1
|
Fu JL, Wu JY, Shi JF, Huang LL, Wang H, Li Q. A mild and practical approach to N-CF 3 secondary amines via oxidative fluorination of isocyanides. Nat Commun 2025; 16:4873. [PMID: 40419493 DOI: 10.1038/s41467-025-60225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
N-trifluoromethyl compounds, featuring a CF3 group directly attached to nitrogen, are valuable in medicinal chemistry. Despite substantial advances in their synthesis over the past decade, the efficient preparation of inherently unstable N-CF3 secondary amines remains a challenge in synthetic chemistry. Herein, we present a mild and practical method for synthesizing these compounds via oxidative fluorination of isocyanides using iodine as the oxidant, silver fluoride as the fluorinating reagent, and tert-butyldimethylsilane as the proton precursor. This approach benefits from simple workup, as all reagents and by-products can be easily removed through simple filtration and evaporation. This protocol features a broad substrate scope, good functional group tolerance, and good to excellent yields. Additionally, the resulting products can be readily converted into N-CF3 carbamoyl fluorides, valuable building blocks for the synthesis of diverse N-CF3 carbonyl derivatives.
Collapse
Affiliation(s)
- Jia-Luo Fu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun-Yunzi Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan-Fen Shi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Long-Ling Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Honggen Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Qingjiang Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Ferrer-Bru C, Ferrer J, Lahoz FJ, García-Orduña P, Carmona D. Activation of CO, Isocyanides, and Alkynes by Frustrated Lewis Pairs Based on Cp*M/N (M = Rh, Ir) Couples. Inorg Chem 2025. [PMID: 40386860 DOI: 10.1021/acs.inorgchem.5c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The complexes [Cp*M(κ3N,N',N″-L)][SbF6] (Cp* = η5-C5Me5; M = Rh, 1, Ir, 2; HL = pyridinyl-amidine) display M/N transition metal frustrated Lewis pair reactivity toward a range of substrates containing triple bonds. Whereas the rhodium complex 1 reacts with CO yielding compound [Cp*Rh(CO)(κ2C,N-LCO)][SbF6] (3), which contains a terminal carbonyl and a carbamoyl group, the iridium complex 2 generates compound [Cp*Ir(κ3C,N,N'-LCO)][SbF6] (4), which only features the carbamoyl group. Compounds 1 and 2 react with stoichiometric amounts of the isocyanides CNR (R = Cyclohexyl, p-C6H4(OMe), CH2SO2(p-Tolyl)) to give the corresponding 1,1-insertion complexes [Cp*M(κ3C,N,N'-LCNR)][SbF6] (5-10). Complexes containing inserted and coordinated isocyanide ligands of formula [Cp*M(CNR)(κ2C,N-LCNR)][SbF6] (11-15) are obtained upon treating 1 and 2 with excess of the corresponding isocyanide. Compound 2 reacts with CNtBu affording the adduct [Cp*Ir(CNtBu)(κ2N,N'-L)][SbF6] (16) which contains a terminal CNtBu ligand. Complex 16 is protonated by HSbF6 to give [Cp*Ir(CNtBu)(κ2N,N'-HL)][SbF6]2 (17). The terminal alkynes HC≡CR (R = Ph, CO2Et) react with 1 and 2 rendering the alkynyl complexes 18-21. Dimethyl acetylenedicarboxylate reacts with complex 2 to give compound 22 via the formal 1,2-addition of a basic nitrogen atom and the metal across the alkyne triple bond. The new complexes have been characterized by analytical, spectroscopic and X-ray diffraction (XRD) methods.
Collapse
Affiliation(s)
- Carlos Ferrer-Bru
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC─Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Joaquina Ferrer
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC─Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Fernando J Lahoz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC─Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Pilar García-Orduña
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC─Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Daniel Carmona
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC─Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Fu Z, Rong B, Huang L. Pd-Catalyzed Coupling of Aryl Chloride, Isocyanides, and Thiocarboxylate To Synthesize Thioamides. Org Lett 2025; 27:2782-2787. [PMID: 40052948 DOI: 10.1021/acs.orglett.5c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Although aryl chlorides are among the most abundant and stable aromatic electrophiles, the coupling of aryl chlorides with isocyanides has remained an unsolved challenge. Herein, we report a general transformation of aryl chlorides, isocyanides, and thiocarboxylates to synthesize thioamides. The sterically hindered and electron-rich Josiphos ligand significantly facilitates the rate-determining oxidative addition step and reduces the toxicity of isocyanides toward the metal center. The combination of thiocarboxylate as the nucleophile and Josiphos as the ligands enabled the coupling-tolerated various 1°, 2°, and 3° isocyanides, which provides a rapid, efficient, and versatile method for the synthesis of large quantities of thioamides, including those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Zeyuan Fu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bingjie Rong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Ge S, Zhu YM, Xu XP, Zi Y, Ji SJ. Palladium-catalyzed cascade cyclization of isocyanides with di-( o-iodophenyl)sulfonylguanidines: access to heterocyclic fused quinazolines. Chem Commun (Camb) 2024; 60:14613-14616. [PMID: 39564650 DOI: 10.1039/d4cc04084h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A palladium-catalyzed cascade cyclization reaction of di-o-iodophenyl sulfonylguanidines with isocyanides for the efficient and selective synthesis of 5- or 6-membered heterocyclic fused quinazolines has been developed. Diverse functional groups are well tolerated, and this method has been successfully applied to a larger scale synthesis.
Collapse
Affiliation(s)
- Shen Ge
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
5
|
Yuan LR, Zi Y, Ji SJ, Xu XP. Radical-Initiated Dearomative Annulation of Tryptamine-Derived Isocyanides: Selective Synthesis of CF 3-Substituted β-Aza-spiroindolines and β-Carbolines. J Org Chem 2024; 89:15979-15989. [PMID: 39436351 DOI: 10.1021/acs.joc.4c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A mild approach for synthesizing CF3-substituted β-aza-spiroindolines and β-carbolines from tryptamine-derived isocyanides via site-selective radical annulations has been reported. The crucial role of C2 substituents in the selective annulation process has been clarified. The approach shows good generality and practical applicability, highlighting its effectiveness and versatility.
