1
|
Wu Y, Zhu B, Fan H, Bernard H, Hutton CA. Late-Stage Pd(II)-Catalyzed C(sp 3)-H Functionalization of Peptides Directed by a Removable, Backbone-Inserted Amidoxime Ether. Angew Chem Int Ed Engl 2025; 64:e202423979. [PMID: 39757129 DOI: 10.1002/anie.202423979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including unprecedented functionalization of internal residues of native peptides. Removal of the amidoxime ether was achieved to generate the parent amide and facilitate a traceless C-H functionalization process.
Collapse
Affiliation(s)
- Yuezhou Wu
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Beichen Zhu
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Haoyang Fan
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Hugo Bernard
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
2
|
Wang J, Chen Z, Chen K, Cui Z, Li J. Modular Access to Silicon-Containing Amino Acids and Peptides by Cobalt Catalysis. Angew Chem Int Ed Engl 2025; 64:e202421190. [PMID: 39715727 DOI: 10.1002/anie.202421190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
A regioselective cobalt-catalyzed three-component silylamidation that rapidly and reliably incorporates dioxazolones and silylzinc pivalates into unconjugated alkenyl amides is disclosed. Notably, the unique power of this protocol is demonstrated by the possibility of achieving peptide ligation using peptide-containing dioxazolones or alkenyl amides as the coupling partners. Moreover, this approach is distinguished by its mild condition, synthetic simplicity, and ample scope, thus providing a new platform for modular access to silicon-containing amino acid derivatives and peptides.
Collapse
Affiliation(s)
- Jixin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Zexu Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Kaixin Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Zhili Cui
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| |
Collapse
|
3
|
Quan Q, Li Y, Zhang Z, Van der Eycken EV, Cai L, Song L. Rh(III)-Catalyzed Double C-H Activation toward Peptide-Benzazepine Conjugates. Org Lett 2025; 27:482-487. [PMID: 39716031 DOI: 10.1021/acs.orglett.4c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
We herein report the efficient synthesis of peptide-benzazepine conjugates from Lys-based peptides and acroleins via Rh(III)-catalyzed double C-H activation. This reaction features mild reaction conditions, broad scope, high atom and step economies, and excellent chemo- and site selectivity. The synthetic utility of this strategy is further demonstrated by scale-up experiments and product derivatizations, including diverse late-stage ligations based on the aldehyde moiety. The preliminary biological activity studies show that peptide-benzazepine conjugates have good antifungal activities toward crop and forest pathogenic fungi.
Collapse
Affiliation(s)
- Qi Quan
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhefan Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
4
|
Ding Y, Yao B. Late-Stage Glycosylation of Peptides by Methionine-Directed β-C(sp 3)-H Functionalization with 1-Iodoglycals. Org Lett 2024; 26:7128-7133. [PMID: 39155450 DOI: 10.1021/acs.orglett.4c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Using l-methionine (Met) as the endogenous directing group, we developed Pd-catalyzed β-C(sp3)-H glycosylation of peptides with 1-iodoglycals. A wide range of tri- to hexapeptides containing the Ala-Met motifs underwent Ala C-H glycosylation under the standard conditions to give the glycopeptides smoothly. 15 proteinogenic amino acids (with easily removable protecting groups) were well tolerated. Control experiments indicated that Met acted as a N,S-bidentate directing group and exhibited an effect superior to other amino acid residues such as l-aspartic acid (Asp), l-asparagine (Asn), and S-protected l-cysteine (Cys). In addition, further transformation by HFIP-promoted 1,4-elimination furnished another type of glycopeptide with the 1,3-diene motif, which provides a handle for further derivatization.
Collapse
Affiliation(s)
- Yunhao Ding
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
5
|
Lu F, Zhang X, Geng Y, Wang H, Tang J. Methionine-enabled peptide modification through late-stage Pd-catalyzed β-C(sp 3)-H olefination/cyclization. Chem Commun (Camb) 2024; 60:7942-7945. [PMID: 38984863 DOI: 10.1039/d4cc02739f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We present a method for site-selective diversification of peptides via Pd-catalyzed β-C(sp3)-H olefination/cyclization. In this protocol, the native methionine residue acts as a directing group, enabling site-specific olefination/cyclization of peptides. This chemistry demonstrates broad substrate scope, offering a versatile tool for peptide ligation.
Collapse
Affiliation(s)
- Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Xinyi Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Huihui Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P. R. China
- Zhejiang Zhongxin Fluoride Materials Co., LTD, Shangyu 312369, P. R. China
| |
Collapse
|
6
|
Bag R, Sharma NK. Pd-Catalyzed Picolinamide-Directed C(sp 2)-H Sulfonylation of Amino Acids/Peptides with Sodium Sulfinates. J Org Chem 2024; 89:10127-10147. [PMID: 38924796 DOI: 10.1021/acs.joc.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This report describes a Pd-catalyzed picolinamide-directed site-selective C(sp2)-H sulfonylation of amino acids and peptides with sodium sulfinates in moderate to good yields. Sulfonylation of levodopa and dopamine drug molecules and late-stage directed peptide sulfonylation are studied for the first time. Broad substrate scope having various functionalities, late-stage drug modifications, and various post synthetic utilities such as chalcogenation, bromination, olefination, and arylation are potential advantages.
