1
|
Yang L, Yang M, Wang Z, Zhao W. Iridium-Catalyzed Asymmetric Allylic Alkylation of Boron Enolates to Construct Acyclic All-Carbon Quaternary Stereocenters. Angew Chem Int Ed Engl 2025; 64:e202424141. [PMID: 39971716 DOI: 10.1002/anie.202424141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Enolates are ubiquitous intermediates in organic synthesis. Among them, boron enolates exhibit distinctive reactivity patterns and selectivities due to the presence of a boron atom, making their synthesis highly attractive. Although methods for accessing ketone- or ester-derived boron enolates are well-developed, much less progress has been made in the development of aldehyde-derived boron enolates due to aldehydes' high tendency toward self-condensation. Therefore, the practical applications of aldehyde-derived boron enolates are significantly hindered. We present herein an efficient method for the preparation of aldehyde-derived boron enolates via the 1,2-hydroboration of ketenes with boranes, avoiding the use of acidic R2BCl/R2BOTf and bases and leading to improved functional group tolerance. Utilizing this convenient protocol, we developed an Ir-catalyzed asymmetric allylic alkylation of boron enolates, yielding a wide array of chiral aldehydes bearing acyclic all-carbon quaternary centers with high chemo-, regio-, and enantioselectivity, which are prevalent in various natural products and bioactive molecules. The synthetic utility and practicality of this method are demonstrated through gram-scale reactions and asymmetric syntheses of the ent-5HT1 A antagonist as well as biological activity studies in inhibiting the growth of plant pathogens.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Mengzhi Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, P. R. China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| |
Collapse
|
2
|
Chen Y, Wang X, Shan JR, Wu Z, Cao R, Liu Y, Jin Y, Hao E, Houk KN, Shi L. Chemoselective Functionalization of Tertiary C-H Bonds of Allylic Ethers: Enantioconvergent Access to sec,tert-Vicinal Diols. Angew Chem Int Ed Engl 2025; 64:e202501924. [PMID: 39932430 DOI: 10.1002/anie.202501924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
While enantioenriched alcohols are highly significant in medicinal chemistry, total synthesis, and materials science, the stereoselective synthesis of tertiary alcohols with two adjacent stereocenters remains a formidable challenge. In this study, we present a dual catalysis approach utilizing photoredox and nickel catalysts to enable the unprecedented chemoselective functionalization of tertiary allylic C-H bonds in allyl ethers instead of cleaving the C-O bond. The resulting allyl-Ni intermediates can undergo coupling with various aldehydes, facilitating a novel enantioconvergent approach to access extensively functionalized homoallylic sec,tert-vicinal diols frameworks. This protocol exhibits nice tolerance towards functional groups, a broad scope of substrates, excellent diastereo- and enantioselectivity (up to 20 : 1 dr, 99 % ee). Mechanistic studies suggested that allyl-NiII acts as the nucleophilic species in the coupling reaction with carbonyls.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Xin Wang
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, United States
| | - Zhixian Wu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Renxu Cao
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Yonghong Liu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Yunhe Jin
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, United States
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
3
|
Shikari A, Chandra Pan S. Iridium/Acid-Dual Catalyzed Enantioselective Intramolecular Allylic Dearomatization Reaction of Allylic Alcohol Tethered α- and β-Naphthols. Chemistry 2025; 31:e202403664. [PMID: 39573944 DOI: 10.1002/chem.202403664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
The first catalytic enantioselective intramolecular allylic dearomatization of allylic alcohol tethered α- and β-naphthols has been developed with iridium/acid-dual catalysis. A wide range of polycyclic spiroketones containing vicinal tertiary and quaternary carbon stereocenters were readily prepared in good to high yields with high diastereo- and moderate to excellent enantioselectivities. An unusual anti-Markovnikov Wacker oxidation has also been shown in synthetic transformations.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
4
|
Liu X, Zhu B, Chu A, Wang R. Organocatalyzed Enantioselective Double Dearomatization of Tricyclic Phenols and Alkoxybenzenes. Org Lett 2024; 26:10827-10832. [PMID: 39641758 DOI: 10.1021/acs.orglett.4c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
To advance more efficient dearomatization approaches, we present herein an organocatalyzed asymmetric double dearomatization reaction of tricyclic phenols and alkoxybenzenes by leveraging a novel steric hindrance-regulated dearomatization strategy for nonfunctionalized phenols. This protocol allows the efficient synthesis of structurally complex polycyclic diketones with four tertiary carbon centers under mild conditions while also showcasing the potential of multiple dearomatizations for building intricate molecular frameworks from simple starting materials.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Boyan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Sun S, Zhang Y, Banwell MG, White LV, Zhou L. Iridium-Catalyzed, Highly Selective Allylation of Pyrazolones for the Convenient Construction of Adjacent Stereocenters. Org Lett 2024; 26:10229-10234. [PMID: 39576759 DOI: 10.1021/acs.orglett.4c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
This paper describes an iridium-catalyzed allylation of ring-fused pyrazolones that proceeds with excellent regio-, diastereo- and enantio-selectivities. The approach exploits unactivated, racemic allylic alcohols as a source of allyl building blocks. Asymmetric syntheses of a series of biologically relevant, chiral pyrazolones highlight the utility of the methodology. The use of Cu(OTf)2 as a co-catalyst greatly enhances the regioselectivity of the reaction and permits selective syntheses of branched allylation products.