Collapse
Affiliation(s)
- Luo-Rong Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Gao M, Lu S, Xu B. C-H functionalization enabled by multiple isocyanides. Chem Soc Rev 2024; 53:10147-10170. [PMID: 39228343 DOI: 10.1039/d4cs00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Past decades have witnessed significant advance of isocyanides as a class of versatile organic synthons as well as their broad applications in multi-component reactions (MCRs) and other tandem reactions. Reactions involving multiple isocyanides allow the construction of molecules with further diversification and complexity, while C-H functionalization emphasizes the advantages of high atom economy, broad substrate availability and great synthetic efficiency. This promising synergistic strategy of C-H functionalization involving multiple isocyanides provides a variety of valuable synthetic methods for organic chemists' toolbox and offers considerable potential in pharmaceutical chemistry and materials science as well. The present review outlines in detail various reaction types of C-H functionalization enabled by multiple isocyanides, and the relevant mechanistic rationale is discussed.
Collapse
Affiliation(s)
- Mingchun Gao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Shaohang Lu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Chen J, Zhang L, Wang Z, Liu L, Tu L, Zhang Y, Chen Y, Han W. De Novo Synthesis of α-Ketoamides via Pd/TBD Synergistic Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404266. [PMID: 38986026 PMCID: PMC11425860 DOI: 10.1002/advs.202404266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Precisely controlling the product selectivity of a reaction is an important objective in organic synthesis. α-Ketoamides are vital intermediates in chemical transformations and privileged motifs in numerous drugs, natural products, and biologically active molecules. The selective synthesis of α-ketoamides from feedstock chemicals in a safe and operationally simple manner under mild conditions is a long-standing catalysis challenge. Herein, an unprecedented TBD-switched Pd-catalyzed double isocyanide insertion reaction for assembling ketoamides in aqueous DMSO from (hetero)aryl halides and pseudohalides under mild conditions is reported. The effectiveness and utility of this protocol are demonstrated by its diverse substrate scope (93 examples), the ability to late-stage modify pharmaceuticals, scalability to large-scale synthesis, and the synthesis of pharmaceutically active molecules. Mechanistic studies indicate that TBD is a key ligand that modulates the Pd-catalyzed double isocyanide insertion process, thereby selectively providing the desired α-ketoamides in a unique manner. In addition, the imidoylpalladium(II) complex and α-ketoimine amide are successfully isolated and determined by X-ray analysis, confirming that they are probable intermediates in the catalytic pathway.
Collapse
Affiliation(s)
- Jia‐He Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Li‐Ren Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Zhang‐Yang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Lu‐Jie Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Li‐Ping Tu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Wen‐Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| |
Collapse
|
8
|
Plunkett S, Diccianni JB, Panish R, Balsells J. Synthesis of 3-Aminoazaindazoles via Cu-Catalyzed Cross Coupling of Isocyanides. Org Lett 2024; 26:6933-6938. [PMID: 39101578 DOI: 10.1021/acs.orglett.4c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Nitrogen-containing heterocycles are commonly encountered in drug discovery, but the synthesis of such ring structures is not always efficient. Fused heterocyclic rings, in particular, can be challenging to synthesize. Herein, we report a highly convergent synthesis of 3-aminoazaindazoles via a Cu-catalyzed reaction between isocyanides and 3-halo-2-hydrazineylpyridines (and analogues). Reaction optimization through high-throughput experimentation (HTE) identified a novel set of exogenous ligand-free Cu conditions utilizing a cheap and readily available catalyst. The reaction displays high functional group tolerance and has the potential to be highly enabling for medicinal chemistry efforts. A putative mechanism is described as well as preliminary mechanistic experiments.
Collapse
Affiliation(s)
- Shane Plunkett
- Discovery Process Research, Janssen R&D, Spring House, Pennsylvania 19477, United States
| | - Justin B Diccianni
- Global Discovery Chemistry, Janssen R&D, Spring House, Pennsylvania 19477, United States
| | - Robert Panish
- Discovery Process Research, Janssen R&D, San Diego, California 92121, United States
| | - Jaume Balsells
- Discovery Process Research, Janssen R&D, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
9
|
Xi ZW, He Y, Liu LQ, Wang YC, Zeng HY. Three-Component Domino Reaction of Thioamide, Isonitriles, and Water: Selective Synthesis of 1,2,4-Thiadiazolidin-3-ones and ( E)- N-(1,2-Diamino-2-thioxoethylidene)benzamides. J Org Chem 2024; 89:8315-8325. [PMID: 36693028 DOI: 10.1021/acs.joc.2c01969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The three-component domino reaction of thioamides, benzyl isocyanide, and water in the presence of a catalytic amount of both Pd(dppf)Cl2 and Cu(OAc)2 afforded novel 1,2,4-thiadiazolidin-3-one cyclic compounds, whereas the same reaction with tertiary alkylisonitriles in the presence of rare earth metal salt [La(OTf)3] resulted in (E)-N-(1,2-diamino-2-thioxoethylidene)benzamide open-chain products. This divergent reaction enabled the one-pot construction of five (N-S, C-S, C-O, and two C-N) or four (C-S, C-N, C-O, and C-C) new chemical bonds. Mechanism studies indicate that the oxygen atom of the product was derived from H2O.
Collapse
Affiliation(s)
- Zhi-Wei Xi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Yan He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Li-Qiu Liu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Ying-Chun Wang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Hui-Ying Zeng
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Wan J, Zeng G, Huang S, Yuan Y, Xu Z, Wen Y, Huang C. Base-Catalyzed Cascade Cyclization of 2-Nitrochalcones and Isocyanides to Access Pyrano[3,4- b]indol-1(9 H)-one Frameworks. J Org Chem 2024; 89:4549-4559. [PMID: 38517745 DOI: 10.1021/acs.joc.3c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
An unexpected cascade reaction of 2-nitrochalcones with isocyanoacetates has been reported for the efficient synthesis of indole carboxylic esters and pyranoindoles. The conversion was achieved by KOH-catalyzed cyclization and elimination of the nitro group with final decarbonylation-aromatization. The method was used to synthesize a series of potentially biologically active indole derivatives (49 examples) in 67-85% yields under transition-metal-free catalytic conditions.
