1
|
Ren FY, Hu C, Huang WB, Duan LH, Meng YZ, Li XL, Fang Z, Zhao XY, Wang W, Li XS, Zhao J, Zhang XY, Hou SL, Xu H, Shi Y, He LN, Zhao B. Modulated Multicomponent Reaction Pathway by Pore-Confinement Effect in MOFs for Highly Efficient Catalysis of Low-Concentration CO 2. Angew Chem Int Ed Engl 2025:e202503898. [PMID: 39996375 DOI: 10.1002/anie.202503898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The conversion of flue gas CO2 into high-value chemicals via multicomponent reactions (MCRs) offers the advantages of atom economy, bond-formation efficiency and product complexity. However, because of the competition between reaction sequences and pathways among substrates, the efficient synthesize the desired product is a great challenge. Herein, a porous noble-metal-free framework (Cu-TCA) was synthesized, which can highly effectively catalyze the multicomponent conversion of CO2 by modulating reaction pathways. The pores with the size of 6.5 Å×6.5 Å in Cu-TCA selectively permit the entry of propargylamine and CO2 at simulated flue gas concentrations, At the same time, the larger-sized phosphine oxide is hindered outside the pores. Control experiments and NMR spectroscopy revealed that CO2 and propargylamine in the pores preferentially reacted to form oxazolidinones, which further reacted with phosphine oxide outside the pores to produce phosphorylated 2-oxazolidinones. Therefore, the reaction pathways and sequence of the substrates were controlled by the confinement effect of the pores in Cu-TCA. Density functional theory (DFT) calculations supported the coordination of Cu-TCA with the alkyne, significantly reducing the reaction barrier and promoting catalytic reaction. This study developed a new strategy for regulating the reaction pathways to promote MCRs via the confinement effect of MOF.
Collapse
Affiliation(s)
- Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Chaopeng Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wen-Bin Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ling-Hao Duan
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Yun-Zhu Meng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiu-Lan Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Zhi Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Wen Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiang-Yu Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Ying Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
2
|
Li HH, Liu Y, Kramer S. Benzylic C(sp 3)-H Phosphonylation via Dual Photo and Copper Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420613. [PMID: 39579061 DOI: 10.1002/anie.202420613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
Alkyl phosphonates are important motifs in medicinal chemistry, yet their efficient synthesis by direct C(sp3)-H functionalization remains a challenge. Here, we report straightforward access to benzylic phosphonates by direct C(sp3)-H functionalization in a cross-dehydrogenative-coupling reaction between non-specialized alkylarenes and unfunctionalized phosphites. Notably, the C-H substrates are used as the limiting reagents. The scope of benzylic C-H substrates is broad, and the mild reaction conditions allow for good functional group tolerance. Mechanistic studies indicate that the reaction proceeds via a radical pathway rather than the cationic pathway followed for specialized benzylic C-H substrates in previous methods.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Yuwen Liu
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
3
|
Rahim A, Hong B, Gu Z. Base-Promoted Coupling of HFIP in Cu-Catalyzed Asymmetric Ring Opening of Cyclic Diaryliodoniums. J Org Chem 2024; 89:17673-17685. [PMID: 39523801 DOI: 10.1021/acs.joc.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report a Cu-catalyzed asymmetric ring-opening reaction of cyclic diaryliodoniums with 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), enabling the construction of axially chiral biaryl compounds containing HFIP ether. HFIP is highly polar and exceptionally stable; thus, it is commonly used as a solvent due to its poor nucleophilicity. However, its use as a nucleophilic reagent has been rare. In this study, we successfully employed HFIP as a nucleophilic coupling partner in a Cu-catalyzed asymmetric ring-opening experiment of cyclic diaryliodoniums.
Collapse
Affiliation(s)
- Abdur Rahim
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
4
|
Luo Y, Zhang Y, Liu M, Wang X, Wan Y, Cao S. Photoredox/Copper-Cocatalyzed Domino Annulation of Oxime Esters and NH 4SCN: Access to Fully Substituted 2-Aminothiazoles. J Org Chem 2024; 89:15187-15196. [PMID: 39370928 DOI: 10.1021/acs.joc.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domino cyclization of oxime esters and NH4SCN facilitated by photoredox and copper cocatalysis has been established. Various structurally diverse fully substituted 2-aminothiazoles have been obtained in good yields at room temperature. It is featured by mild conditions, favorable functional group tolerance, and wide substrate scope. The present reaction is amenable to gram-scale synthesis, which is expected to find potential applications in organic synthesis and drug discovery. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Yongyan Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanyan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mengting Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaozhen Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shujun Cao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
5
|
Zhao P, Liu M, Li Y, Wang L, Duan Z. Reactions of Benzyl Phosphine Oxide/Sulfide with (COCl) 2: Synthesis of Novel Acyl Chloride-Substituted Chlorophosphonium Ylides. J Org Chem 2024; 89:14305-14314. [PMID: 39316752 DOI: 10.1021/acs.joc.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
New reactions of benzyl phosphine oxide/sulfide with oxalyl chloride are presented. The resulting reactive intermediates, acyl chloride-substituted chlorophosphonium ylides, are capable of undergoing esterification and Friedel-Crafts acylation reactions, ultimately yielding either methyl 2-(2-bromophenyl)-2-(diphenylphosphoryl)acetate or β-carbonyl-diarylphosphine oxide derivatives. Additionally, when an alkynyl group is contained in the acyl chloride-substituted chlorophosphonium ylide, intramolecular cyclization occurs, leading to the formation of a pair of trans- and cis-dichlorophosphonyl benzofulvene isomers. The generation process of acyl chloride-substituted chlorophosphonium ylide was carefully monitored by using 31P{1H} NMR spectroscopy, and a plausible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Peng Zhao