Collapse
Affiliation(s)
- Raghunath Bag
- National Institute of Science Education and Research (NISER)─Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER)─Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
7
|
Li C, Wang Z, Jin M, Song Z. Palladium-Catalyzed Arylation of C(sp 2)-H Bonds and C(sp 3)-H Bonds with 4-Amino-benzotriazole as the Bidentate Directing Group. J Org Chem 2024; 89:6966-6973. [PMID: 38691095 DOI: 10.1021/acs.joc.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The arylation of C(sp2)-H and C(sp3)-H bonds in carboxylic acids catalyzed by Pd(II) with 4-aminobentriazole as the directing group was investigated. In addition to activation of the C(sp2)-H bond, selective arylation of alkyl carboxylic acids and amino acids in the β position can also be achieved. This strategy involved a 5,5-bicyclic Pd intermediate complex whose structure was determined by X-ray single crystal diffraction analysis. Importantly, the DG (directing group) can be easily removed under mild conditions.
Collapse
Affiliation(s)
- Chengqian Li
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Zhuo Wang
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Meina Jin
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Akintelu SA, Zhang Q, Yao B. Postassembly Modification of Peptides by Histidine-Directed β-C(sp 3)-H Arylation of Alanine at the Internal Positions: Overcoming the Inhibitory Effect of Peptide Bonds. Org Lett 2024; 26:3991-3996. [PMID: 38691578 DOI: 10.1021/acs.orglett.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Peptide modification by C(sp3)-H functionalization of residues at the internal positions remains underdeveloped due to the inhibitory effect of backbone amides. In this study, using histidine (His) as an endogenous directing group, we developed a novel method for the β-C(sp3)-H functionalization of alanine (Ala) at diverse positions of peptides. Through this approach, a wide range of linear peptides were modified on the side-chain of Ala adjacent to His to afford the functionalized peptides in moderate to good yield and excellent position selectivity. Furthermore, conjugation of peptides with functional molecules such as glucuronide, oleanolic acid, dipeptide, and fluorophore derivatives was achieved.
Collapse
Affiliation(s)
- Sunday A Akintelu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Qi Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
9
|
Kopp A, Oyama T, Ackermann L. Fluorescent coumarin-alkynes for labeling of amino acids and peptides via manganese(I)-catalyzed C-H alkenylation. Chem Commun (Camb) 2024. [PMID: 38683668 DOI: 10.1039/d4cc00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The late-stage fluorescent labeling of structurally complex peptides bears immense potential for molecular imaging. Herein, we report on a manganese(I)-catalyzed peptide C-H alkenylation under exceedingly mild conditions with natural fluorophores as coumarin- and chromone-derivatives. The robustness and efficiency of the manganese(I) catalysis regime was reflected by a broad functional group tolerance and low catalyst loading in a resource- and atom-economical fashion.
Collapse
Affiliation(s)
- Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany
| |
Collapse
|
10
|
Lin R, Shan Y, Li Y, Wei X, Zhang Y, Lin Y, Gao Y, Fang W, Zhang JJ, Wu T, Cai L, Chen Z. Organo-Photoredox Catalyzed gem-Difluoroallylation of Glycine and Glycine Residue in Peptides. J Org Chem 2024; 89:4056-4066. [PMID: 38449357 DOI: 10.1021/acs.joc.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.
Collapse
Affiliation(s)
- Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujie Shan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Lab for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
11
|
Ding XX, Ren BQ, Li BT, Pang ZJ, Xu YJ, Dong L. Pd(II)-Catalyzed β-C(sp 3)-H Alkynylation of Alanine in Di- and Tripeptides with Asn as an Endogenous Directing Group. J Org Chem 2024; 89:3390-3402. [PMID: 38377557 DOI: 10.1021/acs.joc.3c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The introduction of alkyne moieties into peptides remains in demand as it represents a promising approach for further structural diversification of peptides. Herein, we describe the Pd(II)-catalyzed C(sp3)-H alkynylation of Ala-Asn-embedded di- and tripeptides using Asn as the endogenous lead group. In addition, a key building block for the glycopeptide Tyc4PG-14 and Tyc4PG-15 was produced by our methodology.