Collapse
Affiliation(s)
- Juan Wan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Guiyun Zeng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Shuntao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yilong Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhuoting Xu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yuanmin Wen
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
11
|
Ding S, Pu Y, Lin J, Zhao H, Tang Q, Wang J. Electrophile-Controlled Regiodivergent Palladium-Catalyzed Imidoylative Spirocyclization of Cyclic Alkenes. Org Lett 2024; 26:1908-1913. [PMID: 38407073 DOI: 10.1021/acs.orglett.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
An intermolecular controllable Pd-catalyzed spirocyclization of isocyano cycloalkenes has been developed, offering efficient and selective approaches toward spirocyclic hydropyrrole scaffolds. 2-Azaspiro-1,7-dienes could be obtained through a "chain-walking" process with aryl/vinyl iodides as electrophiles, while the normal Heck product 2-azaspiro-1,6-dienes were selectively generated when aryl triflates were used as the coupling partner of isocyanides. Mechanistic studies suggested that the counteranion of the Pd(II) intermediate played a crucial role in the regioselectivity control. Dihydropyrrole-fused 5,6,7-membered spirocycles were switchably accessed under mild conditions with wide functional group tolerance.
Collapse
Affiliation(s)
- Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yue Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jiao Lin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
12
|
Liu Y, Ding C, Huang JJ, Zhou Q, Xiong BQ, Tang KW, Huang PF. Visible-light-induced synthesis of 2,4-disubstituted quinolines from o-vinylaryl isocyanides and oxime esters. Org Biomol Chem 2024; 22:1458-1465. [PMID: 38282546 DOI: 10.1039/d3ob02060f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A visible-light-induced radical cyclization reaction of o-vinylaryl isocyanides and oxime esters to access various 2,4-disubstituted quinolines was disclosed. Oxime esters were employed as acyl radical precursors via the carbon-carbon bond cleavage. It provided an effective way for the synthesis of 2-acyl-4-arlysubstituted quinolines under mild conditions and exhibited good functional group tolerance and substrate applicability.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Chuan Ding
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Jing Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
13
|
Shan Y, Zhang X, Liu G, Li J, Liu Y, Wang J, Chen D. Cyanation with isocyanides: recent advances and perspectives. Chem Commun (Camb) 2024; 60:1546-1562. [PMID: 38240334 DOI: 10.1039/d3cc05880h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.
Collapse
Affiliation(s)
- Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jia Wang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
14
|
Huang PF, Fu JL, Huang JJ, Xiong BQ, Tang KW, Liu Y. Photoredox radical cyclization reaction of o-vinylaryl isocyanides with acyl chlorides to access 2,4-disubstituted quinolines. Org Biomol Chem 2024; 22:513-520. [PMID: 38131384 DOI: 10.1039/d3ob01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We herein report an efficient photoredox radical cyclization reaction of o-vinylaryl isocyanides with acyl chlorides to access a wide range of 2,4-disubstituted quinolines. Preliminary mechanism experiment results suggested that this reaction was initiated by an acyl radical generated from acyl chlorides through a single-electron-transfer (SET) process. This transformation showed good substrate suitability and functional group compatibility at room temperature.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Jing Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
15
|
Roose T, McSorley F, Groenhuijzen B, Saya JM, Maes BUW, Orrù RVA, Ruijter E. Dearomative Spirocyclization of Tryptamine-Derived Isocyanides via Iron-Catalyzed Carbene Transfer. J Org Chem 2023; 88:17345-17355. [PMID: 38048350 PMCID: PMC10729054 DOI: 10.1021/acs.joc.3c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Tryptamine-derived isocyanides are valuable building blocks in the construction of spirocyclic indolenines and indolines via dearomatization of the indole moiety. We report the Bu4N[Fe(CO)3NO]-catalyzed carbene transfer of α-diazo esters to 3-(2-isocyanoethyl)indoles, leading to ketenimine intermediates that undergo spontaneous dearomative spirocyclization. The utility of this iron-catalyzed carbene transfer/spirocyclization cascade was demonstrated by its use as a key step in the formal total synthesis of monoterpenoid indole alkaloids (±)-aspidofractinine, (±)-limaspermidine, (±)-aspidospermidine, and (±)-17-demethoxy-N-acetylcylindrocarine.
Collapse
Affiliation(s)
- Thomas
R. Roose
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Finn McSorley
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Bryan Groenhuijzen
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jordy M. Saya
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 KD Geleen, Netherlands
| | - Bert U. W. Maes
- Organic
Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.s
| | - Romano V. A. Orrù
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 KD Geleen, Netherlands
| | - Eelco Ruijter
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Saeifard L, Amiri K, Rominger F, Müller TJJ, Balalaie S. Synthesis of Polysubstituted Pyrimidines through Palladium-Catalyzed Isocyanide Insertion to 2 H-Azirines. J Org Chem 2023; 88:12519-12525. [PMID: 37524078 DOI: 10.1021/acs.joc.3c01248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The domino process of the palladium-catalyzed coupling reaction of isocyanides with 2H-azirine provides various tetrasubstituted pyrimidines via one C-C bond and two C-N bond formations with satisfactory yields. The title compounds are obtained with good functional group tolerance, high atom economy, and broad substrate scopes.
Collapse
Affiliation(s)
- Leyla Saeifard
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Kamran Amiri
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, D-69120 Heidelberg, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
17
|
Verdoorn D, Ranjan P, de Reuver T, Janssen E, Vande Velde CML, Saya JM, Maes BUW, Orru RVA. A Cobalt Mediated Nitrene Transfer aza-Wittig Cascade Reaction To Access 1,3,4-Oxadiazole Scaffolds. Org Lett 2023; 25:4005-4009. [PMID: 37224106 PMCID: PMC10262268 DOI: 10.1021/acs.orglett.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 05/26/2023]
Abstract
A cobalt(II) mediated three-component synthesis of 5-substituted-N-sulfonyl-1,3,4-oxadiazol-2(3H)-imines using sulfonyl azides, N-isocyaniminotriphenylphosphorane (NIITP), and carboxylic acids has been developed. This one-pot tandem reaction starts with a nitrene transfer to NIITP, followed by addition of the carboxylic acid to the in situ formed carbodiimide and subsequent intramolecular aza-Wittig reaction. Both the steric constraints of carboxylic acid and the stoichiometry of the employed cobalt salt determine the selectivity toward the two products, i.e. 5-substituted-N-sulfonyl-1,3,4-oxadiazol-2(3H)-imine versus 5-substituted-4-tosyl-2,4-dihydro-3H-1,2,4-triazol-3-one.
