1
|
Liu X, Qiao P, Chen H, Gao Y, Chen H. Synthesis of C-N or C-C Spiroindolines via Rearrangement Coupling Reaction. Org Lett 2024; 26:9759-9763. [PMID: 39481044 DOI: 10.1021/acs.orglett.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Herein, we report a general approach to effectively construct C-N or C-C spiroindolines using tetrahydro-β-carbolines as starting materials via a rearrangement coupling reaction. This method is characterized by its operational simplicity and mild conditions. Notably, a wide range of anilines and indoles are suitable for this intermolecular coupling, yielding the corresponding C-N or C-C spiroindolines in good to excellent yields.
Collapse
Affiliation(s)
- Xiaoling Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Panpan Qiao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hui Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
2
|
Yang L, Xie F, Zhang L, Wei J, Li J, Li X, Fu J, Lin B, Cheng M, Liu Y. Gold(I)-Catalyzed 6- exo- dig Hydroamination/7- endo- dig Cycloisomerization Domino Approach to 3,7 a-Diazacyclohepta[ jk]fluorene Derivatives. Org Lett 2024. [PMID: 39541164 DOI: 10.1021/acs.orglett.4c03926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A series of 3,7a-diazacyclohepta[jk]fluorene derivatives were synthesized via a gold(I)-catalyzed 6-exo-dig hydroamination/7-endo-dig cycloisomerization domino method. The method exhibits a broad substrate scope, and a plausible mechanism has been proposed. The efficacy of this strategy is further validated by the successful derivatization of 3,7a-diazacyclohepta[jk]fluorene.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Fukai Xie
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Jipeng Wei
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Jiaji Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Xiang Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| |
Collapse
|
3
|
Chen T, Xiong Q, Xu H, Xiao L, Wang ZF, Chang X, Dang Y, Dong XQ, Wang CJ. Rational Design and Stereodivergent Construction of Enantioenriched Tetrahydro-β-Carbolines Containing Multistereogenic Centers. J Am Chem Soc 2024; 146:29928-29942. [PMID: 39418542 DOI: 10.1021/jacs.4c11731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chiral tetrahydro-β-carbolines, as one of the most intriguing subtypes of indole alkaloids, have emerged as the privileged units in plenty of natural products and biologically active molecules with an impressive range of bioactive properties. However, the stereodivergent construction of these valuable skeletons containing multistereogenic centers from readily available starting materials remains very challenging, especially, in view of the introduction of an axial chirality. Herein, we developed an efficient method toward enantioenriched tetrahydro-β-carbolines with readily available tryptophan-derived aldimine esters and allylic carbonates under mild reaction conditions. The reaction proceeds in a sequential fashion involving synergistic Cu/Ir-catalyzed stereodivergent allylation and the Brønsted acid-promoted stereospecific Pictet-Spengler reaction, affording a wide range of chiral tetrahydro-β-carbolines bearing up to four stereogenic centers in good yields with excellent stereoselectivity control. When N-aryl-substituted tryptophan-derived aldimine esters were utilized, notably, a unique C-N heterobiaryl axis could be simultaneously constructed with the formation of the third point stereogenic center in the last cyclization step through dynamic kinetic resolution (DKR). Computational mechanistic studies established a plausible synergistic mechanism for dual Cu/Ir-catalyzed asymmetric allylation and the succeeding protonation-assisted Pictet-Spengler cyclization to complete the annulation. Structure-activity relationship analyses unveil the origins of stereochemistry for the building of one axis and three point stereogenic centers.
Collapse
Affiliation(s)
- Taotao Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qi Xiong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Lu Xiao
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zuo-Fei Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Song YC, Cao WH, Wang MX, Wang RQ, Sun YY, Wu AX, Zhu YP. One-Pot Total Synthesis of Natural Products Nitramarine, Nitraridine, and Analogues via a Cascade Oxidation/Pictet-Spengler Condensation/Annulation Process. J Org Chem 2024; 89:12832-12841. [PMID: 39119659 DOI: 10.1021/acs.joc.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A cascade oxidation/Pictet-Spengler condensation/annulation process has been developed for the one-pot total synthesis of nitramarine, nitraridine, and their analogues. The procedure proceeded with easily available quinolines and tryptophan derivatives. A simple and metal-free approach, wide substrate scope, and functional group tolerance make it applicable for the synthesis of diverse bioactive nitramarine, nitraridine, and their derivatives. Furthermore, the bioactivity evaluation has identified two promising leading compounds 5d and 5e with potent antitumor proliferative activity against breast cancer cells.