Collapse
Affiliation(s)
- Xing-Xing Ding
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Bo-Quan Ren
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Bing-Tong Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhao-Jiong Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Wang J, Cui Y, Xie S, Zhang JQ, Hu D, Shuai S, Zhang C, Ren H. Mild Pd-Catalyzed Decarboxylative Cross-Coupling of Zinc(II) Polyfluorobenzoates with Aryl Bromides and Nonaflates: Access to Polyfluorinated Biaryls. Org Lett 2024; 26:137-141. [PMID: 38127542 DOI: 10.1021/acs.orglett.3c03730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We developed a Pd-catalyzed decarboxylative cross-coupling of zinc polyfluorobenzoates, which were used as precursors for producing zinc reagents in situ, with aryl bromides and nonaflates, providing a mild and efficient pathway for the synthesis of polyfluorinated biaryls. This protocol exhibits a broad substrate scope and excellent functional tolerance. Moreover, the versatility of this approach was demonstrated by the straightforward late-stage modification of drugs, biologically active molecules, and pesticides, indicating its potential significance in drug discovery.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Yangbo Cui
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Siqi Xie
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jun-Qi Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Dandan Hu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Shihao Shuai
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Chun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Hongjun Ren
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
13
|
Song X, Bai S, Li Y, Yi T, Long X, Pu Q, Dang T, Ma M, Ren Q, Qin X. Expedient and divergent synthesis of unnatural peptides through cobalt-catalyzed diastereoselective umpolung hydrogenation. SCIENCE ADVANCES 2023; 9:eadk4950. [PMID: 38117889 PMCID: PMC10732522 DOI: 10.1126/sciadv.adk4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
The development of a reliable method for asymmetric synthesis of unnatural peptides is highly desirable and particularly challenging. In this study, we present a versatile and efficient approach that uses cobalt-catalyzed diastereoselective umpolung hydrogenation to access noncanonical aryl alanine peptides. This protocol demonstrates good tolerance toward various functional groups, amino acid sequences, and peptide lengths. Moreover, the versatility of this reaction is illustrated by its successful application in the late-stage functionalization and formal synthesis of various representative chiral natural products and pharmaceutical scaffolds. This strategy eliminates the need for synthesizing chiral noncanonical aryl alanines before peptide formation, and the hydrogenation reaction does not result in racemization or epimerization. The underlying mechanism was extensively explored through deuterium labeling, control experiments, HRMS identification, and UV-Vis spectroscopy, which supported a reasonable CoI/CoIII catalytic cycle. Notably, acetic acid and methanol serve as safe and cost-effective hydrogen sources, while indium powder acts as the terminal electron source.
Collapse
Affiliation(s)
- Xinjian Song
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Shuangyi Bai
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Yuan Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Tong Yi
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xinyu Long
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qinghua Pu
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Ting Dang
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Mengjie Ma
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qiao Ren
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xurong Qin
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, No. 94 Wei Jin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
14
|
Tan Y, Xiang H, Jin J, He X, Li S, Ye Y. Oxidation/Alkylation of Amino Acids with α-Bromo Carbonyls Catalyzed by Copper and Quick Access to HDAC Inhibitor. J Org Chem 2023; 88:17398-17408. [PMID: 38037667 DOI: 10.1021/acs.joc.3c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A facile and efficient method was reported for Cu-catalyzed selective α-alkylation processes of amino acids/peptides and α-bromo esters/ketones through a radical-radical coupling pathway. The reaction displays an excellent functional group tolerance and broad substrate scope, allowing access to desired products in moderate to excellent yields. Notably, this method is distinguished by site-specificity and exhibits total selectivity for aryl glycine motifs over other amino acid units. Furthermore, the practicality of this strategy is certified by the efficient synthesis of the novel SAHA phenylalanine-containing analogue (SPACA).
Collapse
Affiliation(s)
- Yuqiong Tan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Jiayan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Xingrui He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
15
|
Nanjo T, Matsumoto A, Oshita T, Takemoto Y. Synthesis of Chlorinated Oligopeptides via γ- and δ-Selective Hydrogen Atom Transfer Enabled by the N-Chloropeptide Strategy. J Am Chem Soc 2023; 145:19067-19075. [PMID: 37594470 DOI: 10.1021/jacs.3c06931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The introduction of a chlorine atom could potentially endow peptide derivatives with notable bioactivity and applicability. However, despite considerable recent progress in C(sp3)-H functionalization chemistry, a general method for the site-selective chlorination of inert aliphatic C-H bonds in peptides still remains elusive. Herein, we report a site-selective C(sp3)-H chlorination of oligopeptides based on an N-chloropeptide strategy. N-chloropeptides, which are easily prepared from the corresponding native oligopeptides, are smoothly degraded in the presence of an appropriate copper catalyst, and a subsequent 1,5-hydrogen atom transfer affords γ- or δ-chlorinated peptides in excellent yield. A wide variety of amino acid residues can thus be site-selectively chlorinated in a predictable manner. This method hence enables the efficient synthesis of otherwise less accessible, chlorine-containing peptide fragments of natural peptides. We moreover demonstrate here the successful estimation of the stereochemistry of the chlorinated carbon atom in aquimarin A. Furthermore, we reveal that side-chain-chlorinated peptides can serve as highly useful substructures with a fine balance between stability and reactivity, which renders them promising targets for synthetic and medicinal applications.