Collapse
Affiliation(s)
- Daniël
S. Verdoorn
- Division
of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The
Netherlands
| | - Prabhat Ranjan
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The
Netherlands
| | - Tim de Reuver
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The
Netherlands
| | - Elwin Janssen
- Department
of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for
Molecular and Life Sciences (AIMMS), Vrije
Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Christophe M. L. Vande Velde
- Intelligence
in Processes, Advanced Catalysts and Solvents (iPRACS), Faculty of
Applied Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Jordy M. Saya
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The
Netherlands
| | - Bert U. W. Maes
- Division
of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Romano V. A. Orru
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The
Netherlands
| |
Collapse
|
18
|
Chen X, Marek I. Highly Diastereoselective Preparation of Tertiary Alkyl Isonitriles by Stereoinvertive Nucleophilic Substitution at a Nonclassical Carbocation. Org Lett 2023; 25:2285-2288. [PMID: 36976777 PMCID: PMC10088034 DOI: 10.1021/acs.orglett.3c00583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 03/29/2023]
Abstract
A highly efficient SnCl4-catalyzed nucleophilic isocyanation of cyclopropyl ethers has been developed. The reaction proceeds at the quaternary carbon stereocenter of the cyclopropane with a complete inversion of configuration, providing a new avenue for the construction of synthetically challenging tertiary alkyl isonitriles with high diastereopurity. The diversity of the incorporated isocyanide group has been demonstrated by the transformation of tertiary alkyl isonitriles into the corresponding tertiary alkyl amines, amides, and cyclic ketoimines.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of Chemistry and Resnick
Sustainability Center for Catalysis, Technion
- Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and Resnick
Sustainability Center for Catalysis, Technion
- Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
19
|
Roose TR, Preschel HD, Mayo Tejedor H, Roozee JC, Hamlin TA, Maes BUW, Ruijter E, Orru RVA. Iron-Catalysed Carbene Transfer to Isocyanides as a Platform for Heterocycle Synthesis. Chemistry 2023; 29:e202203074. [PMID: 36305372 PMCID: PMC10108253 DOI: 10.1002/chem.202203074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
An iron-catalysed carbene transfer reaction of diazo compounds to isocyanides has been developed. The resulting ketenimines are trapped in situ with various bisnucleophiles to access a range of densely functionalized heterocycles (pyrimidinones, dihydropyrazolones, 1H-tetrazoles) in a one-pot process. The electron-rich Hieber anion ([Fe(CO)3 NO]- ) facilitates efficient catalytic carbene transfer from acceptor-type α-diazo carbonyl compounds to isocyanides, providing a cost-efficient and benign alternative to similar noble metal-catalysed processes. Based on DFT calculations a plausible reaction mechanism for activation of the α-diazo carbonyl carbene precursor and ketenimine formation is provided.
Collapse
Affiliation(s)
- Thomas R. Roose
- Department of Chemistry & Pharmaceutical Sciences Amsterdam Institute for Molecular & Life SciencesVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - H. Daniel Preschel
- Department of Chemistry & Pharmaceutical Sciences Amsterdam Institute for Molecular & Life SciencesVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Helena Mayo Tejedor
- Department of Chemistry & Pharmaceutical Sciences Amsterdam Institute for Molecular & Life SciencesVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Jasper C. Roozee
- Department of Chemistry & Pharmaceutical Sciences Amsterdam Institute for Molecular & Life SciencesVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Chemistry & Pharmaceutical Sciences Amsterdam Institute for Molecular & Life SciencesVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Bert U. W. Maes
- Organic Synthesis Division Department of ChemistryUniversity of AntwerpGroenenborgerlaan 171B-2020AntwerpBelgium
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences Amsterdam Institute for Molecular & Life SciencesVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Romano V. A. Orru
- Department of Chemistry & Pharmaceutical Sciences Amsterdam Institute for Molecular & Life SciencesVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
- Department of Organic Chemistry Aachen-Maastricht Institute for Biobased Materials (AMIBM)Maastricht UniversityUrmonderbaan 226167 KDGeleenThe Netherlands
| |
Collapse
|
20
|
Lu S, Ding CH, Xu B. Triple-Consecutive Isocyanide Insertions with Aldehydes: Synthesis of 4-Cyanooxazoles. Org Lett 2023; 25:849-854. [PMID: 36705938 DOI: 10.1021/acs.orglett.3c00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient TMSOTf-promoted selective triple consecutive insertions of tert-butyl isocyanide into aldehydes has been developed, affording pharmacological interesting 4-cyanooxazoles in high yields in a one pot manner. The given method encompasses a wide range of substrates with tert-butyl isocyanide serving as sources of critical "CN" and "C-N═C" moieties. The versatile transformations of the resulting 4-cyanooxazoles were demonstrated. The key reaction intermediates for plausible mechanisms were determined.
Collapse
Affiliation(s)
- Shaohang Lu
- Department of Chemistry, Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Chang-Hua Ding
- Department of Chemistry, Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Zhao H, Ding S, Li D, Chai M, Dai L, Li J, Jiang Y, Weng T, Wang J. Stereoselective Construction of Unsymmetrically Linked Heterocycles via Palladium-Catalyzed Alkyne Insertion/Cycloimidoylation Cascade. J Org Chem 2023; 88:1613-1624. [PMID: 36642919 DOI: 10.1021/acs.joc.2c02660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel strategy to access unsymmetrically linked heterocycles via palladium-catalyzed acylcycloimidoylation of alkyne-tethered carbamoyl chlorides with isocyanides has been developed. Functionalized isocyanides were successfully applied as imine-containing heterocycle precursors to capture the vinyl-PdII intermediate, which was generated from a syn-carbopalladation of alkyne, followed by subsequent intramolecular C-H bond activation/imidoylative Heck reactions. Methylene oxindoles within Z-tetrasubstituted olefins were obtained in high yields with excellent stereoselectivities. Broad functional groups were well tolerated under mild reaction conditions.
Collapse
Affiliation(s)
- Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Lixiong Dai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jing Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People's Republic of China
| | - Yuchen Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Tongqing Weng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
22
|
Gavrilov GA, Kinzhalov MA. Isocyanide-Phosphine Complexes of Palladium(II) Dihalides: Synthesis, Structure, and Resistance to Ligand Disproportionation Reactions. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Du W, Zheng Y, Wang X, Lei J, Wang H, Tian X, Zou S, Bloino J, Gou Q, Caminati W, Grabow JU. Scissor-like Face to Face π-π Stacking: A Surprising Preference Induced by the Isocyano Group in the Self-Assembled Dimer of Phenyl Isocyanide. J Phys Chem Lett 2022; 13:9934-9940. [PMID: 36259781 DOI: 10.1021/acs.jpclett.2c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phenyl isocyanide has been chosen as a prototype to probe the π-π interaction modulated by the -NC group, which has a chameleonic nature with two main resonance forms showing a triple bond and being carbenoid. The rotational spectroscopic investigation complemented with theoretical analyses indicates that the phenyl isocyanide dimer has a scissor-like configuration controlled by dispersive forces along with the formation of π-π stacking. This is the first rotational spectroscopic evidence, to the best of our knowledge, that the mono-substitution by an -NC group on benzene can activate the meta position in forming noncovalent interactions. This work also provides experimental evidence on the importance of substituent effects in modulating π-π stacked structures, as well as practical proof of a biased interaction behavior of isocyanide-substituted aromatic molecules.