Collapse
Affiliation(s)
- Ying-Chun Song
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P. R. China
| | - Wen-Hui Cao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P. R. China
| | - Ming-Xuan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P. R. China
| | - Run-Qing Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P. R. China
| | - Yuan-Yuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P. R. China
| |
Collapse
|
5
|
Tian X, Xuan T, Gao J, Zhang X, Liu T, Luo F, Pang R, Shao P, Yang YF, Wang Y. Catalytic enantioselective nitrone cycloadditions enabling collective syntheses of indole alkaloids. Nat Commun 2024; 15:6429. [PMID: 39080291 PMCID: PMC11289135 DOI: 10.1038/s41467-024-50509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Tetrahydro-β-carboline skeletons are prominent and ubiquitous in an extraordinary range of indole alkaloid natural products and pharmaceutical compounds. Powerful synthetic approaches for stereoselective synthesis of tetrahydro-β-carboline skeletons have immense impacts and have attracted enormous attention. Here, we outline a general chiral phosphoric acid catalyzed asymmetric 1,3-dipolar cycloaddition of 3,4-dihydro-β-carboline-2-oxide type nitrone that enables access to three types of chiral tetrahydro-β-carbolines bearing continuous multi-chiral centers and quaternary chiral centers. The method displays different endo/exo selectivity from traditional nitrone chemistry. The distinct power of this strategy has been illustrated by application to collective and enantiodivergent total syntheses of 40 tetrahydro-β-carboline-type indole alkaloid natural products with divergent stereochemistry and varied architectures.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tengfei Xuan
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jingkun Gao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xinyu Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tao Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Fengbiao Luo
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ruochen Pang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Pengcheng Shao
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
6
|
Gallarati S, van Gerwen P, Laplaza R, Brey L, Makaveev A, Corminboeuf C. A genetic optimization strategy with generality in asymmetric organocatalysis as a primary target. Chem Sci 2024; 15:3640-3660. [PMID: 38455002 PMCID: PMC10915838 DOI: 10.1039/d3sc06208b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
A catalyst possessing a broad substrate scope, in terms of both turnover and enantioselectivity, is sometimes called "general". Despite their great utility in asymmetric synthesis, truly general catalysts are difficult or expensive to discover via traditional high-throughput screening and are, therefore, rare. Existing computational tools accelerate the evaluation of reaction conditions from a pre-defined set of experiments to identify the most general ones, but cannot generate entirely new catalysts with enhanced substrate breadth. For these reasons, we report an inverse design strategy based on the open-source genetic algorithm NaviCatGA and on the OSCAR database of organocatalysts to simultaneously probe the catalyst and substrate scope and optimize generality as a primary target. We apply this strategy to the Pictet-Spengler condensation, for which we curate a database of 820 reactions, used to train statistical models of selectivity and activity. Starting from OSCAR, we define a combinatorial space of millions of catalyst possibilities, and perform evolutionary experiments on a diverse substrate scope that is representative of the whole chemical space of tetrahydro-β-carboline products. While privileged catalysts emerge, we show how genetic optimization can address the broader question of generality in asymmetric synthesis, extracting structure-performance relationships from the challenging areas of chemical space.
Collapse
Affiliation(s)
- Simone Gallarati
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Puck van Gerwen
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Lucien Brey
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Alexander Makaveev
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Tang M, Lu H, Zu L. Collective total synthesis of stereoisomeric yohimbine alkaloids. Nat Commun 2024; 15:941. [PMID: 38296955 PMCID: PMC10830567 DOI: 10.1038/s41467-024-45140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Stereoisomeric polycyclic natural products are important for drug discovery-based screening campaigns, due to the close correlation of stereochemistry with diversified bioactivities. Nature generates the stereoisomeric yohimbine alkaloids using bioavailable monoterpene secolaganin as the ten-carbon building block. In this work, we reset the stage by the development of a bioinspired coupling, in which the rapid construction of the entire pentacyclic skeleton and the complete control of all five stereogenic centers are achieved through enantioselective kinetic resolution of an achiral, easily accessible synthetic surrogate. The stereochemical diversification from a common intermediate allows for the divergent and collective synthesis of all four stereoisomeric subfamilies of yohimbine alkaloids through orchestrated tackling of thermodynamic and kinetic preference.
Collapse
Affiliation(s)
- Meiyi Tang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Haigen Lu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis. Catalysts 2023. [DOI: 10.3390/catal13020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Hantzsch esters (1,4-dihydropyridine dicarboxylates) have become, in this century, very versatile reagents for enantioselective organic transformations. They can act as hydride transfer agents to reduce, regioselectively, a variety of multiple bonds, e.g., C=C and C=N, under mild reaction conditions. They are excellent reagents for the dearomatization of heteroaromatic substances, and participate readily in cascade processes. In the last few years, they have also become useful reagents for photoredox reactions. They can participate as sacrificial electron and hydrogen donors and when 4-alkyl or 4-acyl-substituted, they can act as alkyl or acyl radical transfer agents. These last reactions may take place in the presence or absence of a photocatalyst. This review surveys the literature published in this area in the last five years.
Collapse
|
9
|
Biswas A. Organocatalyzed Asymmetric Pictet‐Spengler Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anup Biswas
- Departmentof Chemistry Hooghly Women's College Vivekanada Road, Pipulpati Hooghly 712102 India
| |
Collapse
|
10
|
Andres R, Sun F, Wang Q, Zhu J. Organocatalytic Enantioselective Pictet-Spengler Reaction of α-Ketoesters: Development and Application to the Total Synthesis of (+)-Alstratine A. Angew Chem Int Ed Engl 2023; 62:e202213831. [PMID: 36347809 DOI: 10.1002/anie.202213831] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/10/2022]
Abstract
We report herein an asymmetric Pictet-Spengler reaction of α-ketoesters. In the presence of a catalytic amount of simple alanine-derived squaramide and p-nitrobenzoic acid, reaction of tryptamines with methyl 2-oxoalkanoates afforded the corresponding 1-alkyl-1-methoxycarbonyl tetrahydro-β-carbolines (THBCs) in high yields and ee values. A primary kinetic isotope effect (KIE=4.5) using C2-deteurium-labelled tryptamine indicates that rearomatization through deprotonation of the pentahydro-β-carbolinium ion could be the rate- and enantioselectivity-determining step. A concise enantioselective total synthesis of (+)-alstratine A, a hexacyclic cagelike monoterpene indole alkaloid, featuring this reaction as a key step, was subsequently accomplished. Remeasurement of the [a]D value of the natural product indicates that natural alstratine A is dextrorotatory rather than levorotatory as it was initially reported in the isolation paper.
