1
|
Xu JJ, Lei Y, Zhang XF, Li JX, Lin Q, Wu XD, Jiang YG, Zhang W, Qian R, Xiong SY, Tan K, Jia Y, Zhou Q, Jiang Y, Fan H, Huang YB, Wang LJ, Liu JY, Kong Y, Zhao Q, Yang L, Liu J, Hu YH, Zhan S, Gao C, Chen XY. Design of CoQ 10 crops based on evolutionary history. Cell 2025; 188:1941-1954.e15. [PMID: 39952246 DOI: 10.1016/j.cell.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/24/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Coenzyme Q (CoQ) is essential for energy production by mitochondrial respiration, and it is a supplement most often used to promote cardiovascular health. Humans make CoQ10, but cereals and some vegetable/fruit crops synthesize CoQ9 with a side chain of nine isoprene units. Engineering CoQ10 production in crops would benefit human health, but this is hindered by the fact that the specific residues of the enzyme Coq1 that control chain length are unknown. Based on an extensive investigation of the distribution of CoQ9 and CoQ10 in land plants and the associated Coq1 sequence variation, we identified key amino acid changes at the base of the Coq1 catalytic pocket that occurred independently in multiple angiosperm lineages and repeatedly drove CoQ9 formation. Guided by this knowledge, we used gene editing to modify the native Coq1 genes of rice and wheat to produce CoQ10, paving the way for developing additional dietary sources of CoQ10.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Yuan Lei
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Fan Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-Xu Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Qiupeng Lin
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Dong Wu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Guo Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Wenyi Zhang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Runtong Qian
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Shu-Yi Xiong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Kuo Tan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Yu Jia
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China; College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Hang Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Yan-Bo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Ling-Jian Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; State Key Laboratory of Plant Molecular Genetics, CEMPS, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ji-Yun Liu
- State Key Laboratory of Plant Molecular Genetics, CEMPS, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Jinxing Liu
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Shuai Zhan
- State Key Laboratory of Plant Molecular Genetics, CEMPS, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Caixia Gao
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; New Cornerstone Science Laboratory, Beijing, China.
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), Shanghai 201602, China; State Key Laboratory of Plant Molecular Genetics, CEMPS, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
2
|
Iobbi V, Parisi V, Giacomini M, De Riccardis F, Brun P, Núñez-Pons L, Drava G, Giordani P, Monti MC, Poggi R, Murgia Y, De Tommasi N, Bisio A. Sesterterpenoids: sources, structural diversity, biological activity, and data management. Nat Prod Rep 2025; 42:443-481. [PMID: 39832137 DOI: 10.1039/d4np00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Reviewing the literature published up to October 2024.Sesterterpenoids are one of the most chemically diverse and biologically promising subgroup of terpenoids, the largest family of secondary metabolites. The present review article summarizes more than seven decades of studies on isolation and characterization of more than 1600 structurally novel sesterterpenoids, supplemented by biological, pharmacological, ecological, and geographic distribution data. All the information have been implemented in eight tables available on the web and a relational database https://sesterterpenoids.unige.net/. The interface has two sections, one open to the public for reading only and the other, protected by an authentication mechanism, for timely updating of published results.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Valentina Parisi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli, 63, 35121 Padova, Italy
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Paolo Giordani
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Napoli "Federico II", Via T. De Amicis 95, 80131 Napoli, Italy
| | - Roberto Poggi
- Museo Civico di Storia Naturale Giacomo Doria, Via Brigata Liguria 9, 16121 Genova, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
3
|
Guo K, Tang X, Liu Y, Cheng H, Liu H, Fan Y, Qi X, Xu R, Kang J, Li D, Wang G, Gershenzon J, Liu Y, Li S. From Monocyclization to Pentacyclization: A Versatile Plant Cyclase Produces Diverse Sesterterpenes with Anti-Liver Fibrosis Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415370. [PMID: 39792598 PMCID: PMC11884544 DOI: 10.1002/advs.202415370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
A prolific multi-product sesterterpene synthase CbTPS1 is characterized from the medicinal Brassicaceae plant Capsella bursa-pastoris. Twenty different sesterterpenes including 16 undescribed compounds, possessing 10 different mono-/di-/tri-/tetra-/penta-carbocyclic skeletons, including the unique 15-membered macrocyclic and 24(15→14)-abeo-capbuane scaffolds, are isolated and structurally elucidated from engineered Escherichia coli strains expressing CbTPS1. Site-directed mutagenesis assisted by molecular dynamics simulations resulted in the variant L354M with up to 13.2-fold increased sesterterpene production. These structurally diverse products suggest a comprehensive cyclization mechanism for plant sesterterpenes and provide compelling evidence for the initial cyclization of geranylfarnesyl diphosphate via a crucial 15-membered monocyclic carbocation. The activities of these sesterterpenes against liver fibrosis is inferred from the inhibition of the transforming growth factor-β/Smad signaling pathway and collagen synthesis. These findings greatly expand the chemical space and biological functions of sesterterpenes and provide new insights into the catalytic mechanism of terpene synthases.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Yan‐Chun Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| | - Hui‐Zhen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Huan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Yu‐Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Xiao‐Yu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Rui Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Juan‐Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - De‐Sen Li
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| | - Guo‐Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101P. R. China
| | | | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Sheng‐Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| |
Collapse
|
4
|
Wang Q, Jiang J, Liang Y, Li S, Xia Y, Zhang L, Wang X. Expansion and functional divergence of terpene synthase genes in angiosperms: a driving force of terpene diversity. HORTICULTURE RESEARCH 2025; 12:uhae272. [PMID: 39897732 PMCID: PMC11725647 DOI: 10.1093/hr/uhae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 02/04/2025]
Abstract
Angiosperms are prolific producers of structurally diverse terpenes, which are essential for plant defense responses, as well as the formation of floral scents, fruit flavors, and medicinal constituents. Terpene synthase genes (TPSs) play crucial roles in the biosynthesis of terpenes. This study specifically focuses on the catalytic products of 222 functionally characterized TPSs in 24 angiosperms, which mainly comprise monoterpenes, sesquiterpenes, diterpenes, and sesterterpene. Our systematic analysis of these TPSs uncovered a significant expansion of the angiosperm-specific TPS-a, b, and g subfamilies in comparison to the TPS-e/f and c subfamilies. The expanded subfamilies can be further partitioned into distinct branches, within which considerable functional innovation and diversification have been observed. Numerous TPSs exhibit bifunctional or even trifunctional activities in vitro, yet they exhibit only a single activity in vivo, which may be largely determined by their inherent properties, subcellular localization, and the availabilities of endogenous substrates. Additionally, we explored the biological functions of terpenes in various organs and tissues of angiosperms. We propose that the expansion and functional divergence of TPSs contribute to the adaptability and diversity of angiosperms, facilitating the production of a broad spectrum of terpenes that enable diverse interactions with the environment and other organisms. Our findings provide a foundation for comprehending the correlation between the evolutionary features of TPSs and the diversity of terpenes in angiosperms, which is significant for terpene biosynthesis research.