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mengting Liu
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Li
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Wang
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Duan
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Ling B, Yao S, Ouyang S, Bai H, Zhai X, Zhu C, Li W, Xie J. Nickel-Catalyzed Highly Selective Radical C-C Coupling from Carboxylic Acids with Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405866. [PMID: 38787803 DOI: 10.1002/anie.202405866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Controlling the cross-coupling reaction between two different radicals is a long-standing challenge due to the process occurring statistically, which would lead to three products, including two homocoupling products and one cross-coupling product. Generally, the cross-coupling selectivity is achieved by the persistent radical effect (PRE) that requires the presence of a persistent radical and a transient radical, thus resulting in limited radical precursors. In this paper, a highly selective cross-coupling of alkyl radicals with acyl radicals to construct C(sp2)-C(sp3) bonds, or with alkyl radicals to construct C(sp3)-C(sp3) bonds have been achieved with the readily available carboxylic acids and their derivatives (NHPI ester) as coupling partners. The success originates from the use of tridentate ligand (2,2' : 6',2''-terpyridine) to enable radical cross-coupling process to Ni-mediated organometallic mechanism. This protocol offers a facile and flexible access to structurally diverse ketones (up to 90 % yield), and also a new solution for the challenging double decarboxylative C(sp3)-C(sp3) coupling. The broad utility and functional group tolerance are further illustrated by the late-stage functionalization of natural-occurring carboxylic acids and drugs.
Collapse
Affiliation(s)
- Bo Ling
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shunruo Yao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengmao Ouyang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haonan Bai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinyi Zhai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
7
|
Banjare SK, Lezius L, Horst ES, Leifert D, Daniliuc CG, Alasmary FA, Studer A. Thermal and Photoinduced Radical Cascade Annulation using Aryl Isonitriles: An Approach to Quinoline-Derived Benzophosphole Oxides. Angew Chem Int Ed Engl 2024; 63:e202404275. [PMID: 38687058 DOI: 10.1002/anie.202404275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Herein, we present a radical cascade addition cyclization sequence to access quinoline-based benzophosphole oxides from ortho-alkynylated aromatic phosphine oxides using various aryl isonitriles as radical acceptors and inexpensive tert-butyl-hydroperoxide (TBHP) as a terminal oxidant in the presence of a catalytic amount of silver acetate. Alternatively, the same cascade can be realized through a sustainable photochemical approach utilizing 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as an organic photocatalyst at room temperature. The introduced modular approach shows broad functional group tolerance and offers straightforward access to complex P,N-containing polyheterocyclic arenes. These novel π-extended benzophosphole oxides exhibit interesting photophysical and electrochemical properties such as absorption in the visible region, emission and reversible reduction at low potentials, which makes them promising for potential materials science applications. The photophysical properties can further be tuned by the addition of external Lewis and Brønsted acids.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Lena Lezius
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Elena S Horst
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Fatmah A Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Armido Studer
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| |
Collapse
|
8
|
Yang L, Wu J, Li Y, Tang Y, Li J, Xu S. Construction of C-P Bonds from Free Cyclobutanone Oximes and Chlorophosphines via Radical-Radical Coupling. Org Lett 2024; 26:3208-3212. [PMID: 38597783 DOI: 10.1021/acs.orglett.4c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Herein, we report a catalyst-free reaction of cyclobutanone oximes with chlorophosphines (R2PCl), which forms a fragile C═N-O-PR2 species that undergoes N-O homolysis, fragmentation, and radical-radical coupling, leading to the formation of cyano-containing phosphine oxides in good yields. The reaction features an in situ activation of cyclobutanone oximes for radical generation, in which R2PCl plays a dual role as both an activator and a reactant.
Collapse
Affiliation(s)
- LuLu Yang
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiale Wu
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
9
|
Kathiravan S, Dhillon P, Zhang T, Nicholls IA. Metal free cross-dehydrogenative N-N coupling of primary amides with Lewis basic amines. Nat Commun 2024; 15:2643. [PMID: 38531886 PMCID: PMC10966042 DOI: 10.1038/s41467-024-46890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrazides, N-N containing structural motifs, are important due to their presence in a wide variety of biologically significant compounds. While the homo N-N coupling of two NH moieties to form the hydrazide N-N bond is well developed, the cross-dehydrogenative hetero N-N coupling remains very unevolved. Here we present an efficient intermolecular N-N cross-coupling of a series of primary benzamides with broad range of Lewis basic primary and secondary amines using PhI(OAc)2 as both a terminal oxidant and a cross-coupling mediator, without the need for metal catalysts, high temperatures, and inert atmospheres, and with substantial potential for use in the late-stage functionalization of drugs.
Collapse
Affiliation(s)
- Subban Kathiravan
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden.