Collapse
Affiliation(s)
- Shixiang Sun
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuqi Zhang
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| | - Leijie Zhou
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
6
|
Das A, Kumaran S, Ravi Sankar HS, Premkumar JR, Sundararaju B. A Dual Cobalt-Photoredox Catalytic Approach for Asymmetric Dearomatization of Indoles with Aryl Amides via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202406195. [PMID: 38896502 DOI: 10.1002/anie.202406195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
In this study, we unveil a novel method for the asymmetric dearomatization of indoles under cobalt/photoredox catalysis. By strategically activating C-H bonds of amides and subsequent migratory insertion of π-bonds present in indole as reactive partner, we achieve syn-selective tetrahydro-5H-indolo[2,3-c]isoquinolin-5-one derivatives with excellent yields and enantiomeric excesses of up to >99 %. The developed method operates without a metal oxidant, relying solely on oxygen as the oxidant and employing an organic dye as a photocatalyst under irradiation. Control experiments and stoichiometric studies elucidate the reversible nature of the enantiodetermining C-H activation step, albeit not being rate-determining. This study not only expands the horizon of cobalt-catalyzed asymmetric C-H bond functionalization, but also showcases the potential synergy between cobalt and photoredox catalysis in enabling asymmetric synthesis of complex molecules.
Collapse
Affiliation(s)
- Abir Das
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | - Subramani Kumaran
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | | | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - Basker Sundararaju
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| |
Collapse
|
7
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
8
|
Zhao D, Liu M, Bai L, Liu J, Luan X. Rapid Assembly of Spironaphthalenones by Dearomative Spiroannulation of Naphthols and Dielectrophiles. J Org Chem 2023; 88:15913-15924. [PMID: 37924300 DOI: 10.1021/acs.joc.3c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
A novel [4 + 1] and [5 + 1] dearomative spiroannulation has been developed by the use of commercial naphthols and phenols with dielectrophiles. Various spirocycles, including spiro[4.5] and spiro[5.5] have been constructed successfully by employing four-atom or five-atom dielectrophilic synthons. This transformation was realized through a sequence of site-selective C-alkylation/dearomative spiroannulation. Moreover, the potential application of this method was exemplified by several further transformation.
Collapse
Affiliation(s)
- Dongwei Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Mengtian Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Lu Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
9
|
Shen J, Xu Z, Yang S, Li S, Jiang J, Zhang YQ. Quaternary Stereocenters via Catalytic Enantioconvergent Allylation of Epoxides. J Am Chem Soc 2023; 145:21122-21131. [PMID: 37722078 DOI: 10.1021/jacs.3c08188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The development of catalytic and enantioselective transformations for the synthesis of all-carbon quaternary stereocenters has long been recognized as a significant challenge in organic synthesis. While considerable progress has been made in asymmetric allylations, their potential to functionalize the commonly used synthon, epoxide, remains largely underexplored. Here we demonstrate the first highly regio- and enantioselective allylation of epoxides that delivers a range of quaternary stereocenters in the face of potentially problematic elimination and protonation reactions. The reaction proceeds via a radical approach under mild conditions and benefits from the use of earth-abundant titanium with a highly sophisticated salen ligand, which facilitates remarkable enantiocontrol and suppresses undesired side reactions. The resulting allylation products are multifunctional building blocks that can be elaborated chemo- and stereoselectively to a broad array of stereodefined structural motifs.
Collapse
Affiliation(s)
- Jian Shen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhongyun Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shuo Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shengxiao Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yong-Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
10
|
Ye Z, Liu W, Gu H, Yang X. Enantioselective Dearomatization of Substituted Phenols via Organocatalyzed Electrophilic Amination. Org Lett 2023; 25:5838-5843. [PMID: 37523610 DOI: 10.1021/acs.orglett.3c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Highly efficient and stereoselective dearomatization of substituted phenols was achieved via chiral phosphoric acid-catalyzed electrophilic para-amination with commercially available azodicarboxylates. This protocol readily afforded a series of chiral 2,5-cyclohexadienones bearing 4-aza-quaternary stereocenters with excellent yields and enantioselectivities (≤99% yield and >99% ee). Easy scale-up of this reaction to a gram scale and diverse derivatizations of the chiral products into α-tertiary amines and α-tertiary heterocycles derivatives well demonstrated the potential of this method.