Collapse
Affiliation(s)
- Rémi Andres
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| | - Fenggang Sun
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland.,School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Sathish M, Nachtigall FM, Santos LS. Enantioselective Imine Reduction of Dihydro-β-carbolines by Fe-Thiosquaramide Catalyst. Org Lett 2022; 24:7627-7631. [PMID: 36219882 DOI: 10.1021/acs.orglett.2c03093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantioselective imine reduction of dihydro-β-carbolines (DHBCs) is a reliable and powerful tool to construct bioactive chiral tetrahydro-β-carbolines (THBCs). Here, we report an efficient enantioselective imine reduction employing in situ generated Fe-thiosquaramides (Fe-TSQs) 3a and 3b as asymmetric organometallic catalysts to produce chiral THBCs (2a-h). The catalyst 3a at 15 mol % was found to be suitable for the substrates with alkyl and aryl groups which afford corresponding chiral THBCs with excellent enantioselectivities (up to ee 99%).
Collapse
Affiliation(s)
- Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3605, Chile
| | - Fabiane M Nachtigall
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Leonardo S Santos
- Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
12
|
Andres R, Wang Q, Zhu J. Catalytic Enantioselective Pictet-Spengler Reaction of α-Ketoamides Catalyzed by a Single H-Bond Donor Organocatalyst. Angew Chem Int Ed Engl 2022; 61:e202201788. [PMID: 35225416 PMCID: PMC9313548 DOI: 10.1002/anie.202201788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 01/17/2023]
Abstract
The asymmetric Pictet-Spengler reaction (PSR) with aldehydes is well known. However, PSR involving ketones as electrophilic partners is far-less developed. We report herein the first examples of catalytic enantioselective PSR of tryptamines with α-ketoamides. A new class of easily accessible prolyl-urea organocatalysts bearing a single H-bond donor function catalyzes the title reaction to afford 1,1-disubstituted tetrahydro-β-carbolines in excellent yields and enantioselectivities. The kinetic isotope effect using C2-deuterium-labelled tryptamine indicates that the rearomatization of the pentahydro-β-carbolinium ion intermediate might be the rate- and the enantioselectivity-determining step.
Collapse
Affiliation(s)
- Rémi Andres
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, 1015LausanneSwitzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, 1015LausanneSwitzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, 1015LausanneSwitzerland
| |
Collapse
|
13
|
Soni JP, Sathish M, Nachtigall FM, Santos LS, Shankaraiah N. Brown seaweed‐derived alginic acid: An efficient and reusable catalyst for Pictet‐Spengler reaction to access tetrahydro‐β‐carboline and tetrahydroisoquinoline frameworks. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jay Prakash Soni
- National Institute of Pharmaceutical Education and Research Hyderabad Department of Medicinal Chemistry 500037 Hyderabad INDIA
| | - Manda Sathish
- Catholic University of the Maule: Universidad Catolica del Maule Research center for Advance Studies of Maule, 3460000 Talca CHILE
| | - Fabiane M. Nachtigall
- Universidad Autonoma de Chile Instituto de Ciencias Quimicas Aplicadas 3467987 Talca CHILE
| | - Leonardo S. Santos
- Talca University: Universidad de Talca Chemistry Institute of Natural Resources 3460000 Talca CHILE
| | - Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER Department of Medicinal Chemistry Balanagar 500037 Hyderabad INDIA
| |
Collapse
|
14
|
Andres R, Wang Q, Zhu J. Catalytic Enantioselective Pictet–Spengler Reaction of α‐Ketoamides Catalyzed by a Single H‐Bond Donor Organocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rémi Andres
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne Switzerland
| |
Collapse
|
15
|
Wang XW, Huang WJ, Wang H, Wu B, Zhou YG. Chiral-Phosphoric-Acid-Catalyzed C6-Selective Pictet-Spengler Reactions for Construction of Polycyclic Indoles Containing Spiro Quaternary Stereocenters. Org Lett 2022; 24:1727-1731. [PMID: 35199528 DOI: 10.1021/acs.orglett.2c00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Compared with the well-established asymmetric Pictet-Spengler reactions on the pyrrole ring of indoles, the catalytic asymmetric Pictet-Spengler reaction on the benzene ring of indoles has been rarely studied. Herein the C6-selective Pictet-Spengler reactions of indoles have been realized by employing 2-(1H-indol-7-yl)anilines and isatins in the presence of chiral phosphoric acid, affording novel polycyclic indole derivatives bearing spiro quaternary stereocenters in excellent yields with excellent enantioselectivities. This reaction could be conducted on the gram scale without any loss of activity or enantioselectivity.