Collapse
Affiliation(s)
- Qi Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Jie Jiang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Yuwei Liang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Shanshan Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya 572024, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| |
Collapse
|
5
|
Sun X, Li Y, Xu H, Huang S, Liu Y, Liao S, Wang B. Terpestacin and Its Derivatives: Bioactivities and Syntheses. Chem Biodivers 2025; 22:e202401905. [PMID: 39318057 DOI: 10.1002/cbdv.202401905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Terpestacin (1), fusaproliferin (2), and their derivatives are a class of sesterterpenes featured by a trans-fused 5/15-membered ring skeleton. There are 45 natural products (1, 2, 4-27, 65-83) isolated from various wild fungi (Fusarium sp., Bipolaris sorokiniana, Arthrinium sp., etc.) or from genetic mutants via biosynthetic gene clusters mining, and 37 derivatives (28-64) produced by semi-synthetic modifications. These compounds show a diverse range of important bioactivities such as antivirus, antimicrobial, cytotoxic, phytotoxic, anti-flammatory, and brine shrimp lethal activities. To date, two racemic and five enantioselective chemical total syntheses of 1 (including 2 and their isomers) have been developed. Over the past decade, a number of biosynthetic gene clusters or their mutants, along with their encoding enzymes responsible for producing sesterterpenes such as terpestacin and its derivatives, have also been identified. This review covers the literature from the year 1993, when 1 was firstly discovered, to May 2024, focusing on the bioactivities and syntheses of 1 and its derivatives or isomers.
Collapse
Affiliation(s)
- Xin Sun
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| | - Yuyue Li
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huayan Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yonghong Liu
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengrong Liao
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| |
Collapse
|
6
|
Zhang W, Peng K, Lan K, Xu K, Wu R, Hsiang T, Nie S, Zhang L, Wang X, Liu X. Serine 85 functions as a catalytic acid in the reprotonation process during EvAS-catalyzed astellifadiene biosynthesis. Chem Commun (Camb) 2024; 60:11319-11322. [PMID: 39297184 DOI: 10.1039/d4cc03922j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The deprotonation-reprotonation sequence introduces additional cyclization branches in terpene biosynthesis. However, the underlying mechanism remains poorly understood. In this study, we employed a combined approach of molecular dynamics (MD) simulations and site-directed mutagenesis on astellifadiene synthase EvAS from Emericella variecolor to investigate the role of a protonated S85 residue. This residue acts as a catalytic acid, previously unreported, that facilitates the reprotonation step in astellifadiene biosynthesis. Mutating S85 led to the production of a new tricyclic sesterterpene.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kaitong Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Keying Lan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province 510006, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, 50 Stone Road East, Ontario N1G 2W1, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi Province 330031, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
- School of Life Sciences, Ludong University, Yantai, Shandong Province 264025, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Watanabe Y, Hashishin T, Sato H, Matsuyama T, Nakajima M, Haruta JI, Uchiyama M. DFT Study on Retigerane-Type Sesterterpenoid Biosynthesis: Initial Conformation of GFPP Regulates Biosynthetic Pathway, Ring-Construction Order and Stereochemistry. JACS AU 2024; 4:3484-3491. [PMID: 39328767 PMCID: PMC11423320 DOI: 10.1021/jacsau.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
Retigerane-type sesterterpenoids, which feature a unique 5/6/5/5/5 fused pentacyclic structure with an angular-type triquinane moiety, are biosynthesized via successive carbocation-mediated reactions triggered by terpene cyclases. However, the precise biosynthetic pathways/mechanisms, wherein steric inversion of the carbon skeleton occurs at least once, remain elusive. Two plausible reaction pathways have been proposed, which differ in the order of ring cyclization: A → B/C → D/E-ring(s) (Route 1) and A → E → B → C/D-ring(s) (Route 2). Since the reaction intermediates of these complicated domino-type reaction sequences are experimentally inaccessible, we employed comprehensive density functional theory (DFT) calculations to evaluate these routes. The results indicate that retigeranin biosynthesis proceeds via Route 2 involving a multistep carbocation cascade, in which the order of ring cyclization (A → E → B → C/D) is the key to constructing the angular 5/5/5 triquinane structure with the correct stereochemistry at C3. The result also suggests that slight differences in the initial conformation have a significant effect on the order of cyclization and steric inversion. The computed pathway/mechanism also provides a rational basis for the formation of various related terpenes/terpenoids.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate
School of Pharmaceutical Sciences, Osaka
University, Suita-shi, Osaka 565-0871, Japan
| | - Takahiro Hashishin
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Sato
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Taro Matsuyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Nakajima
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun-ichi Haruta
- Graduate
School of Pharmaceutical Sciences, Osaka
University, Suita-shi, Osaka 565-0871, Japan
| | - Masanobu Uchiyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research
Initiative for Supra-Materials (RISM), Shinshu
University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
8
|
