1
|
Chen QF, Xiao Y, Hua K, Zhang HT, Zhang MT. Bimetallic Synergy in Oxygen Reduction: How Tailored Metal-Metal Interactions Amplify Cooperative Catalysis. J Am Chem Soc 2025; 147:14504-14518. [PMID: 40232950 DOI: 10.1021/jacs.5c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Bimetallic cooperative catalysis, inspired by cytochrome c oxidase and multicopper oxidase, plays a crucial role in the development of four-electron oxygen reduction catalysts. The distance between metals is a crucial factor affecting the cooperative effect, but its precise influence on bimetallic cooperativity in selective oxygen reduction catalysis still awaits an in-depth understanding. Herein, we employ a series of dicopper complexes with varying linkers to systematically adjust the Cu···Cu distance for electrocatalytic oxygen reduction. Structure-activity relationship analyses reveal that catalysts with a shorter dicopper center exhibited significantly higher four-electron selectivity (approaching 100% for BPMPDCu2 and BPMANCu2) than that with a longer distance (below 80% for 6-HPACu2) in an aqueous solution (pH 7.0). Notably, the catalytic activity of BPMPDCu2 is 11 times and 237 times faster than those of 6-HPACu2 and BPMANCu2, respectively, which does not correlate directly with their Cu···Cu distances. Further investigations into low-valent LCuI2 intermediates, supported by DFT calculations, indicate that the oxygen binding process is the rate-determining step under electrocatalytic conditions and is sensitive to the CuI···CuI distance. The closest BPMANCuI2 characterized by strong CuI-CuI interactions and the more distant 6-HPACuI2 with its separated dicopper sites both hinder effective O2 binding. In contrast, BPMPDCuI2 maintains an optimal Cu···Cu distance that facilitates O2 binding and ensures robust bimetallic cooperativity throughout the catalytic cycle. This work underscores the significance of metal-metal distance regulation in bimetallic cooperatively selective oxygen reduction and provides valuable insights for the rational design of high-performance oxygen reduction catalysts.
Collapse
Affiliation(s)
- Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yao Xiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Hua
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Mahammed A, Gray HB, Gross Z. Silver Anniversary of the Renaissance in Metallocorrole Chemistry. Chem Rev 2025. [PMID: 39937445 DOI: 10.1021/acs.chemrev.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The 1999 discovery of one-pot corrole synthesis opened the floodgates for research on these unique macrocyclic chelating agents. The enormous impact of this discovery has been documented in numerous reviews describing advances in the synthetic chemistry of corroles and selected applications in which corroles are key components. Our silver anniversary review focuses on the structures and reactions of all well characterized corrole-chelated d- and p-block metal complexes, including discussions of their electronic excited-state physics and chemistry. Emphasis is placed on electronic structure of the trinegative N4 coordination core, which stabilizes high-valent metals and activates low-valent ones, and, importantly, profoundly influences ground- and excited-state reactivity. Our story highlights the unique properties of corroles that have made them the molecular components of choice in a plethora of applications. These include their utility for sensing gases and anions, rescue of vital biomolecules from oxidative damage, destruction of cancerous cells, and catalysis of reactions critical for organic synthesis, as well as those involved in clean energy processes such as production of hydrogen and reduction of oxygen. In our view, research on corroles will continue to grow by leaps and bounds, most especially in areas of human health research and renewable energy science and technology.
Collapse
Affiliation(s)
- Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States!
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
3
|
Khurana R, Liu C. Unveiling the Redox Noninnocence of Metallocorroles: Exploring K-Edge X-ray Absorption Near-Edge Spectroscopy with a Multiconfigurational Wave Function Approach. J Phys Chem Lett 2024; 15:10985-10995. [PMID: 39454090 DOI: 10.1021/acs.jpclett.4c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
X-ray absorption near-edge spectroscopy (XANES) is an advanced technique for probing the local electronic structure of catalysts, effectively identifying the noninnocent nature of ligands in transition-metal complexes. Metallocorroles with noninnocent corrole rings exhibit unusual electronic structures that challenge traditional density functional theory (DFT) methods, necessitating more rigorous approaches to describe electron correlation accurately. We explored K-edge XANES spectra of Fe, Mn, and Co metallocorroles using TDDFT and wave function-based methods. This is the first investigation employing multireference methods, specifically RASSCF, RASPT2, and MC-PDFT, to analyze the redox noninnocent nature of metallocorroles reflected in their XANES spectra. We quantified the noninnocent character of the corrole and the oxidation states of the metals, capturing more than singly excited excitations responsible for the pre-edge peak. Our findings demonstrate the importance of these advanced computational techniques for accurately predicting XANES spectra, providing a reliable understanding of the electronic properties of such complexes. This study offers a new strategy for investigating ligand redox noninnocence via integrated experimental and computational XANES.
Collapse
Affiliation(s)
- Rishu Khurana
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Giovanelli L, Ksari Y, Mrezguia H, Salomon E, Minissale M, Alemayehu AB, Ghosh A. Inverse Photoemission Spectroscopy of Coinage Metal Corroles: Comparison with Solution-Phase Electrochemistry. ACS ORGANIC & INORGANIC AU 2024; 4:485-491. [PMID: 39371327 PMCID: PMC11450770 DOI: 10.1021/acsorginorgau.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 10/08/2024]
Abstract
A combined direct and inverse photoemission study of coinage metal corroles suggests that the latter technique, in favorable cases, can provide some additional information relative to electrochemical measurements. Thus, whereas inverse photoemission spectroscopy (IPES) provides relative electron affinities for electron addition to different unoccupied orbitals, electrochemical reduction potentials shed light on the energetics of successive electron additions. While all three coinage metal triphenylcorrole (TPC) complexes exhibit similar ionization potentials, they exhibit dramatically different inverse photoemission spectra. For Cu[TPC], the lowest-energy IPES feature (0.74 eV) is found to be exceedingly close to the Fermi level; it is significantly higher for Ag[TPC] (1.65 eV) and much higher for Au[TPC] (2.40 eV). These differences qualitatively mirror those observed for electrochemical reduction potentials and are related to a partially metal-centered LUMO in the case of Cu- and Ag[TPC] and a fully corrole-based LUMO in the case of Au[TPC]; the latter orbital corresponds to the LUMO+1 in the case of Ag[TPC].