Collapse
Affiliation(s)
- Xin-Wei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China.,Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wen-Jun Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Han Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China.,Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
16
|
Nakamura S, Matsuda Y, Takehara T, Suzuki T. Enantioselective Pictet-Spengler Reaction of Acyclic α-Ketoesters Using Chiral Imidazoline-Phosphoric Acid Catalysts. Org Lett 2022; 24:1072-1076. [PMID: 35080408 DOI: 10.1021/acs.orglett.1c04316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first enantioselective Pictet-Spengler reaction of acyclic α-ketoesters with tryptamines has been developed. Excellent yields and enantioselectivity were obtained for the reaction using chiral imidazoline-phosphoric acid catalysts. Density functional theory calculations suggested possible transition states that explain the origin of chiral induction. This process provides an efficient route for the synthesis of tetrahydro-β-carboline derivatives.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yoichiro Matsuda
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
17
|
Nallagonda R, Musaev DG, Karimov RR. Light-Promoted Dearomative Cross-Coupling of Heteroarenium Salts and Aryl Iodides via Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajender Nallagonda
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
18
|
Srinivasulu V, Srikanth G, Khanfar MA, Abu-Yousef IA, Majdalawieh AF, Mazitschek R, Setty SC, Sebastian A, Al-Tel TH. Stereodivergent Complexity-to-Diversity Strategy en Route to the Synthesis of Nature-Inspired Skeleta. J Org Chem 2022; 87:1377-1397. [PMID: 35014258 DOI: 10.1021/acs.joc.1c02698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complexity-to-diversity (CtD) strategy has become one of the most powerful tools used to transform complex natural products into diverse skeleta. However, the reactions utilized in this process are often limited by their compatibility with existing functional groups, which in turn restricts access to the desired skeletal diversity. In the course of employing a CtD strategy en route to the synthesis of natural product-inspired compounds, our group has developed several stereodivergent strategies employing indoloquinolizine natural product analogues as starting materials. These transformations led to the rapid and diastereoselective synthesis of diverse classes of natural product-like architectures, including camptothecin-inspired analogues, azecane medium-sized ring systems, arborescidine-inspired systems, etc. This manifestation required a drastic modification of the synthetic design that ultimately led to modular and diastereoselective access to a diverse collection of various classes of biologically significant natural product analogues. The reported strategies provide a unique platform that will be broadly applicable to other late-stage natural product transformation approaches.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Gourishetty Srikanth
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Monther A Khanfar
- College of Science, Department of Chemistry, Pure and Applied Chemistry Group, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Subbaiah Chennam Setty
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| |
Collapse
|
19
|
Liu M, Li W, Huang M, Yan Y, Li M, Cao L, Zhang X. Enantioselective intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones. NEW J CHEM 2022. [DOI: 10.1039/d2nj00517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones provided isoindolinone fused tetrahydro β-carbolines with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
21
|
Liang L, Zhou S, Zhang W, Tong R. Catalytic Asymmetric Alkynylation of 3,4-Dihydro-β-carbolinium Ions Enables Collective Total Syntheses of Indole Alkaloids. Angew Chem Int Ed Engl 2021; 60:25135-25142. [PMID: 34581483 DOI: 10.1002/anie.202112383] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 12/21/2022]
Abstract
Chiral tetrahydro-β-carboline (THβC) is not only a prevailing structural feature of many natural alkaloids but also a versatile synthetic precursor for a vast array of monoterpenoid indole alkaloids. Asymmetric synthesis of C1-alkynyl THβCs remains rarely explored and challenging. Herein, we describe the development of two complementary approaches for the catalytic asymmetric alkynylation of 3,4-dihydro-β-carbolinium ions with up to 96 % yield and 99 % ee. The utility of chiral C1-alkynyl THβCs was demonstrated by the collective total syntheses of seven indole alkaloids: harmicine, eburnamonine, desethyleburnamonine, larutensine, geissoschizol, geissochizine, and akuammicine.
Collapse
Affiliation(s)
- Lixin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shiqiang Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
22
|
Liang L, Zhou S, Zhang W, Tong R. Catalytic Asymmetric Alkynylation of 3,4‐Dihydro‐β‐carbolinium Ions Enables Collective Total Syntheses of Indole Alkaloids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lixin Liang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Shiqiang Zhou
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Wei Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Rongbiao Tong
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou) The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
23
|
Chan YC, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet-Spengler Reaction with Varied Nitrogen-Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021; 60:24573-24581. [PMID: 34487418 PMCID: PMC8556314 DOI: 10.1002/anie.202109694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Indexed: 01/16/2023]
Abstract
Herein we report an organocatalytic enantioselective functionalization of heterocyclic carboxaldehydes via the Pictet-Spengler reaction. Through careful pairing of novel squaramide and Brønsted acid catalysts, our method tolerates a breadth of heterocycles, enabling preparation of a series of heterocycle conjugated β-(tetrahydro)carbolines in good yield and enantioselectivity. Careful selection of carboxylic acid co-catalyst is essential for toleration of a variety of regioisomeric heterocycles. Utility is demonstrated via the three-step stereoselective preparation of pyridine-containing analogues of potent selective estrogen receptor downregulator and U.S. FDA approved drug Tadalafil.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Marcus H Sak
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Frank
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
24
|
Chan Y, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet‐Spengler Reaction with Varied Nitrogen‐Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuk‐Cheung Chan
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Marcus H. Sak
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Scott A. Frank
- Synthetic Molecule Design and Development Eli Lilly and Company Indianapolis IN 46285 USA
| | - Scott J. Miller
- Department of Chemistry Yale University New Haven CT 06520 USA
| |
Collapse
|
25
|
Liu XY, Qin Y. Recent advances in the total synthesis of monoterpenoid indole alkaloids enabled by asymmetric catalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Srinivasulu V, Sieburth SM, Khanfar MA, Abu-Yousef IA, Majdalawieh A, Ramanathan M, Sebastian A, Al-Tel TH. Stereoselective Late-Stage Transformations of Indolo[2,3- a]quinolizines Skeleta to Nature-Inspired Scaffolds. J Org Chem 2021; 86:12872-12885. [PMID: 34477383 DOI: 10.1021/acs.joc.1c01523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The indolo[2,3-a]quinolizines, canthines, and arborescidines natural products exhibit a wide range of bioactivities including anticancer, antiviral, antibacterial, and anti-inflammatory, among others. Therefore, the development of modular and efficient strategies to access the core scaffolds of these classes of natural products is a remarkable achievement. The Complexity-to-Diversity (CtD) strategy has become a powerful tool that transforms natural products into skeletal and stereochemical diversity. However, many of the reactions that could be utilized in this process are limited by the type of functional groups present in the starting material, which restrict transformations into a variety of products to achieve the desired diversity. In the course of employing a (CtD) strategy en route to the synthesis of nature-inspired compounds, unexpected stereoelectronic-driven rearrangement reactions have been discovered. These reactions provided a rapid access to indolo[2,3-a]quinolizines-, canthines-, and arborescidines-inspired alkaloids in a modular and diastereoselective manner. The disclosed strategies will be widely applicable to other late-stage natural product transformation programs and drug discovery initiatives.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE
| | - Scott McN Sieburth
- Temple University, Department of Chemistry, 201 Beury Hall, Philadelphia, Pennsylvania 19122, United States
| | - Monther A Khanfar
- College of Science, Department of Chemistry, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Amin Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Mani Ramanathan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE
| |
Collapse
|
27
|
Lei CW, Mu BS, Zhou F, Yu JS, Zhou Y, Zhou J. Organocatalytic enantioselective reactions involving prochiral carbocationic intermediates. Chem Commun (Camb) 2021; 57:9178-9191. [PMID: 34519317 DOI: 10.1039/d1cc03506a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since the discovery of carbocations in 1901, the past 120 years have witnessed many marvelous advances in the chemistry of carbocations. The state-of-the-art research in this field is to overcome the intrinsic instability and high reactivity of the prochiral carbocationic intermediates to develop catalytic asymmetric reactions. Such transformations enable the facile synthesis of structurally diverse value-added products from readily available starting materials such as alkenes, alcohols, and carbonyl derivatives, and enjoy high and even perfect atom-economy in most cases. Notably, such allows catalytic stereoconvergent synthesis from racemic substrates and can realize regioselectivity in olefin functionalization reactions complementary to radical processes. With the rapid developments in modern asymmetric organocatalysis, a variety of highly enantioselective protocols evolving prochiral carbocationic intermediates have been achieved by employing three strategies, namely chiral ion-pairing, chiral nucleophile, or chiral carbenium ion strategy. This feature article aims to summarize the exciting advances in this emerging area and briefly showcase the possible mechanisms. The advantages and limitations of each strategy are presented as well as their synthetic applications in the synthesis of natural products or bioactive compounds.