Collapse
Affiliation(s)
- Weiping Du
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Xiujuan Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Juncheng Lei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Xiao Tian
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Walther Caminati
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, I-40126 Bologna, Italy
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
24
|
Yu T, Li ZQ, Li J, Cheng S, Xu J, Huang J, Zhong YW, Luo S, Zhu Q. Palladium-Catalyzed Modular Synthesis of Enantioenriched Pyridohelicenes through Double Imidoylative Cyclization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences CAS, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences CAS, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| |
Collapse
|
25
|
Tripathi S, Kumar M, Ambule MD, Saxena A, Kant R, Shukla SK, Srivastava AK. Stereodivergent Synthesis of ( Z)-/( E)-β-Sulfonylacrylamides via Tandem Difunctionalization of Alkynes with Sulfinates and Isocyanides. Org Lett 2022; 24:7632-7636. [PMID: 36222482 DOI: 10.1021/acs.orglett.2c03092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereoselective difunctionalizations of the terminal and internal alkynes with various sulfinates and isocyanides have been achieved to prepare (Z)-/(E)-β-sulfonylacrylamides. The (Z)-β-sulfonylacrylamides were generated via a one-pot process that involves the reaction of terminal alkynes with sulfinates and isocyanides in the presence of iodine in sequential manner. The (E)-β-sulfonylacrylamides were prepared in a two-step synthesis via palladium(II)-catalyzed addition of isocyanide to (E)-β-iodovinylsulfones synthesized from alkynes.
Collapse
Affiliation(s)
- Shashank Tripathi
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow 226031, India.,AcSIR, Ghaziabad 201002, India
| | - Monty Kumar
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow 226031, India.,AcSIR, Ghaziabad 201002, India
| | - Mayur D Ambule
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow 226031, India.,AcSIR, Ghaziabad 201002, India
| | - Ankit Saxena
- AcSIR, Ghaziabad 201002, India.,SAIF, CSIR-CDRI, Lucknow 226031, India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division, CSIR-CDRI, Lucknow 226031, India
| | - Sanjeev K Shukla
- AcSIR, Ghaziabad 201002, India.,SAIF, CSIR-CDRI, Lucknow 226031, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow 226031, India.,AcSIR, Ghaziabad 201002, India
| |
Collapse
|
26
|
Wei P, Zhu Y, Zhang J, Ying J, Wu XF. Cobalt-catalyzed direct functionalization of indoles with isocyanides. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
[4 + 3] Cycloaddition of ketenimines with furocarbenoids: Divergent and efficient synthesis of fused cycloheptatriene and tropone scaffolds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Li M, Zhang R, Gao Q, Jiang H, Lei M, Wu W. Divergent Synthesis of Fused Tetracyclic Heterocycles from Diarylalkynes Enabled by the Selective Insertion of Isocyanide. Angew Chem Int Ed Engl 2022; 61:e202208203. [DOI: 10.1002/anie.202208203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Ruixue Zhang
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 10019 China
| | - Qiushan Gao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 10019 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
29
|
Li M, Zhang R, Gao Q, Jiang H, Lei M, Wu W. Divergent Synthesis of Fused Tetracyclic Heterocycles from Diarylalkynes Enabled by the Selective Insertion of Isocyanide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Li
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ruixue Zhang
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Qiushan Gao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Huanfeng Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ming Lei
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Wanqing Wu
- South China University of Technology School of Chemistry & Chemical Engineering No. 381, Wushan Road, Tianhe Strict, 510640 Guangzhou CHINA
| |
Collapse
|
30
|
Roose TR, Verdoorn DS, Mampuys P, Ruijter E, Maes BUW, Orru RVA. Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chem Soc Rev 2022; 51:5842-5877. [PMID: 35748338 PMCID: PMC9580617 DOI: 10.1039/d1cs00305d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/21/2022]
Abstract
Transition metal-catalysed carbene- and nitrene transfer to the C1-building blocks carbon monoxide and isocyanides provides heteroallenes (i.e. ketenes, isocyanates, ketenimines and carbodiimides). These are versatile and reactive compounds allowing in situ transformation towards numerous functional groups and organic compounds, including heterocycles. Both one-pot and tandem processes have been developed providing valuable synthetic methods for the organic chemistry toolbox. This review discusses all known transition metal-catalysed carbene- and nitrene transfer reactions towards carbon monoxide and isocyanides and in situ transformation of the heteroallenes hereby obtained, with a special focus on the general mechanistic considerations.
Collapse
Affiliation(s)
- T R Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - D S Verdoorn
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - P Mampuys
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - E Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - B U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - R V A Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
| |
Collapse
|
31
|
Huang JQ, Yu M, Yong X, Ho CY. NHC-Ni(II)-catalyzed cyclopropene-isocyanide [5 + 1] benzannulation. Nat Commun 2022; 13:4145. [PMID: 35842422 PMCID: PMC9288548 DOI: 10.1038/s41467-022-31896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Isocyanides are common compounds in fine and bulk chemical syntheses. However, the direct addition of isocyanide to simple unactivated cyclopropene via transition metal catalysis is challenging. Most of the current approaches focus on 1,1-insertion of isocyanide to M-R or nucleophilc insertion. That is often complicated by the competitive homo-oligomerization reactivity occurring at room temperature, such as isocyanide 1,1-insertion by Ni(II). Here we show a (N-heterocyclic carbene)Ni(II) catalyst that enables cyclopropene-isocyanide [5 + 1] benzannulation. As shown in the broad substrate scope and a [trans-(N-heterocyclic carbene)Ni(isocyanide)Br2] crystal structure, the desired cross-reactivity is cooperatively controlled by the high reactivity of the cyclopropene, the sterically bulky N-heterocyclic carbene, and the strong coordination ability of the isocyanide. This direct addition strategy offers aromatic amine derivatives and complements the Dötz benzannulation and Semmelhack/Wulff 1,4-hydroquinone synthesis. Several sterically bulky, fused, and multi-substituted anilines and unsymmetric functionalized spiro-ring structures are prepared from those easily accessible starting materials expediently. The direct addition of isocyanides to cyclopropenes is challenging. Here, the authors report a catalytic cyclopropene-isocyanide [5 + 1] benzannulation catalyzed by an (N-heterocyclic carbene)Ni(II) complex; this method enables the preparation of fused and multi-substituted anilines and unsymmetrically functionalized spiro-ring structures.