Collapse
Affiliation(s)
- Zidan Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huanchao Gu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Zhang QX, Xie JH, Gu Q, You SL. Pd-Catalyzed intermolecular asymmetric allylic dearomatization of 1-nitro-2-naphthols with MBH adducts. Chem Commun (Camb) 2023; 59:3590-3593. [PMID: 36883425 DOI: 10.1039/d3cc00568b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
An asymmetric allylic dearomatization reaction of 1-nitro-2-naphthol derivatives with Morita-Baylis-Hillman (MBH) adducts has been developed. By utilizing Pd catalyst derived from Pd(OAc)2 and Trost ligand (R,R)-L1, the reaction proceeded smoothly in 1,4-dioxane at room temperature, affording substituted β-naphthalenones in good yields (up to 92%) and enantioselectivity (up to 90% ee). A range of substituted 1-nitro-2-naphthols and MBH adducts were found to be compatible under the optimized conditions. This reaction provides a convenient method for the synthesis of enantioenriched 1-nitro-β-naphthalenone derivatives.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| |
Collapse
|
12
|
Liu H, Gong ZR, Lin ML, Luo W, Xu YJ, Dong L. C-O Coupling/[4+2] Cycloaddition Tandem Reactions via Oxidative Dearomatization of BINOLs: Access to Bridged Polycyclic Compounds. J Org Chem 2023; 88:3916-3926. [PMID: 36849248 DOI: 10.1021/acs.joc.2c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Intramolecular C-H activation/C-O coupling, dearomatization, and [4+2] cycloaddition of BINOL units have been well developed in a one-pot approach with maleimide derivatives as the dienophiles. This tandem catalytic system generates a variety of functionalized bridged polycyclic products in a step-economical manner, which greatly enriches the modification methods and strategies for the BINOL skeletons.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi-Rong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Yao L, Takeda K, Ando K, Ishihara K. Enantioselective aromatic Claisen rearrangement of allyl 2-naphthyl ethers catalyzed by π-Cu(ii) complexes. Chem Sci 2023; 14:2441-2446. [PMID: 36873835 PMCID: PMC9977442 DOI: 10.1039/d2sc06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
The first catalytic enantioselective aromatic Claisen rearrangement of allyl 2-naphthyl ethers using 5-10 mol% of π-copper(ii) complexes is reported. A Cu(OTf)2 complex with an l-α-homoalanine amide ligand gave (S)-products in up to 92% ee. Conversely, a Cu(OSO2C4F9)2 complex with an l-tert-leucine amide ligand gave (R)-products in up to 76% ee. Density-functional-theory (DFT) calculations suggest that these Claisen rearrangements proceed stepwise via tight-ion-pair intermediates, and that (S)- and (R)-products are enantioselectively obtained via the staggered transition states for the cleavage of the C-O bond, which is the rate-determining step.
Collapse
Affiliation(s)
- Lu Yao
- Graduate School of Engineering, Nagoya University B2-3(611) Furo-cho, Chikusa Nagoya 464-8603 Japan
| | - Kazuki Takeda
- Graduate School of Engineering, Nagoya University B2-3(611) Furo-cho, Chikusa Nagoya 464-8603 Japan
| | - Kaori Ando
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Gifu 501-1193 Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University B2-3(611) Furo-cho, Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
14
|
Yang Y, Liu S, Li S, Liu Z, Liao P, Sivaguru P, Lu Y, Gao J, Bi X. Site-Selective C-H Allylation of Alkanes: Facile Access to Allylic Quaternary sp 3 -Carbon Centers. Angew Chem Int Ed Engl 2023; 62:e202214519. [PMID: 36428220 DOI: 10.1002/anie.202214519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The construction of allylic quaternary sp3 -carbon centers has long been a formidable challenge in transition-metal-catalyzed alkyl-allyl coupling reactions due to the severe steric hindrance. Herein, we report an effective carbene strategy that employs well-defined vinyl-N-triftosylhydrazones as a versatile allylating reagent to enable direct assembly of these medicinally desirable structural elements from low-cost alkane feedstocks. The reaction exhibited excellent site selectivity for tertiary C-H bonds, broad scope (>60 examples and >20 : 1:0 r. r.) and good efficiency, even on a gram-scale, making it a convenient alternative to the well-known Trost-Tsuji allylation reaction for the formation of alkyl-allyl bonds. Combined experimental and computational studies were employed to unravel the mechanism and origin of site- and chemoselectivity of the reaction.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | | | | | - Ying Lu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Jiaojiao Gao