Collapse
Affiliation(s)
- Luca Giovanelli
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Younal Ksari
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Hela Mrezguia
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Eric Salomon
- Aix-Marseille
Université, CNRS, PIIM, Marseille 13397, France
| | - Marco Minissale
- Aix-Marseille
Université, CNRS, PIIM, Marseille 13397, France
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
5
|
Ma R, Tang C, Wang Y, Xu X, Wu M, Cui X, Yang Y. Linker Mediated Electronic-State Manipulation of Conjugated Organic Polymers Enabling Highly Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2024; 63:e202405594. [PMID: 38638107 DOI: 10.1002/anie.202405594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Conjugated polymers with tailorable composition and microarchitecture are propitious for modulating catalytic properties and deciphering inherent structure-performance relationships. Herein, we report a facile linker engineering strategy to manipulate the electronic states of metallophthalocyanine conjugated polymers and uncover the vital role of organic linkers in facilitating electrocatalytic oxygen reduction reaction (ORR). Specifically, a set of cobalt phthalocyanine conjugated polymers (CoPc-CPs) wrapped onto carbon nanotubes (denoted CNTs@CoPc-CPs) are judiciously crafted via in situ assembling square-planar cobalt tetraaminophthalocyanine (CoPc(NH2)4) with different linear aromatic dialdehyde-based organic linkers in the presence of CNTs. Intriguingly, upon varying the electronic characteristic of organic linkers from terephthalaldehyde (TA) to 2,5-thiophenedicarboxaldehyde (TDA) and then to thieno/thiophene-2,5-dicarboxaldehyde (bTDA), their corresponding CNTs@CoPc-CPs exhibit gradually improved electrocatalytic ORR performance. More importantly, theoretical calculations reveal that the charge transfer from CoPc units to electron-withdrawing linkers (i.e., TDA and bTDA) drives the delocalization of Co d-orbital electrons, thereby downshifting the Co d-band energy level. Accordingly, the active Co centers with more positive valence state exhibit optimized binding energy toward ORR-relevant intermediates and thus a balanced adsorption/desorption pathway that endows significant enhancement in electrocatalytic ORR. This work demonstrates a molecular-level engineering route for rationally designing efficient polymer catalysts and gaining insightful understanding of electrocatalytic mechanisms.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Chenglong Tang
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yonglin Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaoxue Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
6
|
Huang S, Tranca D, Rodríguez-Hernández F, Zhang J, Lu C, Zhu J, Liang HW, Zhuang X. Well-defined N 3 C 1 -anchored Single-Metal-Sites for Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202314833. [PMID: 37994382 DOI: 10.1002/anie.202314833] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
N-, C-, O-, S-coordinated single-metal-sites (SMSs) have garnered significant attention due to the potential for significantly enhanced catalytic capabilities resulting from charge redistribution. However, significant challenges persist in the precise design of well-defined such SMSs, and the fundamental comprehension has long been impeded in case-by-case reports using carbon materials as investigation targets. In this work, the well-defined molecular catalysts with N3 C1 -anchored SMSs, i.e., N-confused metalloporphyrins (NCPor-Ms), are calculated for their catalytic oxygen reduction activity. Then, NCPor-Ms with corresponding N4 -anchored SMSs (metalloporphyrins, Por-Ms), are synthesized for catalytic activity evaluation. Among all, NCPor-Co reaches the top in established volcano plots. NCPor-Co also shows the highest half-wave potential of 0.83 V vs. RHE, which is much better than that of Por-Co (0.77 V vs. RHE). Electron-rich, low band gap and regulated d-band center contribute to the high activity of NCPor-Co. This study delves into the examination of well-defined asymmetric SMS molecular catalysts, encompassing both theoretical and experimental facets. It serves as a pioneering step towards enhancing the fundamental comprehension and facilitating the development of high-performance asymmetric SMS catalysts.
Collapse
Affiliation(s)
- Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Diana Tranca
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fermin Rodríguez-Hernández
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239, Zhangheng Road, Shanghai, 201204, China
| | - Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinhui Zhu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hai-Wei Liang
- Department of Chemistry, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
7
|
Meng J, Qin H, Lei H, Li X, Fan J, Zhang W, Apfel UP, Cao R. Adapting Synthetic Models of Heme/Cu Sites to Energy-Efficient Electrocatalytic Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023:e202312255. [PMID: 37921242 DOI: 10.1002/anie.202312255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
In nature, cytochrome c oxidases catalyze the 4e- oxygen reduction reaction (ORR) at the heme/Cu site, in which CuI is used to assist O2 activation. Because of the thermodynamic barrier to generate CuI , synthetic Fe-porphyrin/Cu complexes usually show moderate electrocatalytic ORR activity. We herein report on a Co-corrole/Co complex 1-Co for energy-efficient electrocatalytic ORR. By hanging a CoII ion over Co corrole, 1-Co realizes electrocatalytic 4e- ORR with a half-wave potential of 0.89 V versus RHE, which is outstanding among corrole-based electrocatalysts. Notably, 1-Co outperforms Co corrole hanged with CuII or ZnII . We revealed that the hanging CoII ion can provide an electron to improve O2 binding thermodynamically and dynamically, a function represented by the biological CuI ion of the heme/Cu site. This work is significant to present a remarkable ORR electrocatalyst and to show the vital role of a second-sphere redox-active metal ion in promoting O2 binding and activation.
Collapse
Affiliation(s)
- Jia Meng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Juan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Aljabour A, Awada H, Song L, Sun H, Offenthaler S, Yari F, Bechmann M, Scharber MC, Schöfberger W. A Bifunctional Electrocatalyst for OER and ORR based on a Cobalt(II) Triazole Pyridine Bis-[Cobalt(III) Corrole] Complex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202302208. [PMID: 38516328 PMCID: PMC10952570 DOI: 10.1002/ange.202302208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 02/25/2023]
Abstract
As alternative energy sources are essential to reach a climate-neutral economy, hydrogen peroxide (H2O2) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2O2 ORR electrocatalyst is yet a challenge, making the design of-ideally-bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis-[cobalt(III) corrole] complex CoIITP[CoIIIC]2 3 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two-electron transfer generated H2O2, an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm-2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec-1 combined with superior stability.
Collapse
Affiliation(s)
- Abdalaziz Aljabour
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Houssein Awada
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Luyang Song
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - He Sun
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Simon Offenthaler
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
- Institute of Applied ChemistryDepartment of Science and TechnologyIMC University of Applied Sciences Krems WienPiaristengasse 13500KremsAustria
| | - Farzaneh Yari
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Matthias Bechmann
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Markus Clark Scharber
- Institute of Physical Chemistry and Linz Institute of Organic Solar CellsJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Wolfgang Schöfberger
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| |
Collapse
|
9
|
Aljabour A, Awada H, Song L, Sun H, Offenthaler S, Yari F, Bechmann M, Scharber MC, Schöfberger W. A Bifunctional Electrocatalyst for OER and ORR based on a Cobalt(II) Triazole Pyridine Bis-[Cobalt(III) Corrole] Complex. Angew Chem Int Ed Engl 2023; 62:e202302208. [PMID: 36821699 PMCID: PMC10947295 DOI: 10.1002/anie.202302208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
As alternative energy sources are essential to reach a climate-neutral economy, hydrogen peroxide (H2 O2 ) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2 O2 ORR electrocatalyst is yet a challenge, making the design of-ideally-bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis-[cobalt(III) corrole] complex CoII TP[CoIII C]2 3 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two-electron transfer generated H2 O2 , an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm-2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec-1 combined with superior stability.