Collapse
Affiliation(s)
- Chuan-Wen Lei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. China.
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China.
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China.
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China. .,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China. .,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
28
|
Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Catalytic and Enantioselective Control of the C-N Stereogenic Axis via the Pictet-Spengler Reaction. Angew Chem Int Ed Engl 2021; 60:12279-12283. [PMID: 33651459 DOI: 10.1002/anie.202100363] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/16/2021] [Indexed: 12/11/2022]
Abstract
An unprecedented example of a chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler reaction of N-arylindoles is reported. Highly enantioenriched N-aryl-tetrahydro-β-carbolines with C-N bond axial chirality are obtained via dynamic kinetic resolution. The hydrogen bond donor introduced on the bottom aromatic ring, forming a secondary interaction with the phosphoryl oxygen, is essential to achieving high enantioselectivity. A wide variety of substituents are tolerable with this transformation to provide up to 98 % ee. The application of electron-withdrawing group-substituted benzaldehydes enables the control of both axial and point stereogenicity. Biological evaluation of this new and unique scaffold shows promising antiproliferative activity and emphasizes the significance of atroposelective synthesis.
Collapse
Affiliation(s)
- Ahreum Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Aram Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Sunjung Park
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Sangji Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Hongil Jo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jayoung Song
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Yongseok Kwon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| |
Collapse
|
29
|
Wang XW, Li X, Chen MW, Wu B, Zhou YG. Chiral Phosphoric Acid-Catalyzed Pictet-Spengler Reactions for Synthesis of 5',11'-Dihydrospiro[indoline-3,6'-indolo[3,2- c]qui-nolin]-2-ones Containing Quaternary Stereocenters. J Org Chem 2021; 86:6897-6906. [PMID: 33845579 DOI: 10.1021/acs.joc.1c00289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chiral phosphoric acid-catalyzed Pictet-Spengler reactions of 2-(1H-indolyl)aniline derivatives and isatins by the condensation/cyclization process have been realized. A series of enantioenriched 5',11'-dihydrospiro[indoline-3,6'-indolo[3,2-c]quinolin]-2-ones bearing quaternary stereogenic centers were obtained with excellent yields and up to >99% ee. This protocol was suitable for the Pictet-Spengler reactions of 2-(1-benzyl-5-methyl-1H-pyrrol-2-yl)aniline, and a variety of 1',5'-dihydro-spiro[indoline-3,4'-pyrrolo[3,2-c]quinolin]-2-ones could also be obtained in good yields and up to 88% ee.
Collapse
Affiliation(s)
- Xin-Wei Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiang Li
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
30
|
Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Catalytic and Enantioselective Control of the C–N Stereogenic Axis via the Pictet–Spengler Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ahreum Kim
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Aram Kim
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Sunjung Park
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Sangji Kim
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Hongil Jo
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Kang Min Ok
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul Republic of Korea
| | - Jayoung Song
- College of Pharmacy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul Republic of Korea
| | - Yongseok Kwon
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| |
Collapse
|
31
|
Lin X, Wang L, Han Z, Chen Z. Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Lei Wang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhao Han
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhouli Chen
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
32
|
Lynch-Colameta T, Greta S, Snyder SA. Synthesis of aza-quaternary centers via Pictet-Spengler reactions of ketonitrones. Chem Sci 2021; 12:6181-6187. [PMID: 33996016 PMCID: PMC8098696 DOI: 10.1039/d1sc00882j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/12/2021] [Indexed: 01/25/2023] Open
Abstract
Despite the array of advances that have been made in Pictet-Spengler chemistry, particularly as it relates to the synthesis of β-carboline derivatives of both natural and designed origin, the ability to use such reactions to generate aza-quaternary centers remains limited. Herein, we report a simple procedure that enables the synthesis of a variety of such products by harnessing the distinct reactivity profiles of ketonitrones as activated by commercially available acyl chlorides. Notably, the reaction process is mild, fast, and high-yielding (54-97%) for a diverse collection of substrates, including some typically challenging ones, such as indole cores with electron-deficient substituents. In addition, by deploying an acyl bromide in combination with a thiourea promoter, a catalytic, asymmetric version has been established, leading to good levels of enantioselectivity (up to 83% ee) for several ketonitrones. Finally, the resultant N-O bonds within the products can also be functionalized in several unique ways, affording valuable complementarity to existing Pictet-Spengler variants based on the use of imines.