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Xihe Bi
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
15
|
Li J, Song X, Wang Y, Huang J, You H, Chen FE. Copper-catalyzed asymmetric allylic alkylation of racemic inert cyclic allylic ethers under batch and flow conditions. Chem Sci 2023; 14:4351-4356. [PMID: 37123175 PMCID: PMC10132103 DOI: 10.1039/d3sc00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
The Cu-catalyzed AAA reactions employing challenging racemic inert cyclic allylic ethers with sterically hindered Grignard reagents have been disclosed under batch and flow conditions.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Xiao Song
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
16
|
Tzeli D, Gerontitis IE, Petsalakis ID, Tsoungas PG, Varvounis G. Self Cycloaddition of o-Naphthoquinone Nitrosomethide to (±) Spiro{naphthalene(naphthopyranofurazan)}-one Oxide: An Insight into its Formation. Chempluschem 2022; 87:e202200313. [PMID: 36479609 DOI: 10.1002/cplu.202200313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Indexed: 11/25/2022]
Abstract
2-Hydroxy-1-naphthaldehyde oxime was oxidized by AgO (or Ag2O), in presence of N-methyl morpholine N-oxide (NMMO), to the title spiro adduct-dimer (±)-Spiro{naphthalene-1(2H),4'-(naphtho[2',1':2,3]pyrano[4,5-c]furazan)}-2-one-11'-oxide by a Diels-Alder(D-A) type self-cycloaddition, through the agency of an o-naphthoquinone nitrosomethide (o-NQM). Moreover, 2-hydroxy-8-methoxy-1-naphthaldehyde oxime was prepared and subjected to the same oxidation conditions. Its sterically guided result, 9-methoxynaphtho[1,2-d]isoxazole, was isolated, instead of the expected spiro adduct. The peri intramolecular H bonding in the oxime is considered to have a key contribution to the outcome. Geometry and energy features of the oxidant- and stereo-guided selectivity of both oxidation outcomes have been explored by DFT, perturbation theory and coupled cluster calculations. The reaction free energy of the D-A intermolecular cycloaddition is calculated at -82.0 kcal/mol, indicating its predominance over the intramolecular cyclization of ca. -37.6 kcal/mol. The cycloaddition is facilitated by NMMO through dipolar interactions and hydrogen bonding with both metal complexes and o-NQM. The 8(peri)-OMe substitution of the reactant oxime sterically impedes formation of the spiro adduct, instead it undergoes a more facile cyclodehydration to the isoxazole structure by ca. 4.9 kcal/mol.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou Athens, 157 84, Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 116 35, Greece
| | - Ioannis E Gerontitis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| | - Ioannis D Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 116 35, Greece
| | - Petros G Tsoungas
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 115 21, Athens, Greece
| | - George Varvounis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| |
Collapse
|
17
|
Zhang QX, Gu Q, You SL. Palladium(0)-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Substituted β-Naphthols with Morita-Baylis-Hillman (MBH) Adducts. Org Lett 2022; 24:8031-8035. [PMID: 36264244 DOI: 10.1021/acs.orglett.2c03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pd-catalyzed intermolecular asymmetric allylic dearomatization of substituted β-naphthol derivatives with Boc-protected Morita-Baylis-Hillman (MBH) adducts was developed. The reaction occurs smoothly in 1,4-dioxane at room temperature in the presence of [Pd(C3H5)Cl]2 (2.5 mol %), (S, Sp)-PHOX ligand (5.5 mol %), and Li2CO3 (1.0 equiv). A series of dearomatized products were afforded in moderate to excellent yields and enantioselectivity (up to 99% yield, 97% ee). Furthermore, the compatibility with gram-scale reaction and mild conditions make the current method synthetically useful.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
18
|
Zou LM, Huang XY, Zheng C, Cheng YZ, You SL. Chiral Brønsted Acid-Catalyzed Intramolecular Asymmetric Allylic Alkylation of Indoles with Primary Alcohols. Org Lett 2022; 24:3544-3548. [PMID: 35533379 DOI: 10.1021/acs.orglett.2c01253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, chiral Brønsted acid-catalyzed intramolecular asymmetric allylic alkylation of indoles with allylic primary alcohols is described. The allyl alcohols were directly employed as the allylic precursors in this metal-free protocol, without preactivation or any additional activating reagents. This method provides the convenient synthesis of a broad range of functionalized tetrahydrocarbazoles in excellent yields (≤97%) with good enantioselectivity (≤93% ee). The optimal conditions are compatible for gram-scale reaction.