- Attana AB, Greta Arwidssons väg 21, 11419, Stockholm, Sweden.
| | - Prakriti Dhillon
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Tianshu Zhang
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden.
| |
Collapse
|
10
|
Sun H, Wang J, Du Z, Zhang K, Hu J, Jing S. Direct Synthesis of Tertiary Phosphines via Alkoxide-Mediated Deborylative Phosphination of Organoboronates. Org Lett 2024; 26:1618-1622. [PMID: 38367253 DOI: 10.1021/acs.orglett.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The direct transformation of alkylboron has emerged as a versatile and powerful methodology for creating carbon-carbon and carbon-heteroatom bonds. However, its potential application in the formation of carbon and phosphorus remains unexplored. In this study, we present an alkoxide base-promoted reaction system that enables deborylative phosphination of benzylic organoboronates and geminal bis(boronates) via selective C-B bond cleavage. This approach allows for the synthesis of valuable tertiary phosphines in good yields under mild conditions. The practicality and industrial potential of this approach are underscored by the operational simplicity, broad substrate scope, and easy scalability.
Collapse
Affiliation(s)
- Huaxing Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| | - Zihang Du
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| | - Kun Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| | - Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Puzhu Roads 30, Nanjing 211816, China
| |
Collapse
|
11
|
Jadhao NL, Musale HB, Gajbhiye JM, Humne VT. Copper-mediated [3 + 2] oxidative cyclization of oxime acetate and its utility in the formal synthesis of fentiazac. Org Biomol Chem 2024; 22:521-528. [PMID: 38087933 DOI: 10.1039/d3ob01882b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A new protocol for the direct synthesis of 2-aminothiazole has been developed from oxime acetate and readily available sodium thiocyanate using a copper catalyst. The present transformation has good functional group tolerance. Various thiazoles were smoothly synthesized in good to excellent yields. The applicability of the present method has been extended to the formal synthesis of the non-steroidal and anti-inflammatory drug, fentiazac via the Sandmeyer reaction and Suzuki coupling.
Collapse
Affiliation(s)
- Nitin L Jadhao
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harish B Musale
- Department of Chemistry, Shri R. R. Lahoti Science College, Morshi, 444905, India.
| | - Jayant M Gajbhiye
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek T Humne
- Department of Chemistry, Shri R. R. Lahoti Science College, Morshi, 444905, India.
| |
Collapse
|
12
|
Yuan Y, Huang Q, Darcel C. Blue-Light Driven Iron-Catalyzed Oxy-phosphinylation of Activated Alkenes for β-Ketophosphine Oxide Synthesis. Chemistry 2023:e202302358. [PMID: 37681747 DOI: 10.1002/chem.202302358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
We have developed an original blue-light mediated iron-catalyzed oxy-phosphinylation of activated alkenes by secondary phosphine oxides under air at room temperature. Various β-ketophosphine oxides were then obtained in 43-97 % isolated yields. Control experiments revealed that radical process is involved in the mechanism.
Collapse
Affiliation(s)
- Yumeng Yuan
- CNRS, ISCR UMR 6226, Univ. Rennes, F 35000, Rennes, France
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, P. R. China
| | - Qiufeng Huang
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, P. R. China
| | | |
Collapse
|
13
|
Xiong B, Si L, Zhu L, Liu Y, Xu W, Tang KW, Yin SF, Qian PC, Wong WY. Copper-Catalyzed Aerobic Oxidative/Decarboxylative Phosphorylation of Aryl Acrylic Acids with P(III)-Nucleophiles. J Org Chem 2023; 88:12502-12518. [PMID: 37579226 DOI: 10.1021/acs.joc.3c01238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of β-ketophosphine oxides, β-ketophosphinates, and β-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired β-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| | - Lulu Si
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035 Zhejiang, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| |
Collapse
|
14
|
Wang C, Qiao Z, Tian Y, Yang H, Cao H, Cheetham AK. Alcohol imination catalyzed by carbon nanostructures synthesized by C(sp 2)-C(sp 3) free radical coupling. iScience 2023; 26:106659. [PMID: 37182103 PMCID: PMC10173739 DOI: 10.1016/j.isci.2023.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Imines are important intermediates for synthesizing various fine chemicals, with the disadvantage of requiring the use of expensive metal-containing catalysts. We report that the dehydrogenative cross-coupling of phenylmethanol and benzylamine (or aniline) directly forms the corresponding imine with a yield of up to 98%, and water as the sole by-product, in the presence of a stoichiometric base, using carbon nanostructures as the "green" metal-free carbon catalysts with high spin concentrations, which is synthesized by C(sp2)-C(sp3) free radical coupling reactions. The catalytic mechanism is attributed to the unpaired electrons of carbon catalysts to reduce O2 to O2·-, which triggers the oxidative coupling reaction to form imines, whereas the holes in the carbon catalysts receive electrons from the amine to restore the spin states. This is supported by density functional theory calculations. This work will open up an avenue for synthesizing carbon catalysts and offer great potential for industrial applications.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zirui Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yulan Tian
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Anthony K. Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
15
|
Recent Advances in Molecule Synthesis Involving C-C Bond Cleavage of Ketoxime Esters. Molecules 2023; 28:molecules28062667. [PMID: 36985637 PMCID: PMC10058904 DOI: 10.3390/molecules28062667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The synthetic strategies of oxime derivatives participating in radical-type reactions have been rapidly developed in the last few decades. Among them, the N–O bond cleavage of oxime esters leading to formation of nitrogen-centered radicals triggers adjacent C–C bond cleavage to produce carbon-centered free radicals, which has been virtually used in organic synthesis in recent years. Herein, we summarized the radical reactions involving oxime N–O bond and C–C bond cleavage through this special reaction form, including those from acyl oxime ester derivatives and cyclic ketoxime ester derivatives. These contents were systematically classified according to different reaction types. In this review, the free radical reactions involving acyl oxime esters and cyclic ketoxime esters after 2021 were included, with emphasis on the substrate scope and reaction mechanism.