Xu M, Xu H, Lei Z, Xing B, Dickschat JS, Yang D, Ma M. Structural Insights Into the Terpene Cyclization Domains of Two Fungal Sesterterpene Synthases and Enzymatic Engineering for Sesterterpene Diversification. Angew Chem Int Ed Engl 2024; 63:e202405140. [PMID: 38584136 DOI: 10.1002/anie.202405140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Little is known about the structures and catalytic mechanisms of sesterterpene synthases (StTSs), which greatly hinders the structure-based engineering of StTSs for structural diversity expansion of sesterterpenes. We here report on the crystal structures of the terpene cyclization (TC) domains of two fungal StTSs: sesterfisherol synthase (NfSS) and sesterbrasiliatriene synthase (PbSS). Both TC structures contain benzyltriethylammonium chloride (BTAC), pyrophosphate (PPi), and magnesium ions (Mg2+), clearly defining the catalytic active sites. A combination of theory and experiments including carbocationic intermediates modeling, site-directed mutagenesis, and isotope labeling provided detailed insights into the structural basis for their catalytic mechanisms. Structure-based engineering of NfSS and PbSS resulted in the formation of 20 sesterterpenes including 13 new compounds and four pairs of epimers with different configurations at C18. These results expand the structural diversity of sesterterpenes and provide important insights for future synthetic biology research.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Houchao Xu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Zhenyu Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
9
|
Gu B, Goldfuss B, Dickschat JS. Two Sesterterpene Synthases from Lentzea atacamensis Demonstrate the Role of Conformational Variability in Terpene Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401539. [PMID: 38372063 DOI: 10.1002/anie.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D3. All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
10
|
Decker RL, Schray D, Pfeffer HI, Grond S, Wagner JP. Conformations and Rearrangements of Collinolactone - Experiments and Theory on a Dynamic Cyclodecatriene. Chemistry 2024; 30:e202303435. [PMID: 38051282 DOI: 10.1002/chem.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Collinolactone A is a microbial specialized metabolite with a unique 6-10-7 tricyclic bislactone skeleton which was isolated from Streptomyces bacteria. The unusual cyclodecatriene motif features dynamic interconversions of two rotamers. Given the biological profiling of collinolactone A as neuroprotective agent, semisynthetic modifications represent an invaluable strategy to enhance its efficacy. Since understanding conformations and reactions of bioactive substances is crucial for rational structure-based design and synthesis of derivatives, we conducted computational studies on conformational behavior as well as experiments on thermal and acid induced rearrangements of the cyclodecatriene. Experimental conformer ratios of collinolactone A and its biosynthetic ketolactone precursor are well reproduced by computations at the PW6B95-D3/def2-QZVPP//r2 SCAN-3c level. Upon heating collinolactone A in anhydrous dioxane at 100 °C, three collinolactone B stereoisomers exhibiting enollactone structures form via Cope rearrangements. Our computations predict the energetic preference for a boat-like transition state in agreement with the stereochemical outcome of the main reaction pathway. Constriction of the ten-membered ring forms collinolactone C with four annulated rings and an exocyclic double bond. Computations and semisynthetic experiments demonstrate strong preference for an acid-catalyzed reaction pathway over an alternative Alder-ene route to collinolactone C with a prohibitive reaction barrier, again in line with stereochemical observations.
Collapse
Affiliation(s)
- Rhena L Decker
- Organic and Biomolecular Chemistry, Institut für Organische Chemie, Eberhard Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - David Schray
- Organic and Computational Chemistry, Institut für Organische Chemie, Eberhard Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Heiko I Pfeffer
- Organic and Computational Chemistry, Institut für Organische Chemie, Eberhard Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Stephanie Grond
- Organic and Biomolecular Chemistry, Institut für Organische Chemie, Eberhard Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - J Philipp Wagner
- Organic and Computational Chemistry, Institut für Organische Chemie, Eberhard Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
11
|
Zhou Q, Sun P, Xiong HM, Xie J, Zhu GY, Tantillo DJ, Huang AC. Insight into neofunctionalization of 2,3-oxidosqualene cyclases in B,C-ring-opened triterpene biosynthesis in quinoa. THE NEW PHYTOLOGIST 2024; 241:764-778. [PMID: 37904576 DOI: 10.1111/nph.19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023]
Abstract
Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic β-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis β-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Peng Sun
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hao-Ming Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Jiali Xie
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
12
|
Chen C, Yao G, Wang F, Bao S, Wan X, Han P, Wang K, Song T, Jiang H. Identification of a (+)-cubenene synthase from filamentous fungi Acremonium chrysogenum. Biochem Biophys Res Commun 2023; 677:119-125. [PMID: 37573766 DOI: 10.1016/j.bbrc.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Sesquiterpene synthases convert farnesyl diphosphate into various sesquiterpenes, which find wide applications in the food, cosmetics and pharmaceutical industries. Although numerous putative sesquiterpene synthases have been identified in fungal genomes, many lack biochemical characterization. In this study, we identified a putative terpene synthase AcTPS3 from Acremonium chrysogenum. Through sequence analysis and in vitro enzyme assay, AcTPS3 was identified as a sesquiterpene synthase. To obtain sufficient product for NMR testing, a metabolic engineered Saccharomyces cerevisiae was constructed to overproduce the product of AcTPS3. The major product of AcTPS3 was identified as (+)-cubenene (55.46%) by GC-MS and NMR. Thus, AcTPS3 was confirmed as (+)-cubenene synthase, which is the first report of (+)-cubenene synthase. The optimized S. cerevisiae strain achieved a biosynthesis titer of 597.3 mg/L, the highest reported for (+)-cubenene synthesis.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China.