Collapse
Affiliation(s)
- Jian-Qiang Huang
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Meng Yu
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuefeng Yong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chun-Yu Ho
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China. .,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China. .,Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
32
|
Zhang Y, Liu T, Liu L, Guo H, Zeng H, Bi W, Qiu G, Gao W, Ran X, Yang L, Du G, Zhang L. Palladium-Catalyzed Preparation of N-Substituted Benz[ c, d]indol-2-imines and N-Substituted Amino-1-naphthylamides. J Org Chem 2022; 87:8515-8524. [PMID: 35731803 DOI: 10.1021/acs.joc.2c00620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we report a novel and facile protocol for the synthesis of benz[c,d]indol-2-imines via palladium-catalyzed C-C and C-N coupling of 8-halo-1-naphthylamines with isocyanides in a single step. The reaction features broad substrate scopes and mild conditions, providing an efficient alternative for the construction of antiproliferative agents and BET bromodomain inhibitors. If 0.1 mL of H2O was added to this reaction, the N-substituted amino-1-naphthylamides could be obtained easily.
Collapse
Affiliation(s)
- Yuan Zhang
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Tongda Liu
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Haiyang Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Heyang Zeng
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Wei Bi
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Wei Gao
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xin Ran
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Long Yang
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Lianpeng Zhang
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| |
Collapse
|
33
|
Escudero J, Mampuys P, Mensch C, Bheeter CB, Vroemans R, Orru RV, Harvey J, Maes BU. Synthesis of Heterocycles via Aerobic Ni-Catalyzed Imidoylation of Aromatic 1,2-Bis-nucleophiles with Isocyanides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Escudero
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Pieter Mampuys
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Carl Mensch
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Charles B. Bheeter
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Robby Vroemans
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Romano V.A. Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Center Court, Urmonderbaan 22, Geleen 6167 RD, The Netherlands
| | - Jeremy Harvey
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B3001, Belgium
| | - Bert U.W. Maes
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| |
Collapse
|
34
|
Stahlberger M, Steinlein O, Adam CR, Rotter M, Hohmann J, Nieger M, Köberle B, Bräse S. Fluorescent annulated imidazo[4,5- c]isoquinolines via a GBB-3CR/imidoylation sequence - DNA-interactions in pUC-19 gel electrophoresis mobility shift assay. Org Biomol Chem 2022; 20:3598-3604. [PMID: 35420107 DOI: 10.1039/d2ob00372d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the development of a sequential synthesis route towards annulated imidazo[4,5-c]isoquinolines comprising a GBB-3CR, followed by an intramolecular imidoylative cyclisation. X-Ray crystallography revealed a flat 3D structure of the obtained polyheterocycles. Thus, we evaluated their interactions with double-stranded DNA by establishing a pUC-19 plasmid-based gel electrophoresis mobility shift assay, revealing a stabilising effect on ds-DNA against strand-break inducing conditions.
Collapse
Affiliation(s)
- M Stahlberger
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - O Steinlein
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Adenauerring 20, 76131 Karlsruhe, Germany
| | - C R Adam
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - M Rotter
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - J Hohmann
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - M Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014, Finland
| | - B Köberle
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Adenauerring 20, 76131 Karlsruhe, Germany
| | - S Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. .,Institute of Biological and Chemical Systems - IBCS-FMS, Karlsruhe Institute of Technology (KIT), Herman-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
35
|
Zha J, Wang Z, Liu B, Tan Q, Xu B. Multicomponent Reaction of Isocyanide, Ditelluride, and Mn(III) Carboxylate: Synthesis of N-Acyl Tellurocarbamate. Org Lett 2022; 24:2863-2867. [PMID: 35420436 DOI: 10.1021/acs.orglett.2c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multicomponent reaction of isocyanides, ditellurides and manganese(III) carboxylates under mild reaction conditions leads to the synthesis of various N-acyl tellurocarbamates. This method demonstrates good functional tolerance and broad substrate scope and, as a result, is especially suitable for the postfunctionalization of complicated molecules such as drugs. The given method can be further extended to the synthesis of selenocarbamates.
Collapse
Affiliation(s)
- Jianjian Zha
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Zhuoer Wang
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
36
|
Kinzhalov MA, Luzyanin KV. Synthesis and Contemporary Applications of Platinum Group Metals Complexes with Acyclic Diaminocarbene Ligands (Review). RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Gong W, Fu D, Zhong K, Ni H, He X, Shan C, Li R, Lan Y. What is the difference between mono- and biphosphine ligands? Revealing the chemoselectivity in Pd-catalysed carbenation of bromonaphthalene. Org Chem Front 2022. [DOI: 10.1039/d2qo00910b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand-controlled chemoselectivity is an important topic in organometallic chemistry.