Collapse
Affiliation(s)
- Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayaka Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuma Oshita
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Oyama T, Mendive-Tapia L, Cowell V, Kopp A, Vendrell M, Ackermann L. Late-stage peptide labeling with near-infrared fluorogenic nitrobenzodiazoles by manganese-catalyzed C-H activation. Chem Sci 2023; 14:5728-5733. [PMID: 37265715 PMCID: PMC10231426 DOI: 10.1039/d3sc01868g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Late-stage diversification of structurally complex amino acids and peptides provides tremendous potential for drug discovery and molecular imaging. Specifically, labeling peptides with fluorescent tags is one of the most important methods for visualizing their mode of operation. Despite major recent advances in the field, direct molecular peptide labeling by C-H activation is largely limited to dyes with relatively short emission wavelengths, leading to high background signals and poor signal-to-noise ratios. In sharp contrast, here we report on the fluorescent labeling of peptides catalyzed by non-toxic manganese(i) via C(sp2)-H alkenylation in chemo- and site-selective manners, providing modular access to novel near-infrared (NIR) nitrobenzodiazole-based peptide fluorogenic probes.
Collapse
Affiliation(s)
- Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Verity Cowell
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Straße 58 10785 Berlin Germany
| |
Collapse
|
17
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
18
|
Yuan CH, Wang XX, Jiao L. Ligand-Enabled Palladium(II)-Catalyzed Enantioselective β-C(sp 3 )-H Arylation of Aliphatic Tertiary Amides. Angew Chem Int Ed Engl 2023; 62:e202300854. [PMID: 36851818 DOI: 10.1002/anie.202300854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Amide is one of the most widespread functional groups in organic and bioorganic chemistry, and it would be valuable to achieve stereoselective C(sp3 )-H functionalization in amide molecules. Palladium(II) catalysis has been prevalently used in the C-H activation chemistry in the past decades, however, due to the weakly-coordinating feature of simple amides, it is challenging to achieve their direct C(sp3 )-H functionalization with enantiocontrol by PdII catalysis. Our group has developed sulfoxide-2-hydroxypridine (SOHP) ligands, which exhibited remarkable activity in Pd-catalyzed C(sp2 )-H activation. In this work, we demonstrate that chiral SOHP ligands served as an ideal solution to enantioselective C(sp3 )-H activation in simple amides. Herein, we report an efficient asymmetric PdII /SOHP-catalyzed β-C(sp3 )-H arylation of aliphatic tertiary amides, in which the SOHP ligand plays a key role in the stereoselective C-H deprotonation-metalation step.
Collapse
Affiliation(s)
- Chen-Hui Yuan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao-Xia Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Kaplaneris N, Puet A, Kallert F, Pöhlmann J, Ackermann L. Late-stage C-H Functionalization of Tryptophan-Containing Peptides with Thianthrenium Salts: Conjugation and Ligation. Angew Chem Int Ed Engl 2023; 62:e202216661. [PMID: 36581584 DOI: 10.1002/anie.202216661] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Bioorthogonal late-stage diversification of structurally complex peptides bears enormous potential for drug discovery and molecular imaging, among other applications. Herein, we report on a palladium-catalyzed C-H arylation of tryptophan-containing peptides with readily accessible and modular arylthianthrenium salts. Under exceedingly mild reaction conditions, the late-stage diversification of structurally complex peptides was accomplished. The tunability and ease of preparation of arylthianthrenium salts allowed the expedient stitching of tryptophan-containing peptides with drug, natural product, and peptidic scaffolds by forging sterically congested biaryl linkages. The robustness of the palladium catalysis regime was reflected by the full tolerance of a plethora of sensitive and coordinating functional groups. Hence, our manifold enabled efficient access to highly decorated, labelled, conjugated, and ligated linear and cyclic peptides.
Collapse
Affiliation(s)
- Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| | - Alejandro Puet
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| | - Felix Kallert
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| | - Julia Pöhlmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany.,Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Potsdamer Strasse 58, 10785, Berlin, Germany
| |
Collapse
|
20
|
Cattani S, Secchi A, Ackermann L, Cera G. Triazole-enabled, iron-catalysed linear/branched selective C-H alkylations with alkenes. Org Biomol Chem 2023; 21:1264-1269. [PMID: 36636890 DOI: 10.1039/d2ob02206k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Iron-catalysed C-H alkylations with alkenes were achieved on benzamides by N-triazole assistance. A notable switch of the regioselectivity from linear to branched was observed depending on the nature of the olefin employed. The approach allowed for the synthesis of a family of decorated benzamides with ample scope and high levels of chemo-, regio- and site-selectivity.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
21
|
Han Y, Shi J, Li S, Dan T, Yang W, Yang M. Selective editing of a peptide skeleton via C-N bond formation at N-terminal aliphatic side chains. Chem Sci 2022; 13:14382-14386. [PMID: 36545141 PMCID: PMC9749142 DOI: 10.1039/d2sc04909k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
The applications of peptides and peptidomimetics have been demonstrated in the fields of therapeutics, diagnostics, and chemical biology. Strategies for the direct late-stage modification of peptides and peptidomimetics are highly desirable in modern drug discovery. Transition-metal-catalyzed C-H functionalization is emerging as a powerful strategy for late-stage peptide modification that is able to construct functional groups or increase skeletal diversity. However, the installation of directing groups is necessary to control the site selectivity. In this work, we describe a transition metal-free strategy for late-stage peptide modification. In this strategy, a linear aliphatic side chain at the peptide N-terminus is cyclized to deliver a proline skeleton via site-selective δ-C(sp3)-H functionalization under visible light. Natural and unnatural amino acids are demonstrated as suitable substrates with the transformations proceeding with excellent regio- and stereo-selectivity.