Collapse
|
16
|
Wang C, Ge Q, Xu C, Xing Z, Xiong J, Zheng Y, Duan WL. Photoinduced Copper-Catalyzed C(sp 3)-P Bond Formation by Coupling of Secondary Phosphines with N-(Acyloxy)phthalimides and N-Fluorocarboxamides. Org Lett 2023; 25:1583-1588. [PMID: 36826372 DOI: 10.1021/acs.orglett.3c00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A photoinduced copper-catalyzed C(sp3)-P bond formation has been developed by using N-(acyloxy)phthalimides as radical precursors and secondary phosphine boranes as coupling partners. A variety of alkyl carboxylic acid derivatives can be readily transformed into the corresponding phosphines with high reaction efficiency and structural diversity. Besides, utilizing the 1,5-HAT of the N-centered radical process, the δ C(sp3)-H bond can be coupled with secondary phosphines, which provides a novel method for the regioselective formation of C(sp3)-P bonds.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Qiangqiang Ge
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Cheng Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Zhongqiu Xing
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Jianqi Xiong
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an 710119, China
| |
Collapse
|
17
|
Yang HT, Zhou SQ, Chen DM, Hu ZJ, Qiang XQ, Song XQ, Tan S, Jiang WH, Sun YQ, Miao CB. Copper-Catalyzed Annulation of O-Acyl Oximes with Cyclic 1,3-Diones for the Synthesis of 7,8-Dihydroindolizin-5(6 H)-ones and Cyclohexanone-Fused Furans. Org Lett 2023; 25:838-842. [PMID: 36705486 DOI: 10.1021/acs.orglett.3c00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A copper-catalyzed annulation of O-acyl oximes with cyclic 1,3-diones has been developed for the concise synthesis of 7,8-dihydroindolizin-5(6H)-ones and cyclohexanone-fused furans through the substituent-controlled selective radical coupling process. 2-Alkyl cyclic 1,3-diones undergo C-C radical coupling, while 2-unsubstituted cyclic 1,3-diones undergo C-O radical coupling.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Su-Qing Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Dan-Mei Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Zi-Jun Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qi Qiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qing Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Sheng Tan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wei-Hua Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yong-Qiang Sun
- Changzhou Siyao Pharmaceuticals Co., Ltd., Changzhou, Jiangsu 213018, P. R. China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
18
|
Li H, Li S, Hu H, Sun R, Liu M, Ding A, Liu X, Luo W, Fu Z, Guo S, Cai H. Visible-light-induced C(sp 3)-C(sp 3) bond formation via radical/radical cross-coupling. Chem Commun (Camb) 2023; 59:1205-1208. [PMID: 36629273 DOI: 10.1039/d2cc05840e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Radical/radical cross-coupling remains challenging due to diffusion control issues. Herein, we report a visible-light-induced radical/radical cross-coupling reaction of quaternary ammonium salts and Hantzschs via C-N and C-C bond cleavage. The current synthetic approach furnishes 1,2-diphenylethanes in moderate to good yields and provides a method for the construction of the C(sp3)-C(sp3) bond.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Sen Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Huimin Hu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Runbo Sun
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Meixia Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Anjun Ding
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Xiaoyong Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Wenlin Luo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Hu Cai
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| |
Collapse
|
19
|
Ogundipe OO, Shoberu A, Xiao M, Zou JP. Copper-Catalyzed Radical Hydrazono-Phosphorylation of Alkenes. J Org Chem 2022; 87:15820-15829. [PMID: 36374155 DOI: 10.1021/acs.joc.2c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An efficient copper-catalyzed radical hydrazono-phosphorylation of alkenes with hydrazine derivatives and diarylphosphine oxides is described. The reaction provides a general and convenient method toward the synthesis of diverse β-hydrazonophosphine oxides in satisfactory yields. Based on conducted mechanistic experiments, a mechanism involving Ag-catalyzed oxidative generation of phosphinoyl radicals and subsequent addition to alkenes followed by Cu-assisted hydrazonation is proposed. Moreover, the practicability of the reaction is successfully demonstrated by its successful application on a gram scale.