| |
Collapse
|
13
|
Jha P, Kaur T, Chhabra I, Panja A, Paul S, Kumar V, Malik T. Endophytic fungi: hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front Microbiol 2023; 14:1227830. [PMID: 37497538 PMCID: PMC10366620 DOI: 10.3389/fmicb.2023.1227830] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Endophytic fungi comprise host-associated fungal communities which thrive within the tissues of host plants and produce a diverse range of secondary metabolites with various bioactive attributes. The metabolites such as phenols, polyketides, saponins, alkaloids help to mitigate biotic and abiotic stresses, fight against pathogen attacks and enhance the plant immune system. We present an overview of the association of endophytic fungal communities with a plant host and discuss molecular mechanisms induced during their symbiotic interaction. The overview focuses on the secondary metabolites (especially those of terpenoid nature) secreted by endophytic fungi and their respective function. The recent advancement in multi-omics approaches paved the way for identification of these metabolites and their characterization via comparative analysis of extensive omics datasets. This study also elaborates on the role of diverse endophytic fungi associated with key agricultural crops and hence important for sustainability of agriculture.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tamanna Kaur
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Avirup Panja
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Sushreeta Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Vijay Kumar
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
14
|
Gu B, Goldfuss B, Dickschat JS. Mechanistic Characterisation and Engineering of Sesterviolene Synthase from Streptomyces violens. Angew Chem Int Ed Engl 2023; 62:e202215688. [PMID: 36350768 PMCID: PMC10107272 DOI: 10.1002/anie.202215688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 11/10/2022]
Abstract
The sesterviolene synthase from Streptomyces violens was identified and represents the second known sesterterpene synthase from bacteria. Isotopic labelling experiments in conjunction with DFT calculations were performed that provided detailed insight into its complex cyclisation mechanism. Enzyme engineering through site-directed mutagenesis gave access to a high-yielding enzyme variant that provided six additional minor products and the main product in sufficient quantities to study its chemistry.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
15
|
Zeng Y, Yang H, Du J, Huang Q, Huang G, Xia Y. Rh-catalyzed regio-switchable cross-coupling of gem-difluorinated cyclopropanes with allylboronates to structurally diverse fluorinated dienes. Chem Sci 2022; 13:12419-12425. [PMID: 36382270 PMCID: PMC9629036 DOI: 10.1039/d2sc04118a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/04/2022] [Indexed: 09/23/2023] Open
Abstract
The control of linear/branched selectivity is one of the major focuses in transition-metal catalyzed allyl-allyl cross-coupling reactions, in which bond connection occurs at the terminal site of both the allyl fragments forming different types of 1,5-dienes. Herein, terminal/internal regioselectivity is investigated and found to be switchable in allyl-allyl cross-coupling reactions between gem-difluorinated cyclopropanes and allylboronates. The controlled terminal/internal regioselectivity arises from the fine-tuning of the rhodium catalytic system. Fluorinated 1,3-dienes, 1,4-dienes and 1,5-dienes are therefore produced in good yields with respectively isomerized terminal, internal, and terminal regioselectivity.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Hui Yang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jiayi Du
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Qin Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
16
|
Mechanistic investigations of hirsutene biosynthesis catalyzed by a chimeric sesquiterpene synthase from Steccherinum ochraceum. Fungal Genet Biol 2022; 161:103700. [DOI: 10.1016/j.fgb.2022.103700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
|
17
|
Luo F, Yu Z, Zhou Q, Huang A. Multi-Omics-Based Discovery of Plant Signaling Molecules. Metabolites 2022; 12:metabo12010076. [PMID: 35050197 PMCID: PMC8777911 DOI: 10.3390/metabo12010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Plants produce numerous structurally and functionally diverse signaling metabolites, yet only relatively small fractions of which have been discovered. Multi-omics has greatly expedited the discovery as evidenced by increasing recent works reporting new plant signaling molecules and relevant functions via integrated multi-omics techniques. The effective application of multi-omics tools is the key to uncovering unknown plant signaling molecules. This review covers the features of multi-omics in the context of plant signaling metabolite discovery, highlighting how multi-omics addresses relevant aspects of the challenges as follows: (a) unknown functions of known metabolites; (b) unknown metabolites with known functions; (c) unknown metabolites and unknown functions. Based on the problem-oriented overview of the theoretical and application aspects of multi-omics, current limitations and future development of multi-omics in discovering plant signaling metabolites are also discussed.
Collapse
Affiliation(s)
| | | | - Qian Zhou
- Correspondence: (Q.Z.); (A.H.); Tel.: +86-755-8801-8496 (Q.Z. & A.H.)
| | - Ancheng Huang
- Correspondence: (Q.Z.); (A.H.); Tel.: +86-755-8801-8496 (Q.Z. & A.H.)
| |
Collapse
|
18
|
Chen Y, Li D, Ling Y, Liu Y, Zuo Z, Gan L, Luo S, Hua J, Chen D, Xu F, Li M, Guo K, Liu Y, Gershenzon J, Li S. A Cryptic Plant Terpene Cyclase Producing Unconventional 18‐ and 14‐Membered Macrocyclic C
25
and C
20
Terpenoids with Immunosuppressive Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yue‐Gui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - De‐Sen Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Yan‐Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Li‐She Gan
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 P. R. China
| | - Shi‐Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Ding‐Yuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Fan Xu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 P. R. China
| | - Man Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | | | - Sheng‐Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| |
Collapse
|
19
|
Chen YG, Li DS, Ling Y, Liu YC, Zuo ZL, Gan LS, Luo SH, Hua J, Chen DY, Xu F, Li M, Guo K, Liu Y, Gershenzon J, Li SH. A Cryptic Plant Terpene Cyclase Producing Unconventional 18- and 14-Membered Macrocyclic C 25 and C 20 Terpenoids with Immunosuppressive Activity. Angew Chem Int Ed Engl 2021; 60:25468-25476. [PMID: 34580976 DOI: 10.1002/anie.202110842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Indexed: 11/09/2022]
Abstract
A versatile terpene synthase (LcTPS2) producing unconventional macrocyclic terpenoids was characterized from Leucosceptrum canum. Engineered Escherichia coli and Nicotiana benthamiana expressing LcTPS2 produced six 18-/14-membered sesterterpenoids including five new ones and two 14-membered diterpenoids. These products represent the first macrocyclic sesterterpenoids from plants and the largest sesterterpenoid ring system identified to date. Two variants F516A and F516G producing approximately 3.3- and 2.5-fold, respectively, more sesterterpenoids than the wild-type enzyme were engineered. Both 18- and 14-membered ring sesterterpenoids displayed significant inhibitory activity on the IL-2 and IFN-γ production of T cells probably via inhibition of the MAPK pathway. The findings will contribute to the development of efficient biocatalysts to create bioactive macrocyclic sesterterpenoids, and also herald a new potential in the well-trodden territory of plant terpenoid biosynthesis.