Collapse
Affiliation(s)
- Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Junjie Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Songrong Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Tingting Dan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Wenwen Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| |
Collapse
|
22
|
Sheng FF, Gu JG, Liu KH, Zhang HH. Synthesis of β-Deuterated Amino Acids via Palladium-Catalyzed H/D Exchange. J Org Chem 2022; 87:16084-16089. [PMID: 36395460 DOI: 10.1021/acs.joc.2c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite several synthetic approaches that have been developed for α-deuterated amino acids, the synthesis of β-deuterated amino acids has remained a challenge. Herein, we disclose a palladium catalyzed H/D exchange protocol for a β-deuterated N-protected amino amide, which can be converted to a β-deuterated amino acid simply by removal of protecting groups. This protocol is highly efficient, simply manipulated, and appliable for deuterium-labeling of many amino amides. In addition, deuterium labeling of phenylalanine derivatives was also successful when pivalic acid served as an additive to promote the H/D exchange process.
Collapse
Affiliation(s)
- Fei-Fei Sheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kai-Hui Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
23
|
Li G, Yuan F, Yao B. Post-Assembly Modification of Head-to-Tail Cyclic Peptides by Methionine-Directed β-C(sp 3)-H Arylation. Org Lett 2022; 24:5767-5771. [PMID: 35916500 DOI: 10.1021/acs.orglett.2c02253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peptide modification by C(sp3)-H functionalization of internal residues remains a major challenge due to the inhibitory effect of peptide bonds. In this work, we developed a methionine-directed β-C(sp3)-H arylation method for internal alanine functionalization. By tuning the σC-C bond rotation of internal Ala through head-to-tail cyclization, we overcame the inhibitory effect and functionalized a wide range of head-to-tail cyclic peptides with aryl iodides with excellent position selectivity.
Collapse
Affiliation(s)
- Gang Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Feipeng Yuan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing 102488, P. R. China
| |
Collapse
|
24
|
Liu L, Fan X, Wang B, Deng H, Wang T, Zheng J, Chen J, Shi Z, Wang H. P
III
‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206177. [DOI: 10.1002/anie.202206177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Xinlong Fan
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Boning Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Hong Deng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
25
|
Chen X, Li B, Tong H, Qi L, He G, Chen G. Palladium‐catalyzed Methionine‐facilitated β and γ C(sp
3
)‐H Arylation of
N‐Terminal
Aliphatic Amino Acids of Peptides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiangxiang Chen
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Huarong Tong
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Liping Qi
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
26
|
LIU LEI, FAN XINLONG, WANG BONING, DENG HONG, WANG TIANHANG, ZHENG JIE, CHEN JUN, SHI ZHUANGZHI, Wang H. P(III)‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- LEI LIU
- Nanjing University CHEMISTRY AND CHEMICAL ENGINEERING CHINA
| | | | | | | | | | | | - JUN CHEN
- Nanjing University CHEMISTRY CHINA
| | | | - Huan Wang
- Nanjing University Chemistry and Chemical Engineering 163 Xianlin Ave.Chemistry Building, E504 210023 Nanjing CHINA
| |
Collapse
|
27
|
Wang Z, Ye X, Jin M, Tang Q, Fan S, Song Z, Shi X. 4-Aminobenzotriazole (ABTA) as a Removable Directing Group for Palladium-Catalyzed Aerobic Oxidative C-H Olefination. Org Lett 2022; 24:3107-3112. [PMID: 35324203 DOI: 10.1021/acs.orglett.2c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
4-Aminobenzotriazole (ABTA) was applied as an effective removable directing group (DG) in Pd-catalyzed C-H activation for the first time. Compared with the widely applied pyridine and quinoline analogs, ABTA showed significantly improved reactivity, achieving aerobic oxidative C-H olefination in excellent yields (up to 95% vs <50% with other reported DGs under identical conditions). Using this new strategy, macrocyclization was achieved to give cyclic peptides in good yields with easy ABTA removal under mild conditions, highlighting the promising potential of this new DG.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Meina Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Qi Tang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Shengyu Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
28
|
Bai Z, Chen Q, Gu J, Cai C, Zheng J, Sheng W, Yi S, Liu F, Wang H. Late-Stage Functionalization and Diversification of Peptides by Internal Thiazole-Enabled Palladium-Catalyzed C(sp 3)–H Arylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Qingqing Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jun Gu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuangxu Cai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wangjian Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shandong Yi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
29
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
30
|
Tao X, Ma G, Song Y, Chen Y, Qian Q, Sun D, Gong H. Alkenylation and Arylation of Peptides via Ni-Catalyzed Reductive Coupling of α- C-Tosyl Peptides with Csp 2 Triflates/Halides. Org Lett 2021; 23:7418-7422. [PMID: 34542298 DOI: 10.1021/acs.orglett.1c02601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A Ni-catalyzed reductive cross-coupling between α-C-tosyl peptides and Csp2 triflates/halides has been developed. This protocol enables the formation of various unnatural di- and tripeptides containing vinyl and aryl side chains, and it expands the applications of Ni-catalyzed reductive cross-coupling in late-stage diversification of peptides.