Collapse
Affiliation(s)
- Olukayode Olamiji Ogundipe
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Mei Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
20
|
Wang K, Yu Q, Mao W, Zheng Y, Xu J, Wang Y. Copper-catalyzed radical trans-selective hydroboration of ynamides with N-heterocyclic carbene boranes. iScience 2022; 25:104977. [PMID: 36065185 PMCID: PMC9440302 DOI: 10.1016/j.isci.2022.104977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vinylboron compounds are important compounds in organic chemistry and biology. In this communication, we developed a copper(I)-catalyzed, highly regio- and stereoselective radical trans-hydroboration of ynamides with N-heterocyclic carbene (NHC)-ligated borane is reported, which leads to a series of trans-boryl enmides that can be conveniently transformed into various multi-substituted enamides. Further investigation showcased that our method is robust and scalable. The mechanism of this unique reaction is studied and discussed. A Cu-catalyzed highly regio- and stereoselective radical trans-hydroboration of ynamides Good to excellent yields, good functional group tolerance Further investigation showcased that our method is robust and scalable
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingzhen Yu
- Clinical Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Wenli Mao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxin Zheng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Corresponding author
| | - Yukun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
21
|
Fang Z, Zhang Y, Zhang Z, Song Q, Wu Y, Liu Z, Ning Y. Synthesis of gem-Disulfonyl Enamines via an Iminyl-Radical-Mediated Formal 1,3-HAT/Radical Coupling Cascade. Org Lett 2022; 24:6374-6379. [PMID: 36018352 DOI: 10.1021/acs.orglett.2c02277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report the first example of an iminyl-radical-mediated formal 1,3-HAT/radical coupling cascade of vinyl azides leading to the synthesis of tetrasubstituted gem-disulfonyl enamines. It is possible to employ a variety of vinyl azides and sulfinate salt coupling elements without sacrificing effectiveness and scalability. The combination of experimental studies and DFT calculations showed that this reaction proceeds via a radical addition/formal 1,3-HAT/radical coupling mechanism.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yujie Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Zhansong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qingming Song
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yong Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
22
|
Li CK, Tao ZK, Shoberu A, Zhang W, Zou JP. Copper-Catalyzed Cross-Coupling of Alkyl and Phosphorus Radicals for C(sp 3)-P Bond Formation. Org Lett 2022; 24:6083-6087. [PMID: 35950907 DOI: 10.1021/acs.orglett.2c02454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A CuI-catalyzed cross-coupling of alkyl- and phosphorus-centered radicals for C(sp3)-P bond formation is introduced. Diacyl peroxides, generated in situ from aliphatic acids and H2O2, serve as a source for alkyl radicals and also an initiator for the generation of phosphorus radicals from H-P(O) compounds.
Collapse
Affiliation(s)
- Cheng-Kun Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ze-Kun Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
Yang J, Sun X, Yan K, Sun H, Sun S, Jia X, Zhang F, Wen J. Electrochemical Oxidation‐Induced Oxyphosphorylation of Alkenes and Alkynes with Water via Hydrogen Atom Transfer. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Xue Sun
- Qufu Normal University CHINA
| | | | | | | | | | | | | |
Collapse
|
24
|
Li Q, Zhao CQ, Chen T, Han LB. Direct phosphorylation of benzylic C-H bonds under transition metal-free conditions forming sp 3C-P bonds. RSC Adv 2022; 12:18441-18444. [PMID: 35799919 PMCID: PMC9227801 DOI: 10.1039/d2ra02812c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 12/16/2022] Open
Abstract
Direct phosphorylation of benzylic C-H bonds was achieved in a biphasic system under transition metal-free conditions. A selective radical/radical sp3C-H/P(O)-H cross coupling was proposed, and various substituted toluenes were applicable. The transformation provided a promising method for constructing sp3C-P bonds.
Collapse
Affiliation(s)
- Qiang Li
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Chang-Qiu Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Li-Biao Han
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
- Zhejiang Yanfan New Materials Co., Ltd. Shangyu Zhejiang Province 312369 China
| |
Collapse
|
25
|
Wan JL, Huang JM. Bromide‐catalyzed electrochemical Csp<sup>3</sup>‐H oxidation of acetonitrile: Stereoselective synthesis of heteroaryl vinyl sulfides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
27
|
Wang ZH, Yang P, Zhang YP, You Y, Zhao JQ, Zhou MQ, Yuan WC. Copper‐catalyzed ring‐opening (3+2) annulation of cyclopropenones with ketoxime acetates: access to 1,2‐dihydro‐pyrrol‐3‐ones bearing a quaternary carbon center. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study CHINA
| | - Ping Yang
- ZMC: Zunyi Medical University School of Pharmacy CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study CHINA
| | - Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study CHINA
| | - Ming-Qiang Zhou
- Chengdu Institute of Organic Chemistry CAS: Chengdu Organic Chemicals Co Ltd National Engineering Research Center of Chiral Drugs CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
28
|
Lv F, Li H, Wu Q, Guo X, Zhang H, Yu C, Jiao L, Hao E. Silver-mediated, direct phosphorylation of BODIPY dyes at the 3- or 3,5-positions with H-phosphonates. Chem Commun (Camb) 2022; 58:3937-3940. [PMID: 35244131 DOI: 10.1039/d2cc00297c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A direct and regioselective C-H/P-H cross-coupling of dialkyl phosphites, and diphenylphosphine oxide to easily available BODIPYs through an Ag-mediated radical addition, resulted in a series of new α-phosphorylated BODIPY fluorophores under mild conditions. Hydrolysis of the phosphonate gave the corresponding BODIPY phosphoric acid, which is soluble and fluorescent in water with a high quantum yield of 0.83.