Collapse
Affiliation(s)
- Yue-Gui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - De-Sen Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Li-She Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Ding-Yuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Fan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Man Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | | | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
20
|
Li DS, Hua J, Luo SH, Liu YC, Chen YG, Ling Y, Guo K, Liu Y, Li SH. An extremely promiscuous terpenoid synthase from the Lamiaceae plant Colquhounia coccinea var. mollis catalyzes the formation of sester-/di-/sesqui-/mono-terpenoids. PLANT COMMUNICATIONS 2021; 2:100233. [PMID: 34746763 PMCID: PMC8554039 DOI: 10.1016/j.xplc.2021.100233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 05/05/2023]
Abstract
Terpenoids are the largest class of natural products with complex structures and extensive bioactivities; their scaffolds are generated by diverse terpenoid synthases (TPSs) from a limited number of isoprenoid diphosphate precursors. Promiscuous TPSs play important roles in the evolution of terpenoid chemodiversity, but they remain largely unappreciated. Here, an extremely promiscuous terpenoid synthase (CcTPS1) of the TPS-b subfamily was cloned and functionally characterized from a leaf-specific transcriptome of the Lamiaceae plant Colquhounia coccinea var. mollis. CcTPS1 is the first sester-/di-/sesqui-/mono-TPS identified from the plant kingdom, accepting C25/C20/C15/C10 diphosphate substrates to generate a panel of sester-/di-/sesqui-/mono-terpenoids. Engineered Escherichia coli expressing CcTPS1 produced three previously unreported terpenoids (two sesterterpenoids and a diterpenoid) with rare cyclohexane-containing skeletons, along with four sesquiterpenoids and one monoterpenoid. Their structures were elucidated by extensive nuclear magnetic resonance spectroscopy. Nicotiana benthamiana transiently expressing CcTPS1 also produced the diterpenoid and sesquiterpenoids, demonstrating the enzyme's promiscuity in planta. Its highly leaf-specific expression pattern combined with detectable terpenoid products in leaves of C. coccinea var. mollis and N. benthamiana expressing CcTPS1 suggested that CcTPS1 was mainly responsible for diterpenoid and sesquiterpenoid biosynthesis in plants. CcTPS1 expression and the terpenoid products could be induced by methyl jasmonate, suggesting their possible role in plant-environment interaction. CcTPS1 was localized to the cytosol and may differ from mono-TPSs in subcellular compartmentalization and substrate tolerance. These findings will greatly aid our understanding of plant TPS evolution and terpenoid chemodiversity; they also highlight the enormous potential of transcriptome mining and heterologous expression for the exploration of unique enzymes and natural products hidden in plants.
Collapse
Affiliation(s)
- De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shengyang 110866, P. R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shengyang 110866, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
21
|
Chen Q, Li J, Ma Y, Yuan W, Zhang P, Wang G. Occurrence and biosynthesis of plant sesterterpenes (C25), a new addition to terpene diversity. PLANT COMMUNICATIONS 2021; 2:100184. [PMID: 34746758 PMCID: PMC8553974 DOI: 10.1016/j.xplc.2021.100184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/03/2021] [Accepted: 03/28/2021] [Indexed: 05/21/2023]
Abstract
Terpenes, the largest group of plant-specialized metabolites, have received considerable attention for their highly diverse biological activities. Monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and triterpenes (C30) have been extensively investigated at both the biochemical and molecular levels over the past two decades. Sesterterpenes (C25), an understudied terpenoid group, were recently described by plant scientists at the molecular level. This review summarizes the plant species that produce sesterterpenes and describes recent developments in the field of sesterterpene biosynthesis, placing a special focus on the catalytic mechanism and evolution of geranylfarnesyl diphosphate synthase and sesterterpene synthase. Finally, we propose several questions to be addressed in future studies, which may help to elucidate sesterterpene metabolism in plants.
Collapse
Affiliation(s)
- Qingwen Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yihua Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weiliang Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author
| |
Collapse
|
22
|
Sato H, Li BX, Takagi T, Wang C, Miyamoto K, Uchiyama M. DFT Study on the Biosynthesis of Verrucosane Diterpenoids and Mangicol Sesterterpenoids: Involvement of Secondary-Carbocation-Free Reaction Cascades. JACS AU 2021; 1:1231-1239. [PMID: 34467361 PMCID: PMC8397367 DOI: 10.1021/jacsau.1c00178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 05/03/2023]
Abstract
Some experimental observations indicate that a sequential formation of secondary (2°) carbocations might be involved in some biosynthetic pathways, including those of verrucosane-type diterpenoids and mangicol-type sesterterpenoids, but it remains controversial whether or not such 2° cations are viable intermediates. Here, we performed comprehensive density functional theory calculations of these biosynthetic pathways. The results do not support previously proposed pathways/mechanisms: in particular, we find that none of the putative 2° carbocation intermediates is involved in either of the biosynthetic pathways. In verrucosane biosynthesis, the proposed 2° carbocations (II and IV) in the early stage are bypassed by the formation of the adjacent 3° carbocations and by unusual skeletal rearrangement reactions, and in the later stage, the putative 2° carbocation intermediates (VI, VII, and VIII) are not present as the proposed forms but as nonclassical structures between homoallyl and cyclopropylcarbinyl cations. In the mangicol biosynthesis, one of the two proposed 2° carbocations (X) is bypassed by a C-C bond-breaking reaction to generate a 3° carbocation with a C=C bond, while the other (XI) is bypassed by a strong hyperconjugative interaction leading to a nonclassical carbocation. We propose new biosynthetic pathways/mechanisms for the verrucosane-type diterpenoids and mangicol-type sesterterpenoids. These pathways are in good agreement with the findings of previous biosynthetic studies, including isotope-labeling experiments and byproducts analysis, and moreover can account for the biosynthesis of related terpenes.
