah M Assmann
- †Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Philip C Bevilacqua
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
16
|
Intrinsic disorder as a generalizable strategy for the rational design of highly responsive, allosterically cooperative receptors. Proc Natl Acad Sci U S A 2014; 111:15048-53. [PMID: 25288724 DOI: 10.1073/pnas.1410796111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Control over the sensitivity with which biomolecular receptors respond to small changes in the concentration of their target ligand is critical for the proper function of many cellular processes. Such control could likewise be of utility in artificial biotechnologies, such as biosensors, genetic logic gates, and "smart" materials, in which highly responsive behavior is of value. In nature, the control of molecular responsiveness is often achieved using "Hill-type" cooperativity, a mechanism in which sequential binding events on a multivalent receptor are coupled such that the first enhances the affinity of the next, producing a steep, higher-order dependence on target concentration. Here, we use an intrinsic-disorder-based mechanism that can be implemented without requiring detailed structural knowledge to rationally introduce this potentially useful property into several normally noncooperative biomolecules. To do so, we fabricate a tandem repeat of the receptor that is destabilized (unfolded) via the introduction of a long, unstructured loop. The first binding event requires the energetically unfavorable closing of this loop, reducing its affinity relative to that of the second binding event, which, in contrast occurs at a preformed site. Using this approach, we have rationally introduced cooperativity into three unrelated DNA aptamers, achieving in the best of these a Hill coefficient experimentally indistinguishable from the theoretically expected maximum. The extent of cooperativity and thus the steepness of the binding transition are, moreover, well modeled as simple functions of the energetic cost of binding-induced folding, speaking to the quantitative nature of this design strategy.
Collapse
|
17
|
Simon AJ, Vallée-Bélisle A, Ricci F, Watkins HM, Plaxco KW. Using the Population-Shift Mechanism to Rationally Introduce “Hill-type” Cooperativity into a Normally Non-Cooperative Receptor. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Simon AJ, Vallée-Bélisle A, Ricci F, Watkins HM, Plaxco KW. Using the population-shift mechanism to rationally introduce "Hill-type" cooperativity into a normally non-cooperative receptor. Angew Chem Int Ed Engl 2014; 53:9471-5. [PMID: 25044647 PMCID: PMC5660314 DOI: 10.1002/anie.201403777] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 12/17/2022]
Abstract
Allosteric cooperativity, which nature uses to improve the sensitivity with which biomolecular receptors respond to small changes in ligand concentration, could likewise be of use in improving the responsiveness of artificial biosystems. Thus motivated, we demonstrate here the rational design of cooperative molecular beacons, a widely employed DNA sensor, using a generalizable population-shift approach in which we engineer receptors that equilibrate between a low-affinity state and a high-affinity state exposing two binding sites. Doing so we achieve cooperativity within error of ideal behavior, greatly steepening the beacon's binding curve relative to that of the parent receptor. The ability to rationally engineer cooperativity should prove useful in applications such as biosensors, synthetic biology and "smart" biomaterials, in which improved responsiveness is of value.
Collapse
Affiliation(s)
- Anna J Simon
- Biomolecular Science and Engineering Program, UC Santa Barbara, Santa Barbara, CA 93106 (USA)
| | | | | | | | | |
Collapse
|
19
|
Nesterova IV, Nesterov EE. Rational Design of Highly Responsive pH Sensors Based on DNA i-Motif. J Am Chem Soc 2014; 136:8843-6. [DOI: 10.1021/ja501859w] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina V. Nesterova
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Evgueni E. Nesterov
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
20
|
Strulson CA, Boyer JA, Whitman EE, Bevilacqua PC. Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions. RNA (NEW YORK, N.Y.) 2014; 20:331-47. [PMID: 24442612 PMCID: PMC3923128 DOI: 10.1261/rna.042747.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/22/2013] [Indexed: 05/21/2023]
Abstract
Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg(2+) ion concentrations are low, K(+) concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo-like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg(2+) (0.5-2 mM) and K(+) (140 mM) if the solution is supplemented with physiological amounts (∼ 20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution.
Collapse
Affiliation(s)
- Christopher A. Strulson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua A. Boyer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elisabeth E. Whitman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorE-mail
| |
Collapse
|
21
|
Tanaka A, Choi J, Majima T. Folding and structural polymorphism of G-quadruplex formed from a long telomeric sequence containing six GGG tracts. RSC Adv 2014. [DOI: 10.1039/c4ra08053j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A long telomeric sequence preferentially forms a thermodynamically stable G-quadruplex at the 3′ end rather than at the 5′ end or at internal positions.
Collapse
Affiliation(s)
- Atsushi Tanaka
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047, Japan
| | - Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047, Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047, Japan
| |
Collapse
|
22
|
Lieblein AL, Fürtig B, Schwalbe H. Optimizing the kinetics and thermodynamics of DNA i-motif folding. Chembiochem 2013; 14:1226-30. [PMID: 23794335 DOI: 10.1002/cbic.201300284] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 11/09/2022]
Abstract
Under slightly acidic conditions, single cytidine-rich DNA strands can form four-stranded structures called i-motifs. The stability of the i-motif structure is based on the intercalation of hemiprotonated C-C(+) base pairs. In addition, the stability of these structures is influenced by pH, temperature, salt concentration, number of cytidines per C-rich stretch, and length of sequence; it also depends on the nucleotides in the connecting loop regions. Here, we investigated the influence of the loop nucleotides on i-motif stability, structure, and kinetics of folding, in five structures with the same loop-size but different adenosine and thymidine residues within the loop. The stabilities of the i-motif structures were determined by CD melting, and structure and kinetics of folding were studied by static and time-resolved NMR experiments.
Collapse
Affiliation(s)
- Anna Lena Lieblein
- Institute for Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Straße 7, 60438 Frankfurt Germany
| | | | | |
Collapse
|
23
|
Kwok CK, Sherlock ME, Bevilacqua PC. Effect of loop sequence and loop length on the intrinsic fluorescence of G-quadruplexes. Biochemistry 2013; 52:3019-21. [PMID: 23621657 DOI: 10.1021/bi400139e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Guanine quadruplex structures (GQSs) exhibit unique spectroscopic features, including an inverse melting profile at 295 nm, distinctive circular dichroism features, and intrinsic fluorescence. Herein, we investigate effects of loop sequence and loop length on the intrinsic fluorescence of 13 DNA GQSs. We report label-free fluorescence enhancements upon intramolecular GQS formation of up to 16-fold and a shift in the emission maximum to the visible portion of the spectrum. Effects can be understood in the context of available nuclear magnetic resonance GQS structures. The intrinsic fluorescence of GQSs may be useful for nucleic acid studies and for the development of label-free detection methods.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|