Collapse
Affiliation(s)
- Fan Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. .,Department of Chemistry, WanNan Medical College, Wuhu, 241000, China
| | - Heng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Hongtao Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
29
|
Huang Y, Chen D, Zheng Y, Huang S. Synthesis of 3‐Sulfonyl Indenones via Copper‐Catalyzed Redox‐Neutral Coupling Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
30
|
Cao S, Ma C, Teng X, Chen R, Li Y, Yuan W, Zhu Y. Facile synthesis of fully substituted 1 H-imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo01475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel and efficient photoredox/copper cocatalyzed domino cyclization of oxime esters, aldehydes, and amines has been achieved, affording a broad range of fully substituted 1H-imidazoles in good yields.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongchong Ma
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Tao JY, Zhang QH, Zhu TH, Xu XW, Ni K, Zhao Q, Qin ZB, Zhang Y, Zhao L, Zhao K. Visible-light-initiated regio- and stereoselective C(sp 2)–H phosphorylation of enamides under transition-metal-free conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo01304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A visible-light-induced stereo- and regioselective phosphorylation of enamides with phosphine oxides under transition-metal-free conditions has been disclosed.
Collapse
Affiliation(s)
- Ji-Yu Tao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Qing-Hong Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Tong-Hao Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Institute of Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Xin-Wen Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kun Ni
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Qiao Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Zheng-Bao Qin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kai Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Sun X, Yang J, Yan K, Zhuang X, Yu J, Song X, Zhang F, Li B, Wen J. Hydrophosphorylation of Electron-Deficient Alkenes and Alkynes Mediated by Convergent Paired Electrolysis. Chem Commun (Camb) 2022; 58:8238-8241. [DOI: 10.1039/d2cc02745c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward and practical strategy for hydrophosphorylation of electron-deficient alkenes and alkynes to access γ-ketophosphine oxides, enabled by a convergent paired electrolysis (CPE) in the absence of metal, base, and...
Collapse
|
33
|
Jiang K, Li SJ, Liu QP, Yu N, Li YL, Zhou YQ, He KC, Lin J, Zheng TY, Lang J, Lan Y, Wei Y. Iminyl radical-triggered relay annulation for the construction of bridged aza-tetracycles bearing four contiguous stereogenic centers. Chem Sci 2022; 13:7283-7288. [PMID: 35799821 PMCID: PMC9214848 DOI: 10.1039/d2sc01548j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Bridged tetracyclic nitrogen scaffolds are found in numerous biologically active molecules and medicinally relevant structures. Traditional methods usually require tedious reaction steps, and/or the use of structurally specific starting materials. We report an unprecedented, iminyl radical-triggered relay annulation from oxime-derived peresters and azadienes, which shows good substrate scope and functional group compatibility, and can deliver various bridged aza-tetracyclic compounds with complex molecular topology and four contiguous stereogenic centers (dr > 19 : 1) in a single operation. This transformation represents the first example of trifunctionalization of iminyl radicals through simultaneous formation of one C–N and two C–C bonds. DFT calculation studies were conducted to obtain an in-depth insight into the reaction pathways, which revealed that the reactions involved an interesting 1,6-hydrogen atom transfer process. A novel radical relay annulation is realized for the construction of various bridged aza-tetracyclic compounds with complex molecular topology and four contiguous stereogenic centers (dr > 19 : 1) in a single operation.![]()
Collapse
Affiliation(s)
- Kun Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shi-Jun Li
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qing-Peng Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ning Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Qiang Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kui-Cheng He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ting-Yu Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jian Lang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu Lan
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ye Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
34
|
Zhu L, Song D, Liu YH, Chen MD, Zhang XR, You MY, Zhan JL. Iron-catalyzed regioselective synthesis of ( E)-vinyl sulfones mediated by unprotected hydroxylamines. Org Biomol Chem 2022; 20:9127-9131. [DOI: 10.1039/d2ob01922a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An Fe-catalyzed unprotected hydroxylamine mediated Heck-type coupling between sulfinic acids and alkenes furnished structurally important (E)-vinyl sulfones with moderate to good yields, high atom-economy and regioselectivity.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Dian Song
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Yi-Han Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Meng-Di Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Xin-Ru Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Meng-Yan You
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Jun-Long Zhan
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| |
Collapse
|
35
|
Shao A, Chen J, Wang L, Yi M, Yang H, Zhang Y, Fan S, Chen S, Wu H, Shi R. Excited-state cobaloxime catalysis enabled scalable oxidant-free dehydrogenative C–H phosphinoylation of undirected heterocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-induced excited-state cobalt catalysis enables C(sp2)–H/C(sp3)–H phosphinoylation accompanied by H2 evolution. The reaction achieves the late-stage modification of more than 10 distinct classes of heterocycles and arenes.