Collapse
Affiliation(s)
- Xianghua Tao
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Guobin Ma
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Yanhong Song
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech UniversityShanghai 201210, China
| | - Qun Qian
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Deli Sun
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
31
|
Son J. Sustainable manganese catalysis for late-stage C-H functionalization of bioactive structural motifs. Beilstein J Org Chem 2021; 17:1733-1751. [PMID: 34386100 PMCID: PMC8329386 DOI: 10.3762/bjoc.17.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 01/31/2023] Open
Abstract
The late-stage C–H functionalization of bioactive structural motifs is a powerful synthetic strategy for accessing advanced agrochemicals, bioimaging materials, and drug candidates, among other complex molecules. While traditional late-stage diversification relies on the use of precious transition metals, the utilization of 3d transition metals is an emerging approach in organic synthesis. Among the 3d metals, manganese catalysts have gained increasing attention for late-stage diversification due to the sustainability, cost-effectiveness, ease of operation, and reduced toxicity. Herein, we summarize recent manganese-catalyzed late-stage C–H functionalization reactions of biologically active small molecules and complex peptides.
Collapse
Affiliation(s)
- Jongwoo Son
- Department of Chemistry, Dong-A University, Busan 49315, South Korea.,Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| |
Collapse
|
32
|
Chandrashekar HB, Dolui P, Li B, Mandal A, Liu H, Guin S, Ge H, Maiti D. Ligand‐Enabled δ‐C(sp
3
)−H Borylation of Aliphatic Amines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Pravas Dolui
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Bijin Li
- Department of Chemistry and Biochemistry Lubbock TX 79409-1061 USA
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Astam Mandal
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Hao Liu
- Department of Chemistry and Biochemistry Lubbock TX 79409-1061 USA
| | - Srimanta Guin
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Haibo Ge
- Department of Chemistry and Biochemistry Lubbock TX 79409-1061 USA
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
33
|
Abstract
Protected dipeptides can be converted into cyclic ketoaminals, which can be subjected to palladium-catalyzed regioselective C-H functionalization. The best results are obtained using the 2-(methylthio)aniline (MTA) directing group, which is superior to the commonly used 8-aminoquinoline (AQ) group. No epimerization of stereogenic centers is observed. Subsequent cleavage of the directing and protecting groups allows the incorporation of a modified dipeptide into larger peptide chains.
Collapse
Affiliation(s)
- Michael Kohr
- Saarland University, Organic Chemistry I, Campus, Building C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Saarland University, Organic Chemistry I, Campus, Building C4.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
35
|
Late-stage C–H functionalization offers new opportunities in drug discovery. Nat Rev Chem 2021; 5:522-545. [PMID: 37117588 DOI: 10.1038/s41570-021-00300-6] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, the landscape of molecular synthesis has gained major impetus by the introduction of late-stage functionalization (LSF) methodologies. C-H functionalization approaches, particularly, set the stage for new retrosynthetic disconnections, while leading to improvements in resource economy. A variety of innovative techniques have been successfully applied to the C-H diversification of pharmaceuticals, and these key developments have enabled medicinal chemists to integrate LSF strategies in their drug discovery programmes. This Review highlights the significant advances achieved in the late-stage C-H functionalization of drugs and drug-like compounds, and showcases how the implementation of these modern strategies allows increased efficiency in the drug discovery process. Representative examples are examined and classified by mechanistic patterns involving directed or innate C-H functionalization, as well as emerging reaction manifolds, such as electrosynthesis and biocatalysis, among others. Structurally complex bioactive entities beyond small molecules are also covered, including diversification in the new modalities sphere. The challenges and limitations of current LSF methods are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We, hereby, aim to provide a toolbox for chemists in academia as well as industrial practitioners, and introduce guiding principles for the application of LSF strategies to access new molecules of interest.
Collapse
|
36
|
Zhao X, Li B, Xu J, Tang Q, Cai Z, Jiang X. Visible-Light-Driven Redox Neutral Direct C-H Amination of Glycine Derivatives and Peptides with N-Acyloxyphthalimides. Chemistry 2021; 27:12540-12544. [PMID: 34164860 DOI: 10.1002/chem.202101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 12/12/2022]
Abstract
A room temperature, visible-light-promoted and redox neutral direct C-H amination of glycine and peptides has been firstly accomplished by using N-acyloxyphthalimide or -succinimide as nitrogen-radical precursor. The present strategy provides ways to introduce functionalities such as N-acyloxyphthalimide or -succinimide specifically to terminal glycine segment of peptides. Herein, mild conditions and high functional-group tolerance allow the preparation of non-natural α-amino acids and modification of corresponding peptides in this way.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bai Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jingyao Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qinglin Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengjun Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
37
|
Chandrashekar HB, Dolui P, Li B, Mandal A, Liu H, Guin S, Ge H, Maiti D. Ligand-Enabled δ-C(sp 3 )-H Borylation of Aliphatic Amines. Angew Chem Int Ed Engl 2021; 60:18194-18200. [PMID: 34117691 DOI: 10.1002/anie.202105204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Indexed: 02/03/2023]
Abstract
Directed C-H functionalization has been realized as a complimentary technique to achieve borylation at a distal position of aliphatic amines. Here, we demonstrated the oxidative borylation at the distal δ-position of aliphatic amines using various borylating agents, a palladium catalyst, and a rightly tuned ligand in the presence of a cheap oxidant. Moreover, an organopalladium δ-C(sp3 )-H-activated intermediate has been isolated and crystallographically characterized to get mechanistic insight.