Collapse
Affiliation(s)
- Wenting Gong
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Dongmin Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Hao Ni
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaoqian He
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Chunhui Shan
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Rong Li
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
38
|
Timmermann C, Thiem P, Wanitschke D, Hüttenschmidt M, Romischke J, Villinger A, Seidel WW. Migratory insertion of isocyanide into a ketenyl-tungsten bond as key step in cyclization reactions. Chem Sci 2021; 13:123-132. [PMID: 35059160 PMCID: PMC8694283 DOI: 10.1039/d1sc06149f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 12/28/2022] Open
Abstract
Treatment of the side-on tungsten alkyne complex of ethinylethyl ether [Tp*W(CO)2(η2-C,C'-HCCOCH2CH3)]+ {Tp* = hydridotris(3,4,5-trimethylpyrazolyl)borate} (2a) with n-Bu4NI afforded the end-on ketenyl complex [Tp*W(CO)2(κ1-HCCO)] (4a). This formal 16 ve complex bearing the prototype of a ketenyl ligand is surprisingly stable and converts only under activation by UV light or heat to form a dinuclear complex [Tp*2W2(CO)4(μ-CCH2)] (6). The ketenyl ligand in complex 4a underwent a metal template controlled cyclization reaction upon addition of isocyanides. The oxametallacycles [Tp*W(CO)2{κ2-C,O-C(NHXy)C(H)C(Nu)O}] {Nu = OMe (7), OEt (8), N(i-Pr)2 (9), OH (10), O1/2 (11)} were formed by coordination of Xy-NC (Xy = 2,6-dimethylphenyl) at 4a and subsequent migratory insertion (MI) into the W-ketenyl bond. The resulting intermediate is susceptible to addition reactions with protic nucleophiles. Compounds 2a-PF6, 4a/b, and 7-11 were fully characterized including XRD analysis. The cyclization mechanism has been confirmed both experimentally and by DFT calculations. In cyclic voltammetry, complexes 7-9 are characterized by a reversible W(ii)/W(iii) redox process. The dinuclear complex 11 however shows two separated redox events. Based on cyclic voltammetry measurements with different conducting electrolytes and IR spectroelectrochemical (SEC) measurements the W(ii)/W(iii) mixed valent complex 11+ is assigned to class II in terms of the Robin-Day classification.
Collapse
Affiliation(s)
- Christopher Timmermann
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Paula Thiem
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Dominik Wanitschke
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a D-18059 Rostock Germany
| | - Mareike Hüttenschmidt
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Johanna Romischke
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a D-18059 Rostock Germany
| |
Collapse
|
39
|
Yang J, Dong H, Yan K, Song X, Yu J, Wen J. Isocyanide‐Induced Esterification of Sulfinic Acids to Access Sulfinates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Haozhe Dong
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Xiaodan Song
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Jie Yu
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| |
Collapse
|
40
|
Qu C, Huang R, Li Y, Liu T, Chen Y, Song G. Selective sulfonylation and isonitrilation of para-quinone methides employing TosMIC as a source of sulfonyl group or isonitrile group. Beilstein J Org Chem 2021; 17:2822-2831. [PMID: 34925621 PMCID: PMC8649203 DOI: 10.3762/bjoc.17.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 11/23/2022] Open
Abstract
Chemoselective sulfonylation and isonitrilation reactions for the divergent synthesis of valuable diarylmethyl sulfones and isonitrile diarylmethanes starting from easy-to-synthesize para-quinone methides (p-QMs) and commercially abundant p-toluenesulfonylmethyl isocyanide (TosMIC) by using respectively zinc iodide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as catalysts were developed. The distinguishing feature of this method is that TosMIC plays a dual role from the same substrates in the reaction: as a sulfonyl source or as an isonitrile source. The synthetic utility of this protocol was also demonstrated in the synthesis of difluoroalkylated diarylmethane 5 and diarylmethane ketone derivatives 6 and 7, which are important core structures in natural products and medicines.
Collapse
Affiliation(s)
- Chuanhua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Run Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Guiting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
41
|
Guan Z, Zhu S, Yang Y, Liu Y, Wang S, Bu F, Cong H, Alhumade H, Zhang H, Lei A. Electrochemically selective double C(sp 2)-X (X = S/Se, N) bond formation of isocyanides. Chem Sci 2021; 12:14121-14125. [PMID: 34760196 PMCID: PMC8565391 DOI: 10.1039/d1sc04475c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
The construction of C(sp2)-X (X = B, N, O, Si, P, S, Se, etc.) bonds has drawn growing attention since heteroatomic compounds play a prominent role from biological to pharmaceutical sciences. The current study demonstrates the C(sp2)-S/Se and C(sp2)-N bond formation of one carbon of isocyanides with thiophenols or disulfides or diselenides and azazoles simultaneously. The reported findings could provide access to novel multiple isothioureas, especially hitherto rarely reported selenoureas. The protocol showed good atom-economy and step-economy with only hydrogen evolution and theoretical calculations accounted for the stereoselectivity of the products. Importantly, the electrochemical reaction could exclusively occur at the isocyano part regardless of the presence of susceptible radical acceptors, such as a broad range of arenes and alkynyl moieties, even alkenyl moieties.
Collapse
Affiliation(s)
- Zhipeng Guan
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Shuxiang Zhu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Yankai Yang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Yanlong Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Siyuan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Faxiang Bu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Hengjiang Cong
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University Jeddah Saudi Arabia.,Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University Jeddah Saudi Arabia
| | - Heng Zhang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China .,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 Jiangxi P. R. China.,King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
42
|
Bhat SI, Kigga M, Heravi MM. Multicomponent Reactions Based on In Situ Generated Isocyanides for the Construction of Heterocycles. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Luo L, Chen XP, Li ZF, Zhou Y, Xiao YC, Chen FE. Palladium(II)-catalyzed aerobic oxidative O-H/C-H isocyanide insertion: facile access to pyrrolo[2,1- c][1,4]benzoxazine derivatives. Org Biomol Chem 2021; 19:4364-4368. [PMID: 33908987 DOI: 10.1039/d1ob00393c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Palladium-catalyzed aerobic oxidative cyclizations of substituted 2-(1H-pyrrol-1-yl)phenols with isocyanides via an O-H/C-H insertion cascade have been developed. This strategy provides facile access to pyrrolo[2,1-c][1,4]benzoxazine derivatives in good to excellent yields under an O2 atmosphere. The notable features of this protocol include its mild reaction conditions, atom-economy, and broad functional group tolerance.
Collapse
Affiliation(s)
- Liangliang Luo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao-Pan Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Zhao-Feng Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuan Zhou
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - You-Cai Xiao
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. and Engineering Center of Catalysis and synthesis for Chiral Molecules, Department of chemistry, Fudan University, Shanghai, 200433, China. rfchen@ fudan.edu.cn
| |
Collapse
|
44
|
Yao T, Wang B, Ren B, Qin X, Li T. Palladium-catalyzed Ugi-type reaction of 2-iodoanilines with isocyanides and carboxylic acids affording N-acyl anthranilamides. Chem Commun (Camb) 2021; 57:4247-4250. [PMID: 33913976 DOI: 10.1039/d1cc01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first palladium-catalyzed Ugi-type multicomponent reaction for the synthesis of N-acyl anthranilamides from isocyanides, 2-iodoanilines and carboxylic acids has been developed. This method provides expeditious and highly efficient access to structurally diverse N-acyl anthranilamides from readily available starting materials with good functional group compatibility. The utility of this method has been demonstrated by the late stage functionalization of two commercial drugs: Flurbiprofen and Loxoprofen.