Collapse
Affiliation(s)
- Ailong Shao
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Jifang Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Lingxiao Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Mingchen Yi
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Han Yang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Yuqing Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Suhua Fan
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Shuisheng Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Hai Wu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Renyi Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shanxi, P. R. China
| |
Collapse
|
36
|
Almaraz-Ortiz WE, Ramos Orea A, Casadiego-Díaz O, Reyes-Salgado A, Mejía-Galindo A, Torres-Ochoa RO. Divergent copper-catalyzed syntheses of 3-carboxylpyrroles and 3-cyanofurans from O-acetyl oximes and β-ketoesters/nitriles. RSC Adv 2022; 12:26673-26679. [PMID: 36275146 PMCID: PMC9490516 DOI: 10.1039/d2ra04938d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The reaction between O-acetyl oximes and β-ketoesters/nitriles catalyzed by copper generated polysubstituted pyrroles and furans, respectively, under redox–neutral reaction conditions. Using this protocol, pyrroles or furans could be obtained simply by choosing an appropriate active methylene compound. Although both transformations occur essentially under the same reaction conditions, control experiments indicated that they follow different mechanistic pathways. A copper-catalyzed heteroannulation of O-acetyl oximes and β-ketoesters/nitriles to afford polysubstituted pyrroles and furans was successfully achieved.![]()
Collapse
Affiliation(s)
- Wilfrido E. Almaraz-Ortiz
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Aldahir Ramos Orea
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Oscar Casadiego-Díaz
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Agustín Reyes-Salgado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Arturo Mejía-Galindo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Rubén O. Torres-Ochoa
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| |
Collapse
|
37
|
Abstract
A Cu-catalyzed straightforward synthesis of benzoxazoles from free phenols and cyclic oxime esters is reported. The mild reaction conditions tolerate various electron-withdrawing and electron-donating functional groups on both substrates, affording benzoxazoles in moderate to good yields. With this protocol, large-scale syntheses of Ezutromid and Flunoxaprofe in one or two steps are demonstrated. A catalytic mechanism, which includes Cu-catalyzed amination via inner-sphere electron transfer and consequent annulation, is proposed.
Collapse
Affiliation(s)
- Zheng-Hai Wang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Dong-Hui Wang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China.,Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Boulevard, Nanjing 210023, China
| |
Collapse
|
38
|
Macías-Benítez P, Sierra-Padilla A, J Tenorio M, Moreno-Dorado FJ, Guerra FM. Copper-Catalyzed Microwave-Expedited Oxyphosphorylation of Alkynes with Diethyl Phosphite and t-Butyl Hydroperoxide Synthesis of Densely Functionalized Phosphonylated Indenones. J Org Chem 2021; 86:16409-16424. [PMID: 34709823 DOI: 10.1021/acs.joc.1c01763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment of alkynes with diethyl phosphite and t-butyl hydroperoxide in the presence of [Cu(MeCN)4]BF4 under microwave irradiation produced the oxyphosphorylation of the triple bond, giving rise to the corresponding β-ketophosphonates in moderate-to-good yields. When the triple bond was conjugated to a carbonyl group bearing an aromatic ring, it led to the cyclization of the resulting ketone intermediate, producing eventually different phosphonylated indenones.
Collapse
Affiliation(s)
- Pablo Macías-Benítez
- Departamento de Química Orgánica and Instituto de Biomoléculas, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - Alfonso Sierra-Padilla
- Departamento de Química Orgánica and Instituto de Biomoléculas, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - Manuel J Tenorio
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica and Instituto de Biomoléculas, Universidad de Cadiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - F Javier Moreno-Dorado
- Departamento de Química Orgánica and Instituto de Biomoléculas, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - Francisco M Guerra
- Departamento de Química Orgánica and Instituto de Biomoléculas, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| |
Collapse
|
39
|
Zhang MZ, Li WT, Li YY, Wang Q, Li C, Liu YH, Yin JX, Yang X, Huang H, Chen T. Discovery of an Oxidative System for Radical Generation from Csp 3-H Bonds: A Synthesis of Functionalized Oxindoles. J Org Chem 2021; 86:15544-15557. [PMID: 34570502 DOI: 10.1021/acs.joc.1c02032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile and versatile method for generating radicals from Csp3-H bonds under metal-free and organic-peroxide-free conditions was developed. By combining safe persulfate and low-toxic quaternary ammonium salt, a wide variety of Csp3-H compounds including ethers, (hetero)aromatic/aliphatic ketones, alkylbenzenes, alkylheterocycles, cycloalkanes, and haloalkanes were selectively activated to generate the corresponding C-centered radicals, which could be further captured by N-arylacrylamides to deliver the valuable functionalized oxindoles. Good functional group tolerance was demonstrated. The useful polycarbonyl compound and esters were also modified with the strategy. Moreover, the combination can also be applied to the practical coupling between simple haloalkanes and N-hydroxyphthalimide (NHPI).
Collapse
Affiliation(s)
- Ming-Zhong Zhang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Wan-Ting Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yuan-Yuan Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Qi Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Chong Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yan-Hao Liu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Jin-Xing Yin
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Xin Yang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University, Haikou 570228, China
| |
Collapse
|
40
|
Yang F, Zhou Q, Wang H, Tang L. Copper‐Catalyzed Cross‐Dehydrogenative Phosphorylation of 2‐Amino‐1,4‐naphthoquinones with
H
‐Phosphonates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fang Yang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Heyan Wang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
- Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan Xinyang 464000 P. R. China
| |
Collapse
|
41
|
Shen J, Jiang X, Wu H, Xu J, Zhu Q, Zhang P. Copper-catalyzed selective oxidation of hydrazones through C(sp 3)-H functionalization. Org Biomol Chem 2021; 19:8917-8923. [PMID: 34617555 DOI: 10.1039/d1ob01563j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and mild protocol for copper-catalyzed oxidation of hydrazones at the α-position has been reported. Various substrates are compatible, providing the corresponding products in moderate to good yields. This strategy provides an efficient and convenient solution for the synthesis of carbonyl hydrazone. A free radical pathway mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China. .,College of Chemistry and Chemical Engineering, Central south University, Changsha, 410083, P.R. China
| | - Haifeng Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
42
|
Wang R, Dong X, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Enabled Cascade Phosphorylation of N-H/O-H/S-H Bonds with P-H Compounds: An Efficient Access to P(O)-X Bonds. Chemistry 2021; 27:14931-14935. [PMID: 34449952 DOI: 10.1002/chem.202102262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 12/13/2022]
Abstract
An electrochemical three component cascade phosphorylation reaction of various heteroatoms-containing nucleophiles including carbazoles, indoles, phenols, alcohols, and thiols with Ph2 PH has been established. Electricity is used as the "traceless" oxidant and water and air are utilized as the "green" oxygen source. All kinds of structurally diverse organophosphorus compounds with P(O)-N/P(O)-O/P(O)-S bonds are assembled in moderate to excellent yields (three categories of phosphorylation products, 50 examples, up to 97 % yield). A tentative free radical course is put forward to rationalize the reaction procedure.