Collapse
Affiliation(s)
- Hajime Sato
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Bi-Xiao Li
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisei Takagi
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chao Wang
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, 3-15-1 Tokida,
Ueda, Nagano 386-8567, Japan
| |
Collapse
|
23
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
24
|
Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis. Proc Natl Acad Sci U S A 2021; 118:2023247118. [PMID: 34257153 PMCID: PMC8307374 DOI: 10.1073/pnas.2023247118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chimeric terpene synthases, termed PTTSs, are a unique family of enzymes occurring only in fungi. Characterizing PTTSs is challenging due to the complex reactions they catalyze and the structural complexity of their products. Here, by devising an efficient precursor-providing yeast chassis and incorporating a high-throughput automated platform, we identified 34 active PTTSs, which was considerably more than the number of known functional PTTSs. This effective and rapid pipeline can be employed for the characterization of other PTTSs or related terpenoid biosynthetic enzymes. By systematically analyzing the presence/absence of PTTS genes together with phylogenetic analysis, the ancestral PTTS gene was inferred to have undergone duplication and functional divergence, which led to the development of two distinct cyclization mechanisms. Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.
Collapse
|
25
|
Guo K, Liu Y, Li SH. The untapped potential of plant sesterterpenoids: chemistry, biological activities and biosynthesis. Nat Prod Rep 2021; 38:2293-2314. [PMID: 34114591 DOI: 10.1039/d1np00021g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 1969 up to 2021Sesterterpenoids, biosynthetically derived from the precursor, namely geranylfarnesyl diphosphate (GFDP) are amongst the rarest of all isoprenoids with approximately 1300 compounds known. Most sesterterpenoids originate from marine organisms (especially sponges), while only about 15% of these compounds are isolated from several families of plants such as Lamiaceae, Gentianaceae, and Nartheciaceae. Many plant sesterterpenoids possess highly oxygenated and complex cyclic skeletons and exhibit remarkable biological activities involving cytotoxic, anti-inflammatory, antimicrobial, and antifeedant properties. Thus, due to their intrinsic chemical complexity and intriguing biological profiles, plant sesterterpenoids have attracted continuing interest from both chemists and biologists. However, the biosynthesis and distribution of sesterterpenoids in the plant kingdom still remain elusive, although substantial progress has been achieved in recent years. This review provides an overall coverage of sesterterpenoids originating from plant sources, followed by a classification of their chemical skeletons, which summarizes the distribution, chemistry, biological activities, biosynthesis and evolution of plant sesterterpenoids, aiming at strengthening the research efforts toward the untapped great potential of these unique natural product resources.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| |
Collapse
|
26
|
Schriever K, Saenz-Mendez P, Rudraraju RS, Hendrikse NM, Hudson EP, Biundo A, Schnell R, Syrén PO. Engineering of Ancestors as a Tool to Elucidate Structure, Mechanism, and Specificity of Extant Terpene Cyclase. J Am Chem Soc 2021; 143:3794-3807. [PMID: 33496585 PMCID: PMC8023661 DOI: 10.1021/jacs.0c10214] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/21/2022]
Abstract
Structural information is crucial for understanding catalytic mechanisms and to guide enzyme engineering efforts of biocatalysts, such as terpene cyclases. However, low sequence similarity can impede homology modeling, and inherent protein instability presents challenges for structural studies. We hypothesized that X-ray crystallography of engineered thermostable ancestral enzymes can enable access to reliable homology models of extant biocatalysts. We have applied this concept in concert with molecular modeling and enzymatic assays to understand the structure activity relationship of spiroviolene synthase, a class I terpene cyclase, aiming to engineer its specificity. Engineering a surface patch in the reconstructed ancestor afforded a template structure for generation of a high-confidence homology model of the extant enzyme. On the basis of structural considerations, we designed and crystallized ancestral variants with single residue exchanges that exhibited tailored substrate specificity and preserved thermostability. We show how the two single amino acid alterations identified in the ancestral scaffold can be transferred to the extant enzyme, conferring a specificity switch that impacts the extant enzyme's specificity for formation of the diterpene spiroviolene over formation of sesquiterpenes hedycaryol and farnesol by up to 25-fold. This study emphasizes the value of ancestral sequence reconstruction combined with enzyme engineering as a versatile tool in chemical biology.
Collapse
Affiliation(s)
- Karen Schriever
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Patricia Saenz-Mendez
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | | | - Natalie M. Hendrikse
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Swedish
Orphan Biovitrum AB, 112
76 Stockholm, Sweden
| | - Elton P. Hudson
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Protein Science, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 165 Stockholm, Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Wallenberg
Wood Science Center, Teknikringen 56−58, 100 44 Stockholm, Sweden
| |
Collapse
|
27
|
Tang X, Chen W, Yi X, Liu Z, Xiao Y, Chen Z, Zheng A. In Situ Observation of Non-Classical 2-Norbornyl Cation in Confined Zeolites at Ambient Temperature. Angew Chem Int Ed Engl 2021; 60:4581-4587. [PMID: 33274570 DOI: 10.1002/anie.202013384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/22/2020] [Indexed: 11/06/2022]
Abstract
Carbonium ions are an important class of reaction intermediates, but their dynamic evolution is difficult to be monitored by in situ techniques under experimental conditions because of their extremely short lifetime. Probably the most famous case is 2-norbornyl cation (2NB+ ): its existing form (classical or non-classical) had been debated for decades, until the concrete proof of non-classical geometry was achieved by X-ray crystallographic characterization at ultra-low temperature (40 K) and super acidic environment. However, we lack the understanding about 2NB+ at ambient conditions. Herein, by taking advantage of the confinement effect and delocalized acidic environment of zeolites, we successfully stabilized 2NB+ and unequivocally confirmed its "non-classical" structure inside the ZSM-5 zeolite by ab initio molecular dynamics simulations and 13 C solid-state nuclear magnetic resonance experiments. It is the first time to in situ observe the non-classical 2NB+ without the super acidic environment at ambient temperature, which provides a new strategy to expand the carbocation chemistry.