Collapse
Affiliation(s)
- Tessa Lynch-Colameta
- Department of Chemistry, University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Sarah Greta
- Department of Chemistry, University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Scott A Snyder
- Department of Chemistry, University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| |
Collapse
|
33
|
Lu ZY, Hu JT, Lan WQ, Mo XQ, Zhou S, Tang YF, Yuan WC, Zhang XM, Liao LH. Enantioselective synthesis of hetero-triarylmethanes by chiral phosphoric acid-catalyzed 1,4-addition of 3-substituted indoles with azadienes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Szabó T, Volk B, Milen M. Recent Advances in the Synthesis of β-Carboline Alkaloids. Molecules 2021; 26:663. [PMID: 33513936 PMCID: PMC7866041 DOI: 10.3390/molecules26030663] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
β-Carboline alkaloids are a remarkable family of natural and synthetic indole-containing heterocyclic compounds and they are widely distributed in nature. Recently, these alkaloids have been in the focus of interest, thanks to their diverse biological activities. Their pharmacological activity makes them desirable as sedative, anxiolytic, hypnotic, anticonvulsant, antitumor, antiviral, antiparasitic or antimicrobial drug candidates. The growing potential inherent in them encourages many researchers to address the challenges of the synthesis of natural products containing complex β-carboline frameworks. In this review, we describe the recent developments in the synthesis of β-carboline alkaloids and closely related derivatives through selected examples from the last 5 years. The focus is on the key steps with improved procedures and synthetic approaches. Furthermore the pharmacological potential of the alkaloids is also highlighted.
Collapse
Affiliation(s)
| | | | - Mátyás Milen
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P.O. Box 100, H-1475 Budapest, Hungary; (T.S.); (B.V.)
| |
Collapse
|
35
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
36
|
Miao H, Bai X, Wang L, Yu J, Bu Z, Wang Q. Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01196g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly diastereoselective multicomponent dearomative multifunctionalization of N-alkyl activated azaarenes with 1,5-diazapentadienium salts has been developed to access structurally rigid and synthetically challenging cage-like and bridged azaheterocycles.
Collapse
Affiliation(s)
- Hongjie Miao
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Xuguan Bai
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Lele Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Junhui Yu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Zhanwei Bu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Qilin Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| |
Collapse
|
37
|
Eger E, Schrittwieser JH, Wetzl D, Iding H, Kuhn B, Kroutil W. Asymmetric Biocatalytic Synthesis of 1-Aryltetrahydro-β-carbolines Enabled by "Substrate Walking". Chemistry 2020; 26:16281-16285. [PMID: 33017078 PMCID: PMC7756766 DOI: 10.1002/chem.202004449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Stereoselective catalysts for the Pictet-Spengler reaction of tryptamines and aldehydes may allow a simple and fast approach to chiral 1-substituted tetrahydro-β-carbolines. Although biocatalysts have previously been employed for the Pictet-Spengler reaction, not a single one accepts benzaldehyde and its substituted derivatives. To address this challenge, a combination of substrate walking and transfer of beneficial mutations between different wild-type backbones was used to develop a strictosidine synthase from Rauvolfia serpentina (RsSTR) into a suitable enzyme for the asymmetric Pictet-Spengler condensation of tryptamine and benzaldehyde derivatives. The double variant RsSTR V176L/V208A accepted various ortho-, meta- and para-substituted benzaldehydes and produced the corresponding chiral 1-aryl-tetrahydro-β-carbolines with up to 99 % enantiomeric excess.
Collapse
Affiliation(s)
- Elisabeth Eger
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/II8010GrazAustria
| | - Joerg H. Schrittwieser
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/II8010GrazAustria
| | - Dennis Wetzl
- Process Chemistry & CatalysisF. Hoffmann-La Roche Ltd.Grenzacherstrasse 1244070BaselSwitzerland
| | - Hans Iding
- Process Chemistry & CatalysisF. Hoffmann-La Roche Ltd.Grenzacherstrasse 1244070BaselSwitzerland
| | - Bernd Kuhn
- Pharma Research & Early DevelopmentF. Hoffmann-La Roche Ltd.Grenzacherstrasse 1244070BaselSwitzerland
| | - Wolfgang Kroutil
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/II8010GrazAustria
- Field of Excellence BioHealth—University of Graz8010GrazAustria
| |
Collapse
|
38
|
Kinetic Resolution of 2‐
N
‐Acylamido Tertiary Allylic Alcohols: Asymmetric Synthesis of Oxazolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Xu T, Lin N, Hao WJ, Zhang J, Li MF, Tu SJ, Jiang B. Synthesis of polycyclic indoles via organocatalytic bicyclization of α-alkynylnaphthalen-2-ols with nitrones. Chem Commun (Camb) 2020; 56:11406-11409. [PMID: 32853304 DOI: 10.1039/d0cc05027j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new organocatalytic bicyclization of α-alkynylnaphthalen-2-ols with nitrones was first reported, leading to the convergent synthesis of polycyclic indoles with substantial substitution diversity in generally good yields through scission of the N-O bond of nitrones via [3,3]-sigmatropic rearrangement. This transformation showcases the use of a quinine catalyst in a complicated cascade system that has been shown to effectively construct polycyclic heterocycles via alkyne difunctionalization.