Collapse
Affiliation(s)
- Ruige Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Xiaojuan Dong
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| |
Collapse
|
43
|
Fu Y, Zhao X, Chen D, Luo J, Huang S. Cu-catalyzed coupling of indanone oxime acetates with thiols to 2,3-difunctionalized indenones. Chem Commun (Camb) 2021; 57:10719-10722. [PMID: 34581714 DOI: 10.1039/d1cc04167c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Cu-catalyzed coupling reaction of indanone oxime acetates with thiols has been developed for the synthesis of 2,3-functionalized 1-indenones. This protocol has several features including easy mild reaction conditions, stabilized enamine products, good tolerance of functional groups, and no external oxidants. This reaction enables direct derivatization on the indanone ring to provide valuable functionalized indenones at room temperature.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
44
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
45
|
Rong B, Xu G, Yan H, Zhang S, Wu Q, Zhu N, Duan J, Guo K. The copper-catalyzed synthesis of dihydrooxazoles from α,β-unsaturated ketoximes and activated ketones. Chem Commun (Camb) 2021; 57:7272-7275. [PMID: 34195708 DOI: 10.1039/d1cc02422a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first copper-catalyzed [3+2]-type condensation reaction of α,β-unsaturated ketoximes with activated ketones has been described for the synthesis of dihydrooxazoles, especially trifluoromethyl-decorated dihydrooxazoles. Notable features of this method include its broad substrate scope, good functional group tolerance, and simple operation.
Collapse
Affiliation(s)
- Binsen Rong
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tran DP, Sato Y, Yamamoto Y, Kawaguchi SI, Kodama S, Nomoto A, Ogawa A. Photoinduced selective hydrophosphinylation of allylic compounds with diphenylphosphine oxide leading to γ-functionalized P-ligand precursors. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Kittikool T, Phakdeeyothin K, Chantarojsiri T, Yotphan S. Manganese‐Promoted Regioselective Direct
C3
‐Phosphinoylation of 2‐Pyridones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanakorn Kittikool
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
48
|
Liu B, Song Q, Liu Z, Wang Z. Silver‐Catalyzed Oxyphosphorylation of Unactivated Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Binbin Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Qingmin Song
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| |
Collapse
|
49
|
Vemuri P, Patureau FW. Cross-Dehydrogenative N-N Coupling of Aromatic and Aliphatic Methoxyamides with Benzotriazoles. Org Lett 2021; 23:3902-3907. [PMID: 33974802 PMCID: PMC8155566 DOI: 10.1021/acs.orglett.1c01034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 01/12/2023]
Abstract
Nitrogen-nitrogen bond containing motifs are ubiquitous in bioactive compounds and organic materials. However, intermolecular hetero-selective N-H/N-H oxidative coupling reactions remain very challenging and largely unexplored. Here, we report an unprecedented, simple and hetero-selective cross-dehydrogenative N-N coupling of amides and benzotriazoles, utilizing only a hypervalent iodine species as the terminal oxidant. The scope and mechanistic investigations are discussed.
Collapse
Affiliation(s)
- Pooja
Y. Vemuri
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
50
|
Wang H, Xie Y, Li Y, Yang Y, Long J, Zhang H. Copper‐Catalyzed Tandem Cross‐Coupling/Annulation of Phenols with Ketoximes through Dual C−H Functionalization: Synthesis of Substituted 2‐Aryl‐
1H
‐indoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huan Wang
- School of chemistry and Environmental Engineering Sichuan university of science & Engineering 180 Xueyuan Street, Huixing Lu, Zigong Sichuan 643000 China
| | - Ying Xie
- School of chemistry and Environmental Engineering Sichuan university of science & Engineering 180 Xueyuan Street, Huixing Lu, Zigong Sichuan 643000 China
| | - Yulong Li
- School of chemistry and Environmental Engineering Sichuan university of science & Engineering 180 Xueyuan Street, Huixing Lu, Zigong Sichuan 643000 China
| | - Yi Yang
- School of chemistry and Environmental Engineering Sichuan university of science & Engineering 180 Xueyuan Street, Huixing Lu, Zigong Sichuan 643000 China
| | - Jilan Long
- College of chemistry and chemical engineering China west normal university 1 Shida Lu, Nanchong Sichuan 637002 China
| | - Hao Zhang
- College of vanadium and titanium Panzhihua university 10 Airport Lu, Panzhihua Sichuan 617000 China
| |
Collapse
|