Collapse
Affiliation(s)
- Lei-Ming Zou
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xian-Yun Huang
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
19
|
Zhou XJ, Zhao JQ, Lai YQ, You Y, Wang ZH, Yuan WC. Organocatalyzed asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. Chirality 2022; 34:1019-1034. [PMID: 35521642 DOI: 10.1002/chir.23455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Abstract
A readily available chiral cyclohexanediamine-derived bifunctional tertiary amine-squaramide catalyst is more effective for the asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. A range of structurally diverse spiro-fused polyheterocyclic compounds containing oxindole, pyrrolidine, and hydrobenzofuran motifs were smoothly obtained in excellent results (up to 99% yield, >20:1 dr in all cases and up to 99% ee). This method features high efficiency, mild reaction conditions, exquisite asymmetric induction, wide functional group tolerance, great potential for scale-up synthesis, and attractive product diversification.
Collapse
Affiliation(s)
- Xiao-Jian Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China.,Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Yue-Qin Lai
- Zhejiang Jinhua Conba Bio-Pharm. Co. Ltd., Jinhua, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| |
Collapse
|
20
|
Zhang J, Yang WL, Zheng H, Wang Y, Deng WP. Regio- and Enantioselective γ-Allylic Alkylation of In Situ-Generated Free Dienolates via Scandium/Iridium Dual Catalysis. Angew Chem Int Ed Engl 2022; 61:e202117079. [PMID: 35212099 DOI: 10.1002/anie.202117079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/28/2022]
Abstract
An unprecedented asymmetric γ-allylic alkylation of free dienolates via Sc/Ir dual catalysis is reported, which affords a range of synthetically versatile γ-allylic crotonaldehydes in high efficiency with excellent chemo-, regio-, and enantioselectivities. The dienolates bearing no essential auxiliary groups were generated in situ by scandium triflate-mediated Meinwald rearrangement of vinyloxiranes atom-economically. With the assistance of computational density functional theory calculations, a Sc/Ir bimetallic catalytic cycle was proposed to illustrate the reaction mechanism.
Collapse
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yi Wang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Wei-Ping Deng
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
21
|
Zhang J, Yang WL, Zheng H, Wang Y, Deng WP. Regio‐ and Enantioselective γ‐Allylic Alkylation of In‐Situ‐Generated Free Dienolates via Scandium/Iridium Dual Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Zhang
- East China University of Science and Technology School of Pharmacy Meilong Road 130 200237 Shanghai CHINA
| | - Wu-Lin Yang
- East China University of Science and Technology School of Pharmacy Meilong Road 130 200237 Shanghai CHINA
| | - Hanliang Zheng
- Zhejiang Normal University Department of Chemistry CHINA
| | - Yi Wang
- East China University of Science and Technology School of Pharmacy Meilong Road 130 200237 Shanghai CHINA
| | - Wei-Ping Deng
- East China University of Science and Technology School of Pharmacy 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
22
|
Zhang MC, Wang DC, Qu GR, Guo HM. Catalytic Asymmetric Synthesis of Chiral Thiohydantoins via Domino Cyclization Reaction of β,γ-Unsaturated α-Ketoester and N,N'-Dialkylthiourea. Org Chem Front 2022. [DOI: 10.1039/d2qo00669c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first catalytic asymmetric route to synthesize chiral thiohydantoins containing a quaternary stereogenic center has been established utilizing a chiral phosphoric acid-catalyzed domino cyclization reaction of N,N'-dialkyl thioureas with β,γ-unsaturated...
Collapse
|
23
|
Wang DC, Cheng PP, Yang TT, Wu PP, Qu GR, Guo HM. Asymmetric Domino Heck/Dearomatization Reaction of β-Naphthols to Construct Indole-Terpenoid Frameworks. Org Lett 2021; 23:7865-7872. [PMID: 34582193 DOI: 10.1021/acs.orglett.1c02881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A palladium-catalyzed enantioselective Heck cyclization/dearomatization cascade via capturing the cyclized Heck π-allylpalladium intermediate by β-naphthols is reported, which provides a new strategy for the construction of chiral indole-terpenoid frameworks. This method affords indole-functionalized β-naphthalenone compounds bearing an all-carbon-substituted quaternary chiral center in excellent yields (up to 92%) and enantioselectivities (up to 94% ee). In addition, the utility of this method is showcased by the gram-scale syntheses and diverse transformations of the dearomatized products.
Collapse
Affiliation(s)
- Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Peng-Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ting-Ting Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pan-Pan Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
24
|
Das BG, Shah S, Das A, Singh VK. Cu-Catalyzed Chemodivergent, Stereoselective Propargylic Dearomatization and Etherification of 2-Naphthols. Org Lett 2021; 23:6262-6266. [PMID: 34374540 DOI: 10.1021/acs.orglett.1c02027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first stereoselective propargylic dearomatization of 2-naphthol derivatives is reported using a chiral CuII-L10 complex. The reaction shows chemodivergent reactivity and produced propargyl dearomatization and etherification product for differently substituted 2-naphthols. Both the reactions generate the desired products in high yields with excellent chemo- and stereoselectivities (up to 99% ee, dr = 9:1) by using only 2 mol % catalyst loading. Dearomatization products contain a contiguous all-carbon quaternary-tertiary stereocenter and a terminal alkyne functionality.