Collapse
Affiliation(s)
- Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Bo Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Beige Ren
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue RD, Minhang District, Shanghai, 200241, China.
| |
Collapse
|
45
|
Luo J, Chen GS, Chen SJ, Li ZD, Liu YL. Catalytic Enantioselective Isocyanide-Based Reactions: Beyond Passerini and Ugi Multicomponent Reactions. Chemistry 2021; 27:6598-6619. [PMID: 32964538 DOI: 10.1002/chem.202003224] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/19/2022]
Abstract
The development of catalytic enantioselective isocyanide-based reactions is currently of great interest because the resulting products are valuable in organic synthesis, pharmacological chemistry, and materials science. This review assembles and comprehensively summarizes the recent achievements in this rapidly growing area according to the reaction types. Special attention is paid to the advantages, limitations, possible mechanisms, and synthetic applications of each reaction. In addition, a personal outlook on the opportunities for further exploration is given at the end.
Collapse
Affiliation(s)
- Jian Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Dong Li
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Wushan Street five road No. 483, Guangzhou, 510642, P. R. China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
46
|
Zhou Z, Ji H, Li Q, Zhang Q, Li D. Direct C-H aminocarbonylation of N-heteroarenes with isocyanides under transition metal-free conditions. Org Biomol Chem 2021; 19:2917-2922. [PMID: 33885551 DOI: 10.1039/d1ob00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C-C bond forming amide synthesis through direct C-H aminocarbonylation of N-heteroarenes with isocyanides was developed. The reaction was mediated by an inorganic persulfate salt under transition metal-free conditions. Mechanistic studies suggested a radical pathway for this reaction without the participation of H2O and O2. This method also showed merits of substrate availability, easy operation and atom economy. It provided an efficient route for straightforward synthesis of N-heteroaryl amides.
Collapse
Affiliation(s)
- Zhong Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | | | |
Collapse
|
47
|
Yuan Q, Liu HW, Cai ZJ, Ji SJ. Direct 1,1-Bisphosphonation of Isocyanides: Atom- and Step-Economical Access to Bisphosphinoylaminomethanes. ACS OMEGA 2021; 6:8495-8501. [PMID: 33817511 PMCID: PMC8015124 DOI: 10.1021/acsomega.1c00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
An atom- and step-economical strategy for the synthesis of bisphosphinoylaminomethanes is reported. This metal-free bisphosphinylation reaction proceeded smoothly through a base-mediated direct 1,1-bisphosphonation of phosphine oxides and isocyanides under mild conditions. The present method offers a facile, efficient, and general approach to a broad range of bisphosphinoylaminomethane derivatives in moderate to good yields.
Collapse
|
48
|
García-López JA, Oliva-Madrid MJ, Bautista D, Vicente J, Saura-Llamas I. Sequential Insertion of Alkynes, Alkenes, and CO into the Pd–C Bond of ortho-Palladated Primary Phenethylamines: from η 3-Allyl Complexes and Enlarged Palladacycles to Functionalized Arylalkylamines. Organometallics 2021; 40:539-556. [PMID: 35264820 PMCID: PMC8895685 DOI: 10.1021/acs.organomet.0c00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/24/2022]
Abstract
![]()
The eight-membered metallacycles
arising from the insertion of
1 equiv of alkyne into the Pd–C bond of ortho-metalated homoveratrylamine and phentermine can further react with
alkenes to give two different types of mononuclear complexes depending
on the nature of the olefin. When terminal alkenes (styrene and ethyl
acrylate) are used, a mixture of the anti/syn η3-allyl Pd(II) complexes are isolated,
which evolve slowly to the syn isomers by heating
the mixtures appropriately. These η3-allyl Pd(II)
complexes do not react with CO or weak bases, but when they are treated
with a strong base, such as KOtBu, they afford Pd(0) and
the functionalized starting phenethylamines containing a 1,3-butadienyl
substituent in an ortho position. When 2-norbornene
was used instead of terminal alkenes, the strained olefin inserts
into the alkenyl Pd(II) complex to afford a 10-membered norbornyl
palladium(II) complex, in which the new C,N-chelate ligand is coordinated to the metal through an
additional double bond, occupying three coordination positions. The
reactivity of these norbornyl complexes depends on the substituents
on the inserted alkenyl fragment, and thus they can further react
with (1) KOtBu, to give Pd(0) and a tetrahydroisoquinoline
nucleus containing a tricyclo[3.2.1]octyl ring, or (2) CO and TlOTf,
to afford Pd(0) and amino acid derivatives or the corresponding lactones
arising from an intramolecular Michael addition of the CO2H group to the α,β-unsaturated ester moiety. Crystal
structures of every type of compound have been determined by X-ray
diffraction studies.
Collapse
Affiliation(s)
- José-Antonio García-López
- Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E−30100 Murcia, Spain
| | - María-José Oliva-Madrid
- Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E−30100 Murcia, Spain
| | | | - José Vicente
- Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E−30100 Murcia, Spain
| | - Isabel Saura-Llamas
- Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E−30100 Murcia, Spain
| |
Collapse
|
49
|
Meng X, Wu D, Zhang Y, Zhao Y. PPTS‐Catalyzed Bicyclization Reaction of 2‐Isocyanobenzaldehydes with Various Amines: Synthesis of Diverse Fused Quinazolines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiang‐He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Dan‐Ni Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Yu‐Jia Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Yu‐Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| |
Collapse
|
50
|
Sedighian H, Mamaghani MB, Notash B, Bazgir A. Iodide-Catalyzed Selenium-Assisted Sequential Multicomponent Synthesis of a Luminescence Benzo-Oxazino-Isoindole Framework. J Org Chem 2021; 86:2244-2253. [PMID: 33470102 DOI: 10.1021/acs.joc.0c02391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have described an unexpected pathway using the R-NC/Se system for the synthesis of the unreported benzo-oxazino-isoindole framework by the iodide-catalyzed selenium-assisted sequential multicomponent reaction of the Knoevenagel adduct of ninhydrin and malononitrile, isocyanide, amine, and elemental selenium under mild reaction conditions. The photophysical properties of the products were investigated by absorption and emission spectroscopy, revealing that the new heterocyclic system has good fluorescence properties.
Collapse
Affiliation(s)
- Hadi Sedighian
- Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
| | | | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Ayoob Bazgir
- Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
| |
Collapse
|