Collapse
Affiliation(s)
- Ting Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Andres R, Wang Q, Zhu J. Asymmetric Total Synthesis of (−)-Arborisidine and (−)-19-epi-Arborisidine Enabled by a Catalytic Enantioselective Pictet–Spengler Reaction. J Am Chem Soc 2020; 142:14276-14285. [DOI: 10.1021/jacs.0c05804] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rémi Andres
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Sahoo AR, Lalitha G, Murugesh V, Bruneau C, Sharma GVM, Suresh S, Achard M. Direct Access to (±)‐10‐Desbromoarborescidine A from Tryptamine and Pentane‐1,5‐diol. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Apurba Ranjan Sahoo
- Univ RennesISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Gummidi Lalitha
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - V. Murugesh
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Christian Bruneau
- Univ RennesISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Gangavaram V. M. Sharma
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Mathieu Achard
- Univ RennesISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| |
Collapse
|
42
|
Zheng C, You SL. Exploring the Chemistry of Spiroindolenines by Mechanistically-Driven Reaction Development: Asymmetric Pictet-Spengler-type Reactions and Beyond. Acc Chem Res 2020; 53:974-987. [PMID: 32275392 DOI: 10.1021/acs.accounts.0c00074] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Pictet-Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of tetrahydro-β-carbolines, a core structure embedded in numerous alkaloids. Spiroindolenines are often proposed as possible intermediates in Pictet-Spengler reactions. However, whether the spiroindolenine species is an intermediate in the mechanism of the asymmetric Pictet-Spengler reaction remains unclear. Questions about the role of the spiroindolenine species regarding the mechanism include the following: Can the spiroindolenine species be formed effectively under Pictet-Spengler conditions? If so, what is its fate? Is the delivery of the enantioenriched tetrahydro-β-carboline product related to the spiroindolenine intermediate? Previous studies regarding these questions have not reached a consensus. Therefore, elucidating these questions will advance the field of synthetic organic chemistry.The first highly enantioselective synthesis of spiroindolenines that have the same molecular scaffold as the proposed key intermediate of the Pictet-Spengler reaction was accomplished by an Ir-catalyzed intramolecular asymmetric allylic substitution reaction of an indol-3-yl allylic carbonate. In this reaction, a piperidine, pyrrolidine, or cyclopentane ring can be introduced in conjunction with the indolenine structure.Spiroindolenines were found to undergo ring-expansive migration reactions when treated with a catalytic amount of an acid, leading to tetrahydro-β-carbolines or related tetrahydrocarbazoles. Comprehensive DFT calculations and Born-Oppenheimer molecular dynamics simulations have provided insight into the mechanism of the migration process. It has been found that the stereochemistry is strongly correlated with the electronic properties of the migratory group along with the acidity of the catalyst. Close interactions between the positively charged migratory group and the electron-rich indole ring favor the stereospecificity of the migration. Furthermore, a continuous mechanistic spectrum of the Pictet-Spengler reactions can be obtained on the basis of two readily accessible energetic parameters that are derived from computed energies for competing transition states relative to a key intermediate species. This theoretical model provides a unified mechanistic understanding of the asymmetric Pictet-Spengler reaction, which has been further supported by rationally designed prototype reactions. Chemically and stereochemically controllable migration can be achieved when multiple potential migratory groups are available.The reactivity of spiroindolenines has also been explored beyond Pictet-Spengler reactions. A one-pot Ir-catalyzed asymmetric allylic dearomatization/stereoconvergent migration allows the facile synthesis of enantioenriched tetrahydro-β-carbolines from racemic starting materials. An unprecedented six- to seven-membered ring-expansive migration can be achieved when a vinyliminium moiety is involved as a highly reactive migratory group. This reaction facilitates the stereoselective synthesis of thermodynamically challenging indole-annulated seven-membered rings. It has also been found that the migration process can be interrupted. The electrophilic migratory group released from the retro-Mannich reaction of a spiroindolenine can be captured by an inter- or intramolecular nucleophile, thus providing new entries into structurally diverse polycyclic indole derivatives.Therefore, the mechanism of the Pictet-Spengler reaction can be probed by manipulating the reactivity of the spiroindolenine species. In turn, the mechanistic insights gained herein will aid in chemical transformations toward various target molecules. This study serves as a vivid example of the positive interplay between experimental and theoretical investigations in synthetic organic chemistry.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
43
|
Hu Y, Shen Y, Huang L, Van der Eycken EV, Feng H. Metal-Free Decarboxylative A3
-Coupling/Pictet-Spengler Cascade Accessing Polycyclic Scaffolds: Propiolic Acids Exceed Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yingxin Hu
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Yangpeng Shen
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Leuven Belgium
- Department of Chemistry; Peoples' Friendship University of Russia (RUDN University); 6 Miklukho-Maklaya Street 117198 Moscow Russia
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|
44
|
Pan Z, Liu Y, Hu F, Liu Q, Shang W, Ji X, Xia C. Enantioselective Synthesis of Spiroindolines via Cascade Isomerization/Spirocyclization/Dearomatization Reaction. Org Lett 2020; 22:1589-1593. [PMID: 31990194 DOI: 10.1021/acs.orglett.0c00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spiroindoline skeleton featured with 2,7-diazaspiro[4.4]nonane exists in various structurally intricate and biologically active monoterpene indole alkaloids. A catalytic asymmetric cascade enamine isomerization/spirocyclization/dearomatization succession to construct the spiroindoline was developed, which employed the indolyl dihydropyridine as a substrate under catalysis of the chiral phosphoric acid. This cascade reaction provided various spiroindolines in both diastereoselective and enantionselective fashions.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Yuchang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Fengchi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Qinglong Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Wenbin Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
45
|
Eger E, Simon A, Sharma M, Yang S, Breukelaar WB, Grogan G, Houk KN, Kroutil W. Inverted Binding of Non-natural Substrates in Strictosidine Synthase Leads to a Switch of Stereochemical Outcome in Enzyme-Catalyzed Pictet-Spengler Reactions. J Am Chem Soc 2020; 142:792-800. [PMID: 31909617 PMCID: PMC6966912 DOI: 10.1021/jacs.9b08704] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 12/24/2022]
Abstract
The Pictet-Spengler reaction is a valuable route to 1,2,3,4-tetrahydro-β-carboline (THBC) and isoquinoline scaffolds found in many important pharmaceuticals. Strictosidine synthase (STR) catalyzes the Pictet-Spengler condensation of tryptamine and the aldehyde secologanin to give (S)-strictosidine as a key intermediate in indole alkaloid biosynthesis. STRs also accept short-chain aliphatic aldehydes to give enantioenriched alkaloid products with up to 99% ee STRs are thus valuable asymmetric organocatalysts for applications in organic synthesis. The STR catalysis of reactions of small aldehydes gives an unexpected switch in stereopreference, leading to formation of the (R)-products. Here we report a rationale for the formation of the (R)-configured products by the STR enzyme from Ophiorrhiza pumila (OpSTR) using a combination of X-ray crystallography, mutational, and molecular dynamics (MD) studies. We discovered that short-chain aldehydes bind in an inverted fashion compared to secologanin leading to the inverted stereopreference for the observed (R)-product in those cases. The study demonstrates that the same catalyst can have two different productive binding modes for one substrate but give different absolute configuration of the products by binding the aldehyde substrate differently. These results will guide future engineering of STRs and related enzymes for biocatalytic applications.