Collapse
Affiliation(s)
- Braja Gopal Das
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Sadhna Shah
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Arko Das
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
25
|
Chen HW, Song QH. Regioselective benzoyloxylative dearomatization of naphthols by benzoyl peroxide under catalyst-free conditions. Org Biomol Chem 2021; 19:7161-7164. [PMID: 34378620 DOI: 10.1039/d1ob01274f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct regioselective benzoyloxylative dearomatization of both α- and β-naphthols by benzoyl peroxide under an air atmosphere, and radical inhibitor- and catalyst-free conditions at room temperature is described. The methodology provides a new efficient strategy for the construction of α-ketol derivatives bearing an oxo-quaternary carbon center from naphthols with good to excellent yields.
Collapse
Affiliation(s)
- Hong-Wei Chen
- Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | | |
Collapse
|
26
|
Wang J, Qi X, Min XL, Yi W, Liu P, He Y. Tandem Iridium Catalysis as a General Strategy for Atroposelective Construction of Axially Chiral Styrenes. J Am Chem Soc 2021; 143:10686-10694. [PMID: 34228930 DOI: 10.1021/jacs.1c04400] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Axially chiral styrenes are of great interest since they may serve as a class of novel chiral ligands in asymmetric synthesis. However, only recently have strategies been developed for their enantioselective preparation. Thus, the development of novel and efficient methodologies is highly desirable. Herein, we reported the first tandem iridium catalysis as a general strategy for the synthesis of axially chiral styrenes enabled by Asymmetric Allylic Substitution-Isomerization (AASI) using cinnamyl carbonate analogues as electrophiles and naphthols as nucleophiles. In this approach, axially chiral styrenes were generated through two independent iridium-catalytic cycles: iridium-catalyzed asymmetric allylic substitution and in situ isomerization via stereospecific 1,3-hydride transfer catalyzed by the same iridium catalyst. Both experimental and computational studies demonstrated that the isomerization proceeded by iridium-catalyzed benzylic C-H bond oxidative addition, followed by terminal C-H reductive elimination. Amid the central-to-axial chirality transfer, the hydroxyl of naphthol plays a crucial role in ensuring the stereospecificity by coordinating with the Ir(I) center. The process accommodated broad functional group compatibility. The products were generated in excellent yields with excellent to high enantioselectivities, which could be transformed to various axially chiral molecules.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
27
|
Zhao H, Shen P, Sun D, Zhai H, Zhao Y. Transition-Metal-Free [3+2] Dehydration Cycloaddition of Donor-Acceptor Cyclopropanes With 2-Naphthols. Front Chem 2021; 9:711257. [PMID: 34336794 PMCID: PMC8322234 DOI: 10.3389/fchem.2021.711257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
A Brønsted acid-catalyzed domino ring-opening cyclization transformation of donor-acceptor (D-A) cyclopropanes and 2-naphthols has been developed. This formal [3+2] cyclization reaction provided novel and efficient access to the naphthalene-fused cyclopentanes in the absence of any transition-metal catalysts or additives. This robust procedure was completed smoothly on a gram-scale to afford the corresponding product with comparable efficiency. Furthermore, the synthetic application of the prepared product has been demonstrated by its transformation into a variety of synthetically useful molecules.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Peng Shen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Zheng C, You SL. Advances in Catalytic Asymmetric Dearomatization. ACS CENTRAL SCIENCE 2021; 7:432-444. [PMID: 33791426 PMCID: PMC8006174 DOI: 10.1021/acscentsci.0c01651] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 05/25/2023]
Abstract
Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
29
|
Zhou Y, Ping Y, Xu Z, Che C. Iron(III)‐BPsalan Complex Catalyzed Highly Enantioselective Dearomative Chlorination of 2‐Hydroxy‐1‐naphthoates. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi‐Ming Zhou
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis Shanghai Institute of Organic Chemistry 345 Fenglin Road Shanghai P. R. China
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 P. R. China
| | - Yuan‐Ji Ping
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis Shanghai Institute of Organic Chemistry 345 Fenglin Road Shanghai P. R. China
| | - Zhen‐Jiang Xu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis Shanghai Institute of Organic Chemistry 345 Fenglin Road Shanghai P. R. China
| | - Chi‐Ming Che
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis Shanghai Institute of Organic Chemistry 345 Fenglin Road Shanghai P. R. China
- State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 P. R. China
| |
Collapse
|
30
|
Fu Z, Zhu J, Guo S, Lin A. Palladium-catalyzed allylic alkylation dearomatization of β-naphthols and indoles with gem-difluorinated cyclopropanes. Chem Commun (Camb) 2021; 57:1262-1265. [DOI: 10.1039/d0cc07529a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A palladium-catalyzed allylic alkylation dearomatization of β-naphthols and indoles with gem-difluorinated cyclopropanes has been developed for the first time.