Collapse
Affiliation(s)
- Abdalaziz Aljabour
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Houssein Awada
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Luyang Song
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - He Sun
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Simon Offenthaler
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
- Institute of Applied ChemistryDepartment of Science and TechnologyIMC University of Applied Sciences Krems WienPiaristengasse 13500KremsAustria
| | - Farzaneh Yari
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Matthias Bechmann
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| | - Markus Clark Scharber
- Institute of Physical Chemistry and Linz Institute of Organic Solar CellsJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Wolfgang Schöfberger
- Institute of Organic ChemistryLaboratory for Sustainable Chemistry and Catalysis (LSusCat)Johannes Kepler University (JKU)Altenberger Straße 694040LinzAustria
| |
Collapse
|
10
|
Yadav I, Prakash V, Maurya MR, Sankar M. Oxido-Molybdenum(V) Corroles as Robust Catalysts for Oxidative Bromination and Selective Epoxidation Reactions in Aqueous Media under Mild Conditions. Inorg Chem 2023; 62:5292-5301. [PMID: 36958040 DOI: 10.1021/acs.inorgchem.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Two new meso-substituted oxido-molybdenum corroles were synthesized and characterized by various spectroscopic techniques. In the thermogram, MoO[TTC] (1) exhibited excellent thermal stability up to 491 °C while MoO[TNPC] (2) exhibited good stability up to 318 °C. The oxidation states of the molybdenum(V) were verified by electron paramagnetic resonance (EPR) spectroscopy and exhibited an axial compression with dxy1 configuration. Oxido-molybdenum(V) complexes were utilized for the selective epoxidation of various olefins with high TOF values (2066-3287 h-1) in good yields in a CH3CN/H2O (3:2, v/v) mixture in the presence of hydrogen peroxide as a green oxidant and NaHCO3 as a promoter. The oxidative bromination catalytic activity of oxido-molybdenum(V) complexes in an aqueous medium has been reported for the first time. Surprisingly, MoO[TNPC] (2) biomimics of the vanadium bromoperoxidase (VBPO) enzyme activity exhibited remarkably high TOF values (36 988-61 646 h-1) for the selective oxidative bromination of p-cresol and other phenol derivatives. Catalyst MoO[TNPC] (2) exhibited higher TOF values and better catalytic activity than catalyst MoO[TTC] (1) due to the presence of electron-withdrawing nitro groups evident from cyclic voltammetric studies.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ved Prakash
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
11
|
Honig HC, Elbaz L. Degradation Mechanisms of Platinum Group Metal‐Free Oxygen Reduction Reaction Catalyst based on Iron Phthalocyanine. ChemElectroChem 2023. [DOI: 10.1002/celc.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Hilah C. Honig
- Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel
- Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel
| | - Lior Elbaz
- Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel
- Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel
| |
Collapse
|
12
|
Bhunia S, Ghatak A, Rana A, Dey A. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e -/4H + Oxygen Reduction Rates at Lower Overpotentials. J Am Chem Soc 2023; 145:3812-3825. [PMID: 36744304 DOI: 10.1021/jacs.2c13552] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron porphyrins with one or four tertiary amine groups in their second sphere are used to investigate the electrochemical O2 reduction reaction (ORR) in organic (homogeneous) and aqueous (heterogeneous) conditions. Both of these complexes show selective 4e-/4H+ reduction of oxygen to water at rates that are 2-3 orders of magnitude higher than those of iron tetraphenylporphyrin lacking these amines in the second sphere. In organic solvents, these amines get protonated, which leads to the lowering of overpotentials, and the rate of the ORR is enhanced almost 75,000 times relative to rates expected from the established scaling relationship for the ORR by iron porphyrins. In the aqueous medium, the same trend of higher ORR rates at a lower overpotential is observed. In situ resonance Raman data under heterogeneous aqueous conditions show that the presence of one amine group in the second sphere leads to a cleavage of the O-O bond in a FeIII-OOH intermediate as the rate-determining step (rds). The presence of four such amine groups enhances the rate of O-O bond cleavage such that this intermediate is no longer observed during the ORR; rather, the proton-coupled reduction of the FeIII-O2- intermediate with a H/D isotope effect of 10.6 is the rds. These data clearly demonstrate changes in the rds of the electrochemical ORR depending on the nature of second-sphere residues and explain their deviation from linear scaling relationships.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| |
Collapse
|
13
|
Naitana ML, Osterloh WR, Di Zazzo L, Nardis S, Caroleo F, Stipa P, Truong KN, Rissanen K, Fang Y, Kadish KM, Paolesse R. The Difficult Marriage of Triarylcorroles with Zinc and Nickel Ions. Inorg Chem 2022; 61:17790-17803. [PMID: 36285662 PMCID: PMC9644369 DOI: 10.1021/acs.inorgchem.2c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The coordination chemistry of corrole has witnessed a
great improvement
in the past few years and its Periodic Table has been widened to be
so large that it is compared with that of porphyrins. However, Ni
and Zn ions, commonly used with porphyrins for both synthetic and
theoretical purposes, are sparsely reported in the case of corroles.
Here, we report synthetic protocols for preparing Ni and Zn triarylcorrole
complexes. In the case of Zn, the preliminary oxidation of the free
base corrole in DMSO to the neutral corrole radical is a necessary
step to obtain the coordination of the metal ion, because the direct
reaction led to the formation of an open-chain tetrapyrrole. The Ni
complex could be directly obtained by heating the free base corrole
and Ni(II) salt to 100 °C in a DMSO solution containing FeCl3. The non-innocent nature of the corrole ligand for both complexes
has been elucidated by EPR, and in the case of the Zn derivative the
first spectroelectrochemical characterization is presented. The oxidation of triarylcorrole to the
corresponding neutral
radical species in DMSO is a key step to allow the preparation of
the corresponding Ni and Zn complexes. Without this step, the oxidative
ring opening of the macrocycle occurs, leading to the formation of
a linear tetrapyrrole. The spectroscopic characterization of these
species indicates their radical character. The stability of the Zn
complex can be improved by peripheral substitution.