Collapse
Affiliation(s)
- Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhongfang Chen
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, 00931, USA
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| |
Collapse
|
28
|
Tang X, Chen W, Yi X, Liu Z, Xiao Y, Chen Z, Zheng A. In Situ Observation of Non‐Classical 2‐Norbornyl Cation in Confined Zeolites at Ambient Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhongfang Chen
- Department of Chemistry University of Puerto Rico Rio Piedras Campus San Juan PR 00931 USA
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
| |
Collapse
|
29
|
Guo J, Cai YS, Cheng F, Yang C, Zhang W, Yu W, Yan J, Deng Z, Hong K. Genome Mining Reveals a Multiproduct Sesterterpenoid Biosynthetic Gene Cluster in Aspergillus ustus. Org Lett 2021; 23:1525-1529. [PMID: 33480256 DOI: 10.1021/acs.orglett.0c03996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome mining of Aspergillus ustus 094102 enabled the discovery of a multiproduct bifunctional terpene synthase (BTS), AuAS. Heterologous expression of AuAS led to the discovery of five new sesterterpenes, and coexpression of the upstream CYP450 monooxygenase (AuAP450) generated four new sesterterpene alcohols. Additionally, aspergilol A showed cytotoxic activities against MCF-7, MDA-MB231, and HepG2 cancer cells (IC50 21.20-48.76 μM), and aspergilol B exhibited a cytotoxic effect on MCF-7 cells (IC50 27.41 μM).
Collapse
Affiliation(s)
- Jingjing Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - You-Sheng Cai
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Fangcai Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Chenjie Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Wenqi Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Wulin Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Jingjing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| |
Collapse
|
30
|
Li G, Guo Y, Dickschat JS. Diterpen‐Biosynthese in
Catenulispora acidiphila
: Über den Mechanismus der Catenul‐14‐en‐6‐ol‐Synthase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Geng Li
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park 201203 Shanghai China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Yue‐Wei Guo
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park 201203 Shanghai China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
31
|
Li G, Guo YW, Dickschat JS. Diterpene Biosynthesis in Catenulispora acidiphila: On the Mechanism of Catenul-14-en-6-ol Synthase. Angew Chem Int Ed Engl 2020; 60:1488-1492. [PMID: 33169911 PMCID: PMC7839432 DOI: 10.1002/anie.202014180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Indexed: 11/15/2022]
Abstract
A new diterpene synthase from the actinomycete Catenulispora acidiphila was identified and the structures of its products were elucidated, including the absolute configurations by an enantioselective deuteration approach. The mechanism of the cationic terpene cyclisation cascade was deeply studied through the use of isotopically labelled substrates and of substrate analogues with partially blocked reactivity, resulting in derailment products that gave further insights into the intermediates along the cascade. Their chemistry was studied, leading to the biomimetic synthesis of a diterpenoid analogue of a brominated sesquiterpene known from the red seaweed Laurencia microcladia.
Collapse
Affiliation(s)
- Geng Li
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.,State Key Laboratory of Drug Research Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
32
|
Hou A, Dickschat JS. The Biosynthetic Gene Cluster for Sestermobaraenes-Discovery of a Geranylfarnesyl Diphosphate Synthase and a Multiproduct Sesterterpene Synthase from Streptomyces mobaraensis. Angew Chem Int Ed Engl 2020; 59:19961-19965. [PMID: 32749032 PMCID: PMC7693059 DOI: 10.1002/anie.202010084] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 01/23/2023]
Abstract
A biosynthetic gene cluster from Streptomyces mobaraensis encoding the first cases of a bacterial geranylfarnesyl diphosphate synthase and a type I sesterterpene synthase was identified. The structures of seven sesterterpenes produced by these enzymes were elucidated, including their absolute configurations. The enzyme mechanism of the sesterterpene synthase was investigated by extensive isotope labeling experiments.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
33
|
Chen Q, Li J, Liu Z, Mitsuhashi T, Zhang Y, Liu H, Ma Y, He J, Shinada T, Sato T, Wang Y, Liu H, Abe I, Zhang P, Wang G. Molecular Basis for Sesterterpene Diversity Produced by Plant Terpene Synthases. PLANT COMMUNICATIONS 2020; 1:100051. [PMID: 33367256 PMCID: PMC7747971 DOI: 10.1016/j.xplc.2020.100051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 05/04/2023]
Abstract
Class I terpene synthase (TPS) generates bioactive terpenoids with diverse backbones. Sesterterpene synthase (sester-TPS, C25), a branch of class I TPSs, was recently identified in Brassicaceae. However, the catalytic mechanisms of sester-TPSs are not fully understood. Here, we first identified three nonclustered functional sester-TPSs (AtTPS06, AtTPS22, and AtTPS29) in Arabidopsis thaliana. AtTPS06 utilizes a type-B cyclization mechanism, whereas most other sester-TPSs produce various sesterterpene backbones via a type-A cyclization mechanism. We then determined the crystal structure of the AtTPS18-FSPP complex to explore the cyclization mechanism of plant sester-TPSs. We used structural comparisons and site-directed mutagenesis to further elucidate the mechanism: (1) mainly due to the outward shift of helix G, plant sester-TPSs have a larger catalytic pocket than do mono-, sesqui-, and di-TPSs to accommodate GFPP; (2) type-A sester-TPSs have more aromatic residues (five or six) in their catalytic pocket than classic TPSs (two or three), which also determines whether the type-A or type-B cyclization mechanism is active; and (3) the other residues responsible for product fidelity are determined by interconversion of AtTPS18 and its close homologs. Altogether, this study improves our understanding of the catalytic mechanism of plant sester-TPS, which ultimately enables the rational engineering of sesterterpenoids for future applications.