Collapse
Affiliation(s)
| | - Pravas Dolui
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Bijin Li
- Department of Chemistry and Biochemistry, Lubbock, TX, 79409-1061, USA.,Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Astam Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Hao Liu
- Department of Chemistry and Biochemistry, Lubbock, TX, 79409-1061, USA
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Lubbock, TX, 79409-1061, USA
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
38
|
Correa A. Metal‐Catalyzed C(sp
2
)−H Functionalization Processes of Phenylalanine‐ and Tyrosine‐Containing Peptides. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arkaitz Correa
- University of the Basque Country (UPV/EHU) Department of Organic Chemistry I Joxe Mari Korta R&D Center Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| |
Collapse
|
39
|
Li M, Akintelu SA, Yao B. Post-Assembly Modification of Peptides by Ligand-Enabled β-C(sp 3)-H Arylation of Alanine at the C-Terminus: Overcoming the Inhibition Effect of Peptide Bonds. Org Lett 2021; 23:4807-4812. [PMID: 34060311 DOI: 10.1021/acs.orglett.1c01481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Postassembly modification of peptides via C(sp3)-H functionalization on aliphatic side chains provides a straightforward approach to access functionalized peptides as therapeutics. However, C(sp3)-H functionalization of C-terminal residues remains underdeveloped due to the inhibition effect of secondary amides in the backbone. Herein, we report a ligand-enabled, bidentate auxiliary-assisted β-C(sp3)-H arylation method, which is well tolerant of secondary amides. A wide range of peptides (tri- to dodecapeptides) underwent position-specific modification of alanine at the C-terminus.
Collapse
Affiliation(s)
- Ming Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sunday A Akintelu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
40
|
Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. C–H activation. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00041-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Waddington MA, Zheng X, Stauber JM, Hakim Moully E, Montgomery HR, Saleh LMA, Král P, Spokoyny AM. An Organometallic Strategy for Cysteine Borylation. J Am Chem Soc 2021; 143:8661-8668. [PMID: 34060827 DOI: 10.1021/jacs.1c02206] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synthetic bioconjugation at cysteine (Cys) residues in peptides and proteins has emerged as a powerful tool in chemistry. Soft nucleophilicity of the sulfur in Cys renders an exquisite chemoselectivity with which various functional groups can be placed onto this residue under benign conditions. While a variety of reactions have been successful at producing Cys-based bioconjugates, the majority of these feature sulfur-carbon bonds. We report Cys-borylation, wherein a benchtop stable Pt(II)-based organometallic reagent can be used to transfer a boron-rich cluster onto a sulfur moiety in unprotected peptides forging a boron-sulfur bond. Cys-borylation proceeds at room temperature and tolerates a variety of functional groups present in complex polypeptides. Further, the bioconjugation strategy can be applied to a model protein modification of Cys-containing DARPin (designed ankyrin repeat protein). The resultant bioconjugates show no additional toxicity compared to their Cys alkyl-based congeners. Finally, we demonstrate how the developed Cys-borylation can enhance the proteolytic stability of the resultant peptide bioconjugates while maintaining the binding affinity to a protein target.
Collapse
Affiliation(s)
- Mary A Waddington
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Xin Zheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Julia M Stauber
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Elamar Hakim Moully
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Liban M A Saleh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States.,California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
42
|
Chen Z, Zhu M, Cai M, Xu L, Weng Y. Palladium-Catalyzed C(sp 3)–H Arylation and Alkynylation of Peptides Directed by Aspartic Acid (Asp). ACS Catal 2021. [DOI: 10.1021/acscatal.1c01417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhuo Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Meijie Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Mengwei Cai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Lulu Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Yiyi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| |
Collapse
|
43
|
Chen H, Mao R, Brzozowski M, Nguyen NH, Sleebs BE. Late Stage Phosphotyrosine Mimetic Functionalization of Peptides Employing Metallaphotoredox Catalysis. Org Lett 2021; 23:4244-4249. [PMID: 34029466 DOI: 10.1021/acs.orglett.1c01200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Access to phosphotyrosine (pTyr) mimetics requires multistep syntheses, and therefore late stage incorporation of these mimetics into peptides is not feasible. Here, we develop and employ metallaphotoredox catalysis using 4-halogenated phenylalanine to afford a variety of protected pTyr mimetics in one step. This methodology was shown to be tolerant of common protecting groups and applicable to the late stage pTyr mimetic modification of protected and unprotected peptides, and peptides of biological relevance.