Collapse
Affiliation(s)
- Mario L. Naitana
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| | - W. Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas77204-5003, United States
| | - Lorena Di Zazzo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| | - Fabrizio Caroleo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| | - Pierluigi Stipa
- Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed Urbanistica, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131Ancona, Italy
| | - Khai-Nghi Truong
- Department of Chemistry, University of Jyväskylä, 40014Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä, 40014Jyväskylä, Finland
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas77204-5003, United States
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas77204-5003, United States
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| |
Collapse
|
14
|
Barman J, Deka N, Maji PK, Dutta GK. Nitrogen and Sulfur Enriched Porous Carbon Materials with Trace Fe Derived from Hyper‐crosslinked Polymer as an Efficient Oxygen Reduction Electrocatalyst. ChemElectroChem 2022. [DOI: 10.1002/celc.202200677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Namrata Deka
- National Institute of Technology Meghalaya Chemistry INDIA
| | - Pradip K. Maji
- Indian Institute of Technology Roorkee Polymer and Process Engineering INDIA
| | - Gitish Kishor Dutta
- National Institute of Technology Meghalaya Chemistry Bijni Complex 793003 Shillong INDIA
| |
Collapse
|
15
|
Zhou Z, He W, Chao H, Wang H, Su P, Song J, Yang Y. Insertion of Hemin into Metal-Organic Frameworks: Mimicking Natural Peroxidase Microenvironment for the Rapid Ultrasensitive Detection of Uranium. Anal Chem 2022; 94:6833-6841. [PMID: 35482423 DOI: 10.1021/acs.analchem.2c00661] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constructing enzyme-like active sites in mimic enzyme systems is critical for achieving catalytic performances comparable to natural enzymes and can shed light on the natural development of enzymes. In this study, we described a specific hemin-based mimetic enzyme, which was facilely synthesized by the assembly of zeolitic imidazolate framework-l (ZIF-l) and hemin. The obtained hemin-based mimetic enzyme (denoted as ZIF-l-hemin) displayed enhanced peroxidase activity compared to free hemin in solution. Such excellent activity originated from the ZIF-l framework mimicking the active site cavity microenvironment of horseradish peroxidase in terms of axially coordinated histidine and distal histidine. Additionally, the constructed peroxidase mimetic was extremely resistant to a variety of severe circumstances that would normally denature natural enzymes. These characteristics made ZIF-l-hemin a potential platform for the colorimetric sensor of uranium (UO22+) with wide linear ranges (0.25-40 μM) and low limits of detection (0.079 μM). Moreover, the detection mechanism demonstrated that the coordination of uranyl ion with imidazole of ZIF-l-hemin reduced the catalytic efficiency of ZIF-l-hemin. The current work not only proposed a novel approach for fabricating artificial peroxidase but also offered facile colorimetric methods for selective radionuclide detection.
Collapse
Affiliation(s)
- Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenting He
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hao Chao
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Han Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
16
|
Cai Q, Tran LK, Qiu T, Eddy JW, Pham TN, Yap GPA, Rosenthal J. An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e -/4H + Peractivation of O 2 to Water. Inorg Chem 2022; 61:5442-5451. [PMID: 35358381 DOI: 10.1021/acs.inorgchem.1c03766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective 4e-/4H+ reduction of dioxygen to water is an important reaction that takes place at the cathode of fuel cells. Monomeric aromatic tetrapyrroles (such as porphyrins, phthalocyanines, and corroles) coordinated to Co(II) or Co(III) have been considered as oxygen reduction catalysts due to their low cost and relative ease of synthesis. However, these systems have been repeatedly shown to be selective for O2 reduction by the less desired 2e-/2H+ pathway to yield hydrogen peroxide. Herein, we report the initial synthesis and study of a Co(II) tetrapyrrole complex based on a nonaromatic isocorrole scaffold that is competent for 4e-/4H+ oxygen reduction reaction (ORR). This Co(II) 10,10-dimethyl isocorrole (Co[10-DMIC]) is obtained in just four simple steps and has excellent yield from a known dipyrromethane synthon. Evaluation of the steady state spectroscopic and redox properties of Co[10-DMIC] against those of Co porphyrin (cobalt 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, [Co(TPFPP)]) and corrole (cobalt 5,10,15-tris(pentafluorophenyl)corrole triphenylphosphine, Co[TPFPC](PPh3)) homologues demonstrated that the spectroscopic and electrochemical properties of the isocorrole are distinct from those displayed by more traditional aromatic tetrapyrroles. Further, the investigation of the ORR activity of Co[10-DMIC] using a combination of electrochemical and chemical reduction studies revealed that this simple, unadorned monomeric Co(II) tetrapyrrole is ∼85% selective for the 4e-/4H+ reduction of O2 to H2O over the more kinetically facile 2e-/2H+ process that delivers H2O2. In contrast, the same ORR evaluations conducted for the Co porphyrin and corrole homologues demonstrated that these traditional aromatic systems catalyze the 2e-/2H+ conversion of O2 to H2O2 with near complete selectivity. Despite being a simple, easily prepared, monomeric tetrapyrrole platform, Co[10-DMIC] supports an ORR catalysis that has historically only been achieved using elaborate porphyrinoid-based architectures that incorporate pendant proton-transfer groups or ditopic molecular clefts or that impose cofacially oriented O2 binding sites. Accordingly, Co[10-DMIC] represents the first simple, unadorned, monomeric metalloisocorrole complex that can be easily prepared and shows a privileged performance for the 4e-/4H+ peractivation of O2 to water as compared to other simple cobalt containing tetrapyrroles.
Collapse
Affiliation(s)
- Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Linh K Tran
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tian Qiu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jennifer W Eddy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
17
|
Chen QC, Fite S, Fridman N, Tumanskii B, Mahammed A, Gross Z. Hydrogen Evolution Catalyzed by Corrole-Chelated Nickel Complexes, Characterized in all Catalysis-Relevant Oxidation States. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiu-Cheng Chen
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Shachar Fite
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Boris Tumanskii
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
18
|
Shahaf Y, Mahammed A, Raslin A, Kumar A, Farber EM, Gross Z, Eisenberg D. Orthogonal Design of Fe‐N4 Active Sites and Hierarchical Porosity in Hydrazine Oxidation Electrocatalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202200045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yair Shahaf
- Technion Israel Institute of Technology Schulich Faculty of Chemistry and the Grand Technion Energy Program ISRAEL
| | - Atif Mahammed
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Arik Raslin
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Amit Kumar
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Eliyahu M. Farber
- Technion Israel Institute of Technology Schulich Faculty of Chemistry and the Grand Technion Energy Program ISRAEL
| | - Zeev Gross
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - David Eisenberg
- Technion Israel Institute of Technology Schulich Faculty of Chemistry, the Grand Technion Energy Program, and the Russel Berrie Nanotechnology Institute Technion City Haifa ISRAEL
| |
Collapse
|
19
|
Hanana M, Kahlfuss C, Weiss J, Cornut R, Jousselme B, Wytko JA, Campidelli S. ORR activity of metalated phenanthroline-strapped porphyrin adsorbed on carbon nanotubes. CR CHIM 2021. [DOI: 10.5802/crchim.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Samireddi S, Aishwarya V, Shown I, Muthusamy S, Unni SM, Wong KT, Chen KH, Chen LC. Synergistic Dual-Atom Molecular Catalyst Derived from Low-Temperature Pyrolyzed Heterobimetallic Macrocycle-N4 Corrole Complex for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103823. [PMID: 34665522 DOI: 10.1002/smll.202103823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm-2 , almost close to that of most metal-N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe-Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.