Collapse
Affiliation(s)
- Zhiyuan Fu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Songjin Guo
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| |
Collapse
|
31
|
Zhao QR, Jiang R, You SL. Ir-catalyzed Sequential Asymmetric Allylic Substitution/Olefin Isomerization for the Synthesis of Axially Chiral Compounds. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Homma H, Harada S, Ito T, Kanda A, Nemoto T. Atypical Dearomative Spirocyclization of β-Naphthols with Diazoacetamides Using a Silver Catalyst. Org Lett 2020; 22:8132-8138. [PMID: 33026816 DOI: 10.1021/acs.orglett.0c03110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A chemoselective dearomatization of the less reactive benzenoid unit in β-naphthol was developed. Spirocyclization with a reductant constructs a pivotal structure for drug candidates. One-pot oxidative conversion enabled the tandem dearomatization of β-naphthol, producing conjugated tetraenone variants. The potential utility of the product as an F--selective anion sensor was also demonstrated. Theoretical studies revealed the intermediacy of silver-carbenoid species leading to chemoselective spirocyclization over arene cyclopropanation.
Collapse
Affiliation(s)
- Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayaka Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
33
|
Ge Y, Qin C, Bai L, Hao J, Liu J, Luan X. A Dearomatization/Debromination Strategy for the [4+1] Spiroannulation of Bromophenols with α,β‐Unsaturated Imines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yicong Ge
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Cheng Qin
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Lu Bai
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Jiamao Hao
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Jingjing Liu
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Xinjun Luan
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| |
Collapse
|
34
|
Ge Y, Qin C, Bai L, Hao J, Liu J, Luan X. A Dearomatization/Debromination Strategy for the [4+1] Spiroannulation of Bromophenols with α,β‐Unsaturated Imines. Angew Chem Int Ed Engl 2020; 59:18985-18989. [DOI: 10.1002/anie.202008130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Yicong Ge
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Cheng Qin
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Lu Bai
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Jiamao Hao
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Jingjing Liu
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Xinjun Luan
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| |
Collapse
|
35
|
Urbano A, Vallejo S, Cabrera-Afonso MJ, Yonte E. Chirality Transfer from the Oxidative Dearomatization of Axially Chiral Binols with Oxone under Mild Conditions. Org Lett 2020; 22:6122-6126. [DOI: 10.1021/acs.orglett.0c02194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Antonio Urbano
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Sara Vallejo
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - María J. Cabrera-Afonso
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Elena Yonte
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
36
|
Hu J, Pan S, Zhu S, Yu P, Xu R, Zhong G, Zeng X. Pd-Catalyzed Dearomative Asymmetric Allylic Alkylation of Naphthols with Alkoxyallenes. J Org Chem 2020; 85:7896-7904. [DOI: 10.1021/acs.joc.0c00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jinjin Hu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Shulei Pan
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuai Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruigang Xu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Guofu Zhong
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaofei Zeng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
37
|
Computational studies of the mechanism of Pd-Catalyzed Intramolecular Friedel–Crafts allylic alkylation of phenols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Xu R, Yang P, Zheng C, You S. Pd‐Catalyzed
Asymmetric Intramolecular Arylative Dearomatization of
para
‐Aminophenols
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ren‐Qi Xu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Ping Yang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
39
|
Nagae H, Xia J, Kirillov E, Higashida K, Shoji K, Boiteau V, Zhang W, Carpentier JF, Mashima K. Asymmetric Allylic Alkylation of β-Ketoesters via C–N Bond Cleavage of N-Allyl-N-methylaniline Derivatives Catalyzed by a Nickel–Diphosphine System. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruki Nagae
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Jingzhao Xia
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Evgueni Kirillov
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kosuke Higashida
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Koya Shoji
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Valentin Boiteau
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jean-François Carpentier
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
40
|
Zhang HJ, Gu Q, You SL. Ni-Catalyzed Allylic Dearomatization Reaction of β-Naphthols with Allylic Alcohols. Org Lett 2020; 22:3297-3301. [DOI: 10.1021/acs.orglett.0c01109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui-Jun Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
41
|
Affiliation(s)
- Juzeng An
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum via Selmi 2 Bologna Italy
| | - Marco Bandini
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum via Selmi 2 Bologna Italy
- Consorzio CINMPIS via Selmi 2 Bologna Italy
| |
Collapse
|
42
|
Li Y, Zhao X. Gold-catalyzed domino cyclization to diverse polyheterocyclic frameworks: mechanism, origin of the cooperative hydrogen bond, and role of π-stacking interactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00746c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The detailed mechanism and origins of gold-catalyzed domino cyclization to diverse fused polyheterocyclic frameworks by cooperative catalysis and cascade catalysis were studied systematically.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
43
|
Li Y, Zhao X. Gold-catalyzed domino cyclization enabling construction of diverse fused azaspiro tetracyclic scaffolds: a cascade catalysis mechanism due to a substrate and counterion. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The detailed mechanism and origins of gold-catalyzed domino cyclization to diverse fused azaspiro tetracyclic scaffolds by cooperative dual catalysis and cascade catalysis are systematically studied.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an710049
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an710049
| |
Collapse
|
44
|
Ge ZZ, Yang L, You Y, Wang ZH, Xie KX, Zhou MQ, Zhao JQ, Yuan WC. Asymmetric dearomatization of 2-nitrobenzofurans by organocatalyzed one-step Michael addition to access 3,3′-disubstituted oxindoles. Chem Commun (Camb) 2020; 56:2586-2589. [DOI: 10.1039/c9cc09939e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient enantioselective dearomatization of 2-nitrobenzofurans was realized by organocatalyzed one-step Michael addition to access structurally diverse 3,3′-disubstituted oxindoles.