Collapse
Affiliation(s)
- Elisabeth Eger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Adam Simon
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | - Mahima Sharma
- Department
of Chemistry, University of York, Heslington, York YO15 5DD, U.K.
| | - Song Yang
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | - Willem B. Breukelaar
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Gideon Grogan
- Department
of Chemistry, University of York, Heslington, York YO15 5DD, U.K.
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | - Wolfgang Kroutil
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
46
|
Ye C, Yang WL, Zhai Y, Deng H, Luo X, Kai G, Deng WP. Copper(i)-catalyzed asymmetric [3 + 3] annulation involving aziridines to construct tetrahydro-β-carbolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00742k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed asymmetric [3 + 3] annulation of 2-vinylindoles with 2-aryl aziridines has been described, providing direct access to enantioenriched tetrahydro-β-carbolines.
Collapse
Affiliation(s)
- Chao Ye
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wu-Lin Yang
- College of Pharmacy
- Zhejiang Chinese Medical University
- Hangzhou 310053
- China
- Shanghai Key Laboratory of New Drug Design
| | - Yufei Zhai
- College of Pharmacy
- Zhejiang Chinese Medical University
- Hangzhou 310053
- China
| | - Hua Deng
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoyan Luo
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Guoyin Kai
- College of Pharmacy
- Zhejiang Chinese Medical University
- Hangzhou 310053
- China
| | - Wei-Ping Deng
- College of Pharmacy
- Zhejiang Chinese Medical University
- Hangzhou 310053
- China
- Shanghai Key Laboratory of New Drug Design
| |
Collapse
|
47
|
Xia ZL, Xu-Xu QF, Zheng C, You SL. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chem Soc Rev 2020; 49:286-300. [DOI: 10.1039/c8cs00436f] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We summarize in this review the recent development of chiral phosphoric acid (CPA)-catalyzed asymmetric dearomatization reactions.
Collapse
Affiliation(s)
- Zi-Lei Xia
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Qing-Feng Xu-Xu
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
48
|
Liang JX, Yang GB, Zhang YP, Guo DD, Zhao JZ, Li GX, Tang Z. Pictet–Spengler reaction based on in situ generated α-amino iminium ions through the Heyns rearrangement. Org Chem Front 2020. [DOI: 10.1039/d0qo00722f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A useful tandem reaction via the Heyns rearrangement and Pictet–Spengler reaction was developed which ensured the synthesis of complex N-heteropolycycles containing tetrahydro-β-carboline with high yield (up to 96%) and dr (99 : 1).
Collapse
Affiliation(s)
- Jun-xiu Liang
- College of Art and Sciences
- Shanxi Agricultural University
- Taigu
- China
- Natural Product Research Center
| | - Guo-bin Yang
- College of Art and Sciences
- Shanxi Agricultural University
- Taigu
- China
| | - Yong-po Zhang
- College of Art and Sciences
- Shanxi Agricultural University
- Taigu
- China
| | - Dong-dong Guo
- College of Art and Sciences
- Shanxi Agricultural University
- Taigu
- China
| | - Jin-zhong Zhao
- College of Art and Sciences
- Shanxi Agricultural University
- Taigu
- China
| | - Guang-xun Li
- Natural Product Research Center
- Chengdu Institute of Biology
- Chinese Academy of Science
- Chengdu
- China
| | - Zhuo Tang
- Natural Product Research Center
- Chengdu Institute of Biology
- Chinese Academy of Science
- Chengdu
- China
| |
Collapse
|
49
|
Robinson DJ, Spurlin SP, Gorden JD, Karimov RR. Enantioselective Synthesis of Dihydropyridines Containing Quaternary Stereocenters Through Dearomatization of Pyridinium Salts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03874] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Donovan J. Robinson
- Department of Chemistry and Biochemistry, Auburn University, 378 Chemistry Building, Auburn, Alabama 36849, United States
| | - Sean P. Spurlin
- Department of Chemistry and Biochemistry, Auburn University, 378 Chemistry Building, Auburn, Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry and Biochemistry, Auburn University, 378 Chemistry Building, Auburn, Alabama 36849, United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, 378 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
50
|
Gabriel P, Gregory AW, Dixon DJ. Iridium-Catalyzed Aza-Spirocyclization of Indole-Tethered Amides: An Interrupted Pictet–Spengler Reaction. Org Lett 2019; 21:6658-6662. [DOI: 10.1021/acs.orglett.9b02194] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pablo Gabriel
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Alex W. Gregory
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Darren J. Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|