Collapse
Affiliation(s)
- Satyanarayana Samireddi
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - V Aishwarya
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
| | - Indrajit Shown
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, 603103, India
| | - Saravanakumar Muthusamy
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
| | - Ken-Tsung Wong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
21
|
Kumar A, Ibraheem S, Anh Nguyen T, Gupta RK, Maiyalagan T, Yasin G. Molecular-MN4 vs atomically dispersed M−N4−C electrocatalysts for oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214122] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Arima H, Wada M, Nakazono T, Wada T. Tuning Oxygen Reduction Catalysis of Dinuclear Cobalt Polypyridyl Complexes by the Bridging Structure. Inorg Chem 2021; 60:9402-9415. [PMID: 33988979 DOI: 10.1021/acs.inorgchem.1c00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The four-electron oxygen reduction reaction (4e--ORR) is the mainstay in chemical energy conversion. Elucidation of factors influencing the catalyst's reaction rate and selectivity is important in the development of more active catalysts of 4e--ORR. In this study, we investigated chemical and electrochemical 4e--ORR catalyzed by Co2(μ-O2) complexes bridged by xanthene (1) and anthracene (3) and by a Co2(OH)2 complex bridged by anthraquinone (2). In the chemical ORR using Fe(CpMe)2 as a reductant in acidic PhCN, we found that 1 showed the highest initial turnover frequency (TOFinit = 6.8 × 102 s-1) and selectivity for 4e--ORR (96%) in three complexes. The detailed kinetic analyses have revealed that the rate-determining steps (RDSs) in the catalytic cycles of 1-3 have the O2 addition to [CoII2(OH2)2]4+ as an intermediate in common. In the only case that complex 1 was used as a catalyst, kcat depended on proton concentration because the reaction rate of the O2 addition to [CoII2(OH2)2]4+ was so fast as compared to that of the concerted PCET process of 1. Through X-ray, Raman, and electrochemical analyses and stoichiometric reactions, we found the face-to-face structure of 1 characterized by a slightly flexible xanthene was advantageous in capturing O2 and stabilizing the Co2(μ-O2) structure, thus increasing both the reaction rate and selectivity for 4e--ORR.
Collapse
Affiliation(s)
- Hiroaki Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Misato Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Takashi Nakazono
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
24
|
Ni Y, Lu Y, Zhang K, Chen J. Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction. CHEMSUSCHEM 2021; 14:1835-1839. [PMID: 33605052 DOI: 10.1002/cssc.202100182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first-principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d-π conjugation, which acted as a bridge between π-electrons on macrocycles and active d-electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction.
Collapse
Affiliation(s)
- Youxuan Ni
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
25
|
Friedman A, Reddy Samala N, Honig HC, Tasior M, Gryko DT, Elbaz L, Grinberg I. Control of Molecular Catalysts for Oxygen Reduction by Variation of pH and Functional Groups. CHEMSUSCHEM 2021; 14:1886-1892. [PMID: 33629811 DOI: 10.1002/cssc.202002756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/22/2021] [Indexed: 06/12/2023]
Abstract
In the search for replacement of the platinum-based catalysts for fuel cells, MN4 molecular catalysts based on abundant transition metals play a crucial role in modeling and investigation of the influence of the environment near the active site in platinum-group metal-free (PGM-free) oxygen reduction reaction (ORR) catalysts. To understand how the ORR activity of molecular catalysts can be controlled by the active site structure through modification by the pH and substituent functional groups, the change of the ORR onset potential and the electron number in a broad pH range was examined for three different metallocorroles. Experiments revealed a switch between two different ORR mechanisms and a change from 2e- to 4e- pathway in the pH range of 3.5-6. This phenomenon was shown by density functional theory (DFT) calculations to be related to the protonation of the nitrogen atoms and carboxylic acid groups on the corroles indicated by the pKa values of the protonation sites in the vicinity of the ORR active sites. Control of the electron-withdrawing nature of these groups characterized by the pKa values could switch the ORR from the H+ to e- rate-determining step mechanisms and from 2e- to 4e- ORR pathways and also controlled the durability of the corrole catalysts. The results suggest that protonation of the nitrogen atoms plays a vital role in both the ORR activity and durability for these materials and that pKa of the N atoms at the active sites can be used as a descriptor for the design of high-performance, durable PGM-free catalysts.
Collapse
Affiliation(s)
- Ariel Friedman
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | | | - Hilah C Honig
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Lior Elbaz
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
26
|
Maurya MR, Prakash V, Avecilla F, Sankar M. Selective Bromination of
β
‐Positions of Porphyrin by Self‐Catalytic Behaviour of VOTPP: Facile Synthesis, Electrochemical Redox Properties and Catalytic Application. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Ved Prakash
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Fernando Avecilla
- Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias Universidade da Coruña Campus de A Coruña 15071 A Coruña Spain
| | - Muniappan Sankar
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
27
|
Xie L, Zhang X, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel U, Cao R. Enzyme‐Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
28
|
Xie L, Zhang XP, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel UP, Cao R. Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021; 60:7576-7581. [PMID: 33462971 DOI: 10.1002/anie.202015478] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Indexed: 12/31/2022]
Abstract
Nature uses Fe porphyrin sites for the oxygen reduction reaction (ORR). Synthetic Fe porphyrins have been extensively studied as ORR catalysts, but activity improvement is required. On the other hand, Fe porphyrins have been rarely shown to be efficient for the oxygen evolution reaction (OER). We herein report an enzyme-inspired Fe porphyrin 1 as an efficient catalyst for both ORR and OER. Complex 1, which bears a tethered imidazole for Fe binding, beats imidazole-free analogue 2, with an anodic shift of ORR half-wave potential by 160 mV and a decrease of OER overpotential by 150 mV to get the benchmark current density at 10 mA cm-2 . Theoretical studies suggested that hydroxide attack to a formal FeV =O form the O-O bond. The axial imidazole can prevent the formation of trans HO-FeV =O, which is less effective to form O-O bond with hydroxide. As a practical demonstration, we assembled rechargeable Zn-air battery with 1, which shows equal performance to that with Pt/Ir-based materials.
Collapse
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
29
|
Samala NR, Grinberg I. Tuning of ORR activity through the stabilization of the adsorbates by hydrogen bonding with substituent groups. Phys Chem Chem Phys 2020; 22:27811-27817. [PMID: 33245314 DOI: 10.1039/d0cp04478d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metallocorroles and metalloporphyrins (M-N-C) are some of the best alternative molecular catalysts for the replacement of the expensive platinum-group metals (PGM) in oxygen reduction reaction (ORR) catalysis in polymer electrolyte membrane (PEM) fuel cells. To date, Co-based corroles have shown the best performance, but still suffer from the poor stability and the toxicity of the Co metal. Mn-N-C are more stable than Co-N-C, and are also less reactive towards peroxide formation. In this work, using first-principles density functional theory calculations, we study the improvement of the Mn-based corrole ORR activity by exploiting hydrogen bonding with substituent groups to modify the adsorption energies of the ORR intermediates and obtain higher onset potential (Vonset) values. We found that by using phenyl acetic acid as a substituent, Vonset increased from 0.54 V for the unsubstituted corrole to ∼0.9 V which is competitive with the Vonset of the Co-based corroles. Our results suggest that hydrogen bonding with substituent groups should be considered in the analysis and design of the reactivity of active sites in non-PGM ORR catalysts.
Collapse
|
30
|
Mondal B, Chattopadhyay S, Dey S, Mahammed A, Mittra K, Rana A, Gross Z, Dey A. Elucidation of Factors That Govern the 2e -/2H + vs 4e -/4H + Selectivity of Water Oxidation by a Cobalt Corrole. J Am Chem Soc 2020; 142:21040-21049. [PMID: 33259190 DOI: 10.1021/jacs.0c08654] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Considering the importance of water splitting as the best solution for clean and renewable energy, the worldwide efforts for development of increasingly active molecular water oxidation catalysts must be accompanied by studies that focus on elucidating the mode of actions and catalytic pathways. One crucial challenge remains the elucidation of the factors that determine the selectivity of water oxidation by the desired 4e-/4H+ pathway that leads to O2 rather than by 2e-/2H+ to H2O2. We now show that water oxidation with the cobalt-corrole CoBr8 as electrocatalyst affords H2O2 as the main product in homogeneous solutions, while heterogeneous water oxidation by the same catalyst leads exclusively to oxygen. Experimental and computation-based investigations of the species formed during the process uncover the formation of a Co(III)-superoxide intermediate and its preceding high-valent Co-oxyl complex. The competition between the base-catalyzed hydrolysis of Co(III)-hydroperoxide [Co(III)-OOH]- to release H2O2 and the electrochemical oxidation of the same to release O2 via [Co(III)-O2•]- is identified as the key step determining the selectivity of water oxidation.
Collapse
Affiliation(s)
- Biswajit Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subal Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Kaustuv Mittra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Atanu Rana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
31
|
Hassani N. The reaction mechanism of the hydration of ethylene over the CorroleM (M = B, Al, and Ga) complexes: A theoretical approach. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Platinum Group Metal-Free Catalysts for Oxygen Reduction Reaction: Applications in Microbial Fuel Cells. Catalysts 2020. [DOI: 10.3390/catal10050475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Scientific and technological innovation is increasingly playing a role for promoting the transition towards a circular economy and sustainable development. Thanks to its dual function of harvesting energy from waste and cleaning up waste from organic pollutants, microbial fuel cells (MFCs) provide a revolutionary answer to the global environmental challenges. Yet, one key factor that limits the implementation of larger scale MFCs is the high cost and low durability of current electrode materials, owing to the use of platinum at the cathode side. To address this issue, the scientific community has devoted its research efforts for identifying innovative and low cost materials and components to assemble lab-scale MFC prototypes, fed with wastewaters of different nature. This review work summarizes the state-of the-art of developing platinum group metal-free (PGM-free) catalysts for applications at the cathode side of MFCs. We address how different catalyst families boost oxygen reduction reaction (ORR) in neutral pH, as result of an interplay between surface chemistry and morphology on the efficiency of ORR active sites. We particularly review the properties, performance, and applicability of metal-free carbon-based materials, molecular catalysts based on metal macrocycles supported on carbon nanostructures, M-N-C catalysts activated via pyrolysis, metal oxide-based catalysts, and enzyme catalysts. We finally discuss recent progress on MFC cathode design, providing a guidance for improving cathode activity and stability under MFC operating conditions.
Collapse
|
33
|
Sinha W, Mahammed A, Fridman N, Gross Z. Water Oxidation Catalysis by Mono- and Binuclear Iron Corroles. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05382] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Woormileela Sinha
- Schulich Faculty of Chemistry and the Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry and the Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry and the Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry and the Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
34
|
Zhao Y, Dai W, Peng Y, Niu Z, Sun Q, Shan C, Yang H, Verma G, Wojtas L, Yuan D, Zhang Z, Dong H, Zhang X, Zhang B, Feng Y, Ma S. A Corrole‐Based Covalent Organic Framework Featuring Desymmetrized Topology. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yanming Zhao
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Wenhao Dai
- Research Center for Bioengineering and Sensing Technology University of Science & Technology Beijing Beijing 100083 China
| | - Yunlei Peng
- College of Chemistry Nankai University Tianjin 300071 China
| | - Zheng Niu
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Qi Sun
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Chuan Shan
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Hui Yang
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Gaurav Verma
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Zhenjie Zhang
- College of Chemistry Nankai University Tianjin 300071 China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology University of Science & Technology Beijing Beijing 100083 China
| | - Xueji Zhang
- School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
| | - Bao Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Yaqing Feng
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Shengqian Ma
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| |
Collapse
|
35
|
Zhao Y, Dai W, Peng Y, Niu Z, Sun Q, Shan C, Yang H, Verma G, Wojtas L, Yuan D, Zhang Z, Dong H, Zhang X, Zhang B, Feng Y, Ma S. A Corrole‐Based Covalent Organic Framework Featuring Desymmetrized Topology. Angew Chem Int Ed Engl 2020; 59:4354-4359. [DOI: 10.1002/anie.201915569] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Yanming Zhao
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Wenhao Dai
- Research Center for Bioengineering and Sensing Technology University of Science & Technology Beijing Beijing 100083 China
| | - Yunlei Peng
- College of Chemistry Nankai University Tianjin 300071 China
| | - Zheng Niu
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Qi Sun
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Chuan Shan
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Hui Yang
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Gaurav Verma
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Zhenjie Zhang
- College of Chemistry Nankai University Tianjin 300071 China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology University of Science & Technology Beijing Beijing 100083 China
| | - Xueji Zhang
- School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
| | - Bao Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Yaqing Feng
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Shengqian Ma
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| |
Collapse
|
36
|
Honig HC, Friedman A, Zion N, Elbaz L. Enhancement of the oxygen reduction reaction electrocatalytic activity of metallo-corroles using contracted cobalt(iii) CF3-corrole incorporated in a high surface area carbon support. Chem Commun (Camb) 2020; 56:8627-8630. [DOI: 10.1039/d0cc03122d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular ORR catalysts based on metallo-corrole with the smallest meso-substituent reported to date, Co(iii)CF3-corrole, was synthesized and compared to the well-studied Co(iii)tpf-corrole when adsorbed on a high surface area carbon support.
Collapse
Affiliation(s)
| | | | - Noam Zion
- Chemistry Department
- Bar-Ilan University
- Ramat-Gan
- Israel
| | - Lior Elbaz
- Chemistry Department
- Bar-Ilan University
- Ramat-Gan
- Israel
| |
Collapse
|
37
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
38
|
Thomas KE, Desbois N, Conradie J, Teat SJ, Gros CP, Ghosh A. Gold dipyrrin-bisphenolates: a combined experimental and DFT study of metal–ligand interactions. RSC Adv 2020; 10:533-540. [PMID: 35492572 PMCID: PMC9047278 DOI: 10.1039/c9ra09228e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/18/2019] [Indexed: 11/21/2022] Open
Abstract
Given that noninnocent and metalloradical-type electronic structures are ubiquitous among dipyrrin-bisphenolate (DPP) complexes, we synthesized the gold(iii) derivatives as potentially innocent paradigms against which the properties of other metallo-DPP derivatives can be evaluated. Electronic absorption spectra, electrochemical studies, a single-crystal X-ray structure, and DFT calculations all suggest that the ground states of the new complexes indeed correspond to an innocent AuIII–DPP3−, paralleling a similar description noted for Au corroles. Interestingly, while DFT calculations indicate purely ligand-centered oxidations, reduction of AuDPP is predicted to occur across both the metal and the ligand. The first gold dipyrrin-bisphenolates have been synthesized. Like their corrole analogues, they exhibit AuIII–L3− ground states, providing rare innocent paradigms for a class of complexes that commonly occur as metalloradicals.![]()
Collapse
Affiliation(s)
- Kolle E. Thomas
- Department of Chemistry
- UiT – The Arctic University of Norway
- Tromsø N-9037
- Norway
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB)
- UMR CNRS 6302
- Université Bourgogne-Franche Comté
- 21078 Dijon Cedex
- France
| | - Jeanet Conradie
- Department of Chemistry
- UiT – The Arctic University of Norway
- Tromsø N-9037
- Norway
- Department of Chemistry
| | - Simon J. Teat
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Claude P. Gros
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB)
- UMR CNRS 6302
- Université Bourgogne-Franche Comté
- 21078 Dijon Cedex
- France
| | - Abhik Ghosh
- Department of Chemistry
- UiT – The Arctic University of Norway
- Tromsø N-9037
- Norway
| |
Collapse
|
39
|
Zion N, Cullen DA, Zelenay P, Elbaz L. Heat‐Treated Aerogel as a Catalyst for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2019; 59:2483-2489. [DOI: 10.1002/anie.201913521] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Noam Zion
- Bar-Ilan University Ramat-Gan 52900 Israel
| | | | - Piotr Zelenay
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Lior Elbaz
- Bar-Ilan University Ramat-Gan 52900 Israel
| |
Collapse
|
40
|
Zion N, Cullen DA, Zelenay P, Elbaz L. Heat‐Treated Aerogel as a Catalyst for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Noam Zion
- Bar-Ilan University Ramat-Gan 52900 Israel
| | | | - Piotr Zelenay
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Lior Elbaz
- Bar-Ilan University Ramat-Gan 52900 Israel
| |
Collapse
|
41
|
Xie L, Li X, Wang B, Meng J, Lei H, Zhang W, Cao R. Molecular Engineering of a 3D Self‐Supported Electrode for Oxygen Electrocatalysis in Neutral Media. Angew Chem Int Ed Engl 2019; 58:18883-18887. [DOI: 10.1002/anie.201911441] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Jia Meng
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| |
Collapse
|
42
|
Raggio M, Mecheri B, Nardis S, D'Epifanio A, Licoccia S, Paolesse R. Metallo-Corroles Supported on Carbon Nanostructures as Oxygen Reduction Electrocatalysts in Neutral Media. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michele Raggio
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Barbara Mecheri
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Sara Nardis
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Alessandra D'Epifanio
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Silvia Licoccia
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Roberto Paolesse
- Dept. of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
43
|
Gonen S, Lori O, Fleker O, Elbaz L. Electrocatalytically Active Silver Organic Framework: Ag(I)‐Complex Incorporated in Activated Carbon. ChemCatChem 2019. [DOI: 10.1002/cctc.201901604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shmuel Gonen
- Department of ChemistryBar-Ilan University 1 Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Oran Lori
- Department of ChemistryBar-Ilan University 1 Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Ohad Fleker
- Department of ChemistryBar-Ilan University 1 Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Lior Elbaz
- Department of ChemistryBar-Ilan University 1 Max and Anna Webb St. Ramat-Gan 5290002 Israel
| |
Collapse
|
44
|
Xie L, Li X, Wang B, Meng J, Lei H, Zhang W, Cao R. Molecular Engineering of a 3D Self‐Supported Electrode for Oxygen Electrocatalysis in Neutral Media. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Jia Meng
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| |
Collapse
|
45
|
Liu Y, Zhou G, Zhang Z, Lei H, Yao Z, Li J, Lin J, Cao R. Significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(ii) porphyrin-porphyrin dyad. Chem Sci 2019; 11:87-96. [PMID: 32110360 PMCID: PMC7012046 DOI: 10.1039/c9sc05041h] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 11/21/2022] Open
Abstract
Asymmetrical Pacman dinuclear Co bisporphyrin shows significantly improved activity and selectivity for catalytic reduction of O2 to water in comparison with corresponding mononuclear Co porphyrins and symmetrical dinuclear Co bisporphyrins.
Pacman dinuclear CoII triphenylporphyrin-tri(pentafluorophenyl)porphyrin 1 and dinuclear CoII bis-tri(pentafluorophenyl)porphyrin 2, anchored at the two meso-positions of a benzene linker, are synthesized and examined as electrocatalysts for the oxygen reduction reaction (ORR). Both dinuclear Co bisporphyrins are more efficient and selective than corresponding mononuclear CoII tetra(pentafluorophenyl)porphyrin 3 and CoII tetraphenylporphyrin 4 for the four-electron electrocatalytic reduction of O2 to water. Significantly, although the ORR selectivities of the two dinuclear Co bisporphyrins are similar to each other, 1 outperforms 2, in terms of larger catalytic ORR currents and lower overpotentials. Electrochemical studies showed different redox behaviors of the two Co sites of 1: the CoIII/CoII reduction of the Co-TPP (TPP = triphenylporphyrin) site is well-behind that of the Co-TPFP (TPFP = tri(pentafluorophenyl)porphyrin) site by 440 mV. This difference indicated their different roles in the ORR: CoII-TPFP is likely the O2 binding and reduction site, while CoIII-TPP, which is generated by the oxidation of CoII-TPP on electrodes, may function as a Lewis acid to assist the O2 binding and activation. The positively charged CoIII-TPP will have through-space charge interactions with the negatively charged O2-adduct unit, which will reduce the activation energy barrier for the ORR. This effect of Co-TPP closely resembles that of the CuB site of metalloenzyme cytochrome c oxidase (CcO), which catalyzes the biological reduction of O2. This work represents a rare example of asymmetrical dinuclear metal catalysts, which can catalyze the 4e reduction of O2 with high selectivity and significantly improved activity.
Collapse
Affiliation(s)
- Yanju Liu
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China . .,Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China .
| | - Zongyao Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China .
| | - Zhen Yao
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Science , Beijing 101408 , China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Science , Beijing 101408 , China
| | - Jun Lin
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China .
| |
Collapse
|
46
|
Yang L, Mi J, Wang H, Liang J, Yang X, Feng Y, Zhang P, Liu L. Bimetallic Cu−Zn Co‐Doped Porous N/C as Efficient Catalysts for Oxygen Reduction Reaction and Oxidation of 1,2‐Propanediol. ChemCatChem 2019. [DOI: 10.1002/cctc.201900975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li‐Ping Yang
- Institute for Advanced Materials School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Jian‐Li Mi
- Institute for Advanced Materials School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Hui‐Jie Wang
- Institute for Advanced Materials School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Jia‐Hao Liang
- Institute for Advanced Materials School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Xue‐Jing Yang
- Institute for Advanced Materials School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Yong‐Hai Feng
- Institute for Advanced Materials School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Peng Zhang
- Institute for Advanced Materials School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Lu Liu
- School of Energy and Power EngineeringJiangsu University Zhenjiang 212013 P. R. China
| |
Collapse
|
47
|
Chen H, Huang DL, Hossain MS, Luo GT, Liu HY. Electrocatalytic activity of cobalt tris(4-nitrophenyl)corrole for hydrogen evolution from water. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1671588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hai Chen
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, China
| | - Dong-Lan Huang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, China
| | - Md Sahadat Hossain
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, China
| | - Guo-Tian Luo
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| | - Hai-Yang Liu
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, China
| |
Collapse
|
48
|
Gu L, Chu Y, Du H, Zhang Y, Zhao J, Xie Y. Supramolecular Iron Complex Formed Between Nitrogen Riched Phenanthroline Derivative and Iron With Improved Oxygen Reduction Activity in Alkaline Electrolyte. Front Chem 2019; 7:622. [PMID: 31572713 PMCID: PMC6753333 DOI: 10.3389/fchem.2019.00622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
In this work, the synthesis and evaluation of a new type non-noble metal oxygen reduction reaction (ORR) catalyst is reported. The catalyst is a complex containing iron ions and multiple N active sites, which displayed excellent oxygen reduction activity in alkaline medium. 2-(2-(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)pyridin-2-yl)pyridin-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (PIPhen) was synthesized and used as a ligand to form a rich nitrogen iron coordination complex (Fe-PIPhen), and the complex was then loaded onto the carbon powder to form the target catalyst of Fe-PIPhen/C. The physical characterization of the catalyst was conducted by using Scanning Electron Microscopy (SEM), nitrogen adsorption-desorption and X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis etc. Electrochemical characterizations were realized by taking cyclic voltammetry (CV), linear sweep voltammetry (LSV) and rotating ring disk electrode (RRDE). The results show that Fe-PIPhen/C possesses the good performance; it exhibits a high electrocatalytic activity, which is mainly via a four electron ORR pathway, with a low hydrogen peroxide yield of 2.58%. And, the average electron transfer number of 3.93 was obtained in alkaline electrolyte. In summary, Fe-PIPhen/C will likely become a promising alternative to Pt catalyst in fuel cell.
Collapse
Affiliation(s)
- Lin Gu
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Ya Chu
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Hongmei Du
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Yan Zhang
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Yu Xie
- Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
49
|
Zhou Y, Xing YF, Wen J, Ma HB, Wang FB, Xia XH. Axial ligands tailoring the ORR activity of cobalt porphyrin. Sci Bull (Beijing) 2019; 64:1158-1166. [PMID: 36659687 DOI: 10.1016/j.scib.2019.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023]
Abstract
In an effort to provide visualization and understanding to the electronic "push effect" of axial ligands on the catalytic activity of cobalt macrocyclic molecules, we design a simple model system involving an [5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin]cobalt(II) (TMMPCo) monolayer axially-coordinated on thiol ligand modified Au electrode and explore the activity of the axial-ligand coordinated TMPPCo toward oxygen reduction reaction (ORR) in acidic medium. Three different ligands, with a decreasing order of coordinating ability as: 4-mercaptopyridine (MPy) > 4-aminothiolphenol (APT) > 4-mercaptobenzonitrile (MBN) are used and a maximum difference in ORR onset potential of 80 mV is observed between the MPy (highest onset potential) and MBN systems (lowest onset potential). The ORR activity of TMPPCo increases with the increase in binding strength of the axial ligand. A detailed mechanism study reveals that ORR on the three ligand coordinated TMPPCo systems shares the same 2-electron mechanism with H2O2 as the terminal product. Theoretical calculation into the structure of the ligand coordinated cobalt porphyrins uncovers the variation in atomic charge of the Co(II) center and altered frontier molecular orbital distribution among the three ligand systems. Both properties have great influence on the back-bonding formation between the Co(II) center and O2 molecules, which has been suggested to be critical toward the O2 adsorption and subsequent activation process.
Collapse
Affiliation(s)
- Yue Zhou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yong-Fang Xing
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Bo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Feng-Bin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
50
|
Friedman A, Saltsman I, Gross Z, Elbaz L. Electropolymerization of PGM-free molecular catalyst for formation of 3D structures with high density of catalytic sites. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|