Collapse
Affiliation(s)
- Qingwen Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhixi Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuting Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haili Liu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yihua Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Juan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Tsutomu Sato
- Department of Applied Biological Chemistry, Faculty of Agriculture, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | - Yong Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Corresponding author
| |
Collapse
|
34
|
Hou A, Dickschat JS. Biosynthesegencluster für Sestermobaraene – Entdeckung einer Geranylfarnesyldiphosphatsynthase und einer Multiprodukt‐Sesterterpensynthase aus
Streptomyces mobaraensis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anwei Hou
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Deutschland
| |
Collapse
|
35
|
Reichel M, Karaghiosoff K. Reagents for Selective Fluoromethylation: A Challenge in Organofluorine Chemistry. Angew Chem Int Ed Engl 2020; 59:12268-12281. [PMID: 32022357 PMCID: PMC7383490 DOI: 10.1002/anie.201913175] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Indexed: 01/09/2023]
Abstract
The introduction of a monofluoromethyl moiety has undoubtedly become a very important area of research in recent years. Owing to the beneficial properties of organofluorine compounds, such as their metabolic stability, the incorporation of the CH2 F group as a bioisosteric substitute for various functional groups is an attractive strategy for the discovery of new pharmaceuticals. Furthermore, the monofluoromethyl unit is also widely used in agrochemistry, in pharmaceutical chemistry, and in fine chemicals. The problems associated with climate change and the growing need for environmentally friendly industrial processes mean that alternatives to the frequently used CFC and HFBC fluoromethylating agents (CH2 FCl and CH2 FBr) are urgently needed and also required by the Montreal Protocol. This has recently prompted many researchers to develop alternative fluoromethylation agents. This Minireview summarizes both the classical and new generation of fluoromethylating agents. Reagents that act via electrophilic, nucleophilic, and radical pathways are discussed, in addition to their precursors.
Collapse
Affiliation(s)
- Marco Reichel
- Department of ChemistryLudwig-Maximilian UniversityButenandstr. 5–1381377MunichGermany
| | | |
Collapse
|
36
|
Cao X, Shi Y, Wu S, Wu X, Wang K, Sun H, He S, Dickschat JS, Wu B. Polycyclic meroterpenoids, talaromyolides E − K for antiviral activity against pseudorabies virus from the endophytic fungus Talaromyces purpureogenus. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Sato H, Yamazaki M, Uchiyama M. DFT Study on the Biosynthesis of Preasperterpenoid A: Role of Secondary Carbocations in the Carbocation Cascade. Chem Pharm Bull (Tokyo) 2020; 68:487-490. [PMID: 32378547 DOI: 10.1248/cpb.c20-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preasperterpenoid A, featuring a 5/7/(3)6/5 pentacyclic structure, is a C25 sesterterpenoid produced by Penicillium verruculosum. The results of density functional calculations on putative biosynthetic carbocation cyclization/rearrangements leading to preasperterpenoid A revealed a highly concerted four-step cyclization mechanism. Interestingly, two secondary carbocation structures were obtained as minima, but appeared almost as shoulders in the energy profile, and may represent essentially transient structures during the highly concerted reaction.
Collapse
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences, Chiba University.,Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Masanobu Uchiyama
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN.,Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Research Initiative for Supra-Materials (RISM), Shinshu University
| |
Collapse
|
38
|
Luo LQ, Chen YG, Li DS, Liu Y, Li SH. Production of the Inaccessible Sesquiterpene (-)-5-Epieremophilene by Metabolically Engineered Escherichia coli. Chem Biodivers 2020; 17:e2000219. [PMID: 32352210 DOI: 10.1002/cbdv.202000219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 11/12/2022]
Abstract
(-)-5-Epieremophilene, an epimer of the versatile sesquiterpene (+)-valencene, is an inaccessible natural product catalyzed by three sesquiterpene synthases (SmSTPSs1-3) of the Chinese medicinal herb Salvia miltiorrhiza, and its biological activity remains less explored. In this study, three metabolically engineered Escherichia coli strains were constructed for (-)-5-epieremophilene production with yields of 42.4-76.0 mg/L in shake-flask culture. Introducing an additional copy of farnesyl diphosphate synthase (FDPS) gene through fusion expression of SmSTPS1-FDPS or dividing the FDP synthetic pathway into two modules resulted in significantly improved production, and ultimately 250 mg of (-)-5-epieremophilene were achieved. Biological assay indicated that (-)-5-epieremophilene showed significant antifeedant activity against Helicoverpa armigera (EC50 =1.25 μg/cm2 ), a common pest of S. miltiorrhiza, implying its potential defensive role in the plant. The results provided an ideal material supply for studying other potential biological activities of (-)-5-epieremophilene, and also a strategy for manipulating terpene production in engineered E. coli using synthetic biology.
Collapse
Affiliation(s)
- Liu-Qiong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
39
|
Ji DW, He GC, Zhang WS, Zhao CY, Hu YC, Chen QA. Nickel-catalyzed allyl–allyl coupling reactions between 1,3-dienes and allylboronates. Chem Commun (Camb) 2020; 56:7431-7434. [DOI: 10.1039/d0cc02697b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-hydride catalysis has been developed to facilitate the allyl–allyl cross-coupling reactions between 1,3-dienes and allyl-B(pin) in excellent regioselectivity.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Chao-Yang Zhao
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
40
|
Abstract
Sesterterpenoids are known as a relatively small group of natural products. However, they represent a variety of simple to more complex structural types. This contribution focuses on the chemical structures of sesterterpenoids and how their structures are constructed in Nature.
Collapse
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
41
|
Huang AC, Osbourn A. Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection. PEST MANAGEMENT SCIENCE 2019; 75:2368-2377. [PMID: 30884099 PMCID: PMC6690754 DOI: 10.1002/ps.5410] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 05/03/2023]
Abstract
Plants are sessile organisms that have evolved various mechanisms to adapt to complex and changing environments. One important feature of plant adaption is the production of specialised metabolites. Terpenes are the largest class of specialised metabolites, with over 80 000 structures reported so far, and they have important ecological functions in plant adaptation. Here, we review the current knowledge on plant terpenes that mediate below-ground interactions between plants and other organisms, including microbes, herbivores and other plants. The discovery, functions and biosynthesis of these terpenes are discussed, and prospects for bioengineering terpenoids for plant protection are considered. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