Collapse
Affiliation(s)
- Hao Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Brzozowski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nghi H Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Agouram N, El Hadrami EM, Bentama A. 1,2,3-Triazoles as Biomimetics in Peptide Science. Molecules 2021; 26:2937. [PMID: 34069302 PMCID: PMC8156386 DOI: 10.3390/molecules26102937] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.
Collapse
Affiliation(s)
- Naima Agouram
- Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Immouzer Road, Fez 30050, Morocco; (E.M.E.H.); (A.B.)
| | | | | |
Collapse
|
45
|
Liu S, Cai C, Bai Z, Sheng W, Tan J, Wang H. Late-Stage Macrocyclization of Bioactive Peptides with Internal Oxazole Motifs via Palladium-Catalyzed C–H Olefination. Org Lett 2021; 23:2933-2937. [DOI: 10.1021/acs.orglett.1c00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shu Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chuangxu Cai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wangjian Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiantao Tan
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Sun J, Sun H, Hao L, Liu H, Zhang Z, Wen F, Li H, Duan G, You G, Xia C. Metal‐Free Synthesis of Pyrrole‐imidazole Alkaloids via a Tandem C−N, C−C coupling Protocol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jian Sun
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Haoyi Sun
- Institute of Materia Medica Shandong First Medical University
- Shandong Academy of Medical Sciences Jinan 250062 People's Republic of China
| | - Liqiang Hao
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Hongyan Liu
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Zheng Zhang
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Fuqiang Wen
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Hongshuang Li
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Guiyun Duan
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Guirong You
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Chengcai Xia
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| |
Collapse
|
47
|
Vicens L, Bietti M, Costas M. General Access to Modified α-Amino Acids by Bioinspired Stereoselective γ-C-H Bond Lactonization. Angew Chem Int Ed Engl 2021; 60:4740-4746. [PMID: 33210804 DOI: 10.1002/anie.202007899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Indexed: 01/06/2023]
Abstract
α-Amino acids represent a valuable class of natural products employed as building blocks in biological and chemical synthesis. Because of the limited number of natural amino acids available, and of their widespread application in proteomics, diagnosis, drug delivery and catalysis, there is an increasing demand for the development of procedures for the preparation of modified analogues. Herein, we show that the use of bioinspired manganese catalysts and H2 O2 under mild conditions, provides access to modified α-amino acids via γ-C-H bond lactonization. The system can efficiently target 1°, 2° and 3° γ-C-H bonds of α-substituted and achiral α,α-disubstituted α-amino acids with outstanding site-selectivity, good to excellent diastereoselectivity and (where applicable) enantioselectivity. This methodology may be considered alternative to well-established organometallic procedures.
Collapse
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Catalonia, Spain
| |
Collapse
|
48
|
Kaplaneris N, Kaltenhӓuser F, Sirvinskaite G, Fan S, De Oliveira T, Conradi LC, Ackermann L. Late-stage stitching enabled by manganese-catalyzed C─H activation: Peptide ligation and access to cyclopeptides. SCIENCE ADVANCES 2021; 7:eabe6202. [PMID: 33637533 PMCID: PMC7909873 DOI: 10.1126/sciadv.abe6202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Bioorthogonal late-stage diversification of structurally complex peptides bears enormous potential for drug discovery and molecular imaging. Despite major accomplishments, these strategies heavily rely on noble-metal catalysis. Herein, we report on a manganese(I)-catalyzed peptide C─H hydroarylation that enabled the stitching of peptidic and sugar fragments, under exceedingly mild and racemization-free conditions. This convergent approach represents an atom-economical alternative to traditional iterative peptide synthesis. The robustness of the manganese(I) catalysis regime is reflected by the full tolerance of a plethora of sensitive functional groups. Our strategy enabled an expedient access to challenging cyclic peptides by a modular late-stage macrocyclization of structurally complex peptides.
Collapse
Affiliation(s)
- Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Felix Kaltenhӓuser
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Giedre Sirvinskaite
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shuang Fan
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Tiago De Oliveira
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Lena-Christin Conradi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Potsdamer Straße 58, 10785 Berlin, Germany
- Wöhler Research Institute for Sustainable Chemistry, Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammastraße 2, 37077, Göttingen, Germany
| |
Collapse
|
49
|
Zhang M, Zhong S, Peng Y, Jiang J, Zhao Y, Wan C, Zhang Z, Zhang R, Zhang AQ. Site-selective and diastereoselective functionalization of α-amino acid and peptide derivatives via palladium-catalyzed sp3 C–H activation. Org Chem Front 2021. [DOI: 10.1039/d0qo00988a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review introduces palladium-catalyzed C–H functionalization of amino acids and peptides.
Collapse
Affiliation(s)
- Ming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Yiyuan Peng
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Jianwen Jiang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Yongli Zhao
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Changfeng Wan
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Zhenming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Rongli Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Ai Qin Zhang
- Department of Environmental and Chemical Engineering
- Nanchang Hangkong University
- Nanchang
- China
| |
Collapse
|
50
|
General Access to Modified α‐Amino Acids by Bioinspired Stereoselective γ‐C−H Bond Lactonization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|