Collapse
Affiliation(s)
- Zhen-Zhen Ge
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Lei Yang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yong You
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Ke-Xin Xie
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
45
|
Liu X, Zhang J, Bai L, Wang L, Yang D, Wang R. Catalytic asymmetric multiple dearomatizations of phenols enabled by a cascade 1,8-addition and Diels-Alder reaction. Chem Sci 2019; 11:671-676. [PMID: 34123039 PMCID: PMC8146773 DOI: 10.1039/c9sc05320d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A direct catalytic asymmetric multiple dearomatization reaction of phenols was disclosed, which provides expedient access to a series of architecturally complex polycyclic compounds bearing four stereogenic centers in high enantiopurity. The key to achieve such a transformation is the combination of a dearomative 1,8-addition of β-naphthols to para-quinone methides generated in situ from propargylic alcohols and a subsequent intramolecular dearomative Diels–Alder reaction. Noteworthily, this protocol enrichs not only the diversity of dearomatized products but also the toolbox of dearomatization strategies. The first chiral phosphoric acid catalyzed asymmetric multiple dearomatizations of phenols for the synthesis of bridged polycyclic compounds are reported.![]()
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Lutao Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
46
|
Zhang HJ, Gu Q, You SL. Ni-Catalyzed Intermolecular Allylic Dearomatization Reaction of Tryptophols and Tryptamines. Org Lett 2019; 21:9420-9424. [DOI: 10.1021/acs.orglett.9b03633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hui-Jun Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
47
|
Yi JC, Wu ZJ, You SL. Rh-Catalyzed Aminative Dearomatization of Naphthols with Hydroxylamine-O
-Sulfonic Acid (HOSA). European J Org Chem 2019. [DOI: 10.1002/ejoc.201900917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ji-Cheng Yi
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| | - Zhi-Jie Wu
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| |
Collapse
|
48
|
Yi J, Wu Z, You S. Copper‐Catalyzed Oxidative Dearomatization of 2‐Naphthols
via
Etherification. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ji‐Cheng Yi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| | - Zhi‐Jie Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| |
Collapse
|
49
|
Tang SB, Tu HF, Zhang X, You SL. Rhodium-Catalyzed Asymmetric Allylic Dearomatization of β-Naphthols: Enantioselective Control of Prochiral Nucleophiles. Org Lett 2019; 21:6130-6134. [DOI: 10.1021/acs.orglett.9b02285] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sheng-Biao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
50
|
Chiral phosphoric acid catalyzed aminative dearomatization of α-naphthols/Michael addition sequence. Nat Commun 2019; 10:3150. [PMID: 31316064 PMCID: PMC6637135 DOI: 10.1038/s41467-019-11109-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Asymmetric dearomatization reactions have recently emerged as a powerful tool for the rapid build-up of the molecular complexity. Chiral three-dimensional polycyclic molecules bearing contiguous stereogenic centers can be synthesized from readily available planar aromatic feedstocks. Here we report that an intermolecular asymmetric dearomatization reaction of α-naphthols bearing a tethered nucleophile at the C4 position of the naphthol ring is achieved by a chiral phosphoric acid. The reaction proceeds via a highly chemo- and regioselective aminative dearomatization/Michael addition sequence, affording a wide array of functionalized cyclic ketones in good yields (up to 93%) with excellent enantioselectivity (up to >99% ee). The catalyst loading can be reduced to 0.1 mol%. Preliminary mechanistic investigations identify that the enantioselectivity is established in the dearomatization step, while the Michael addition is the rate-limiting step. A working model accounting for the origin of the stereochemistry is proposed based on DFT calculations.
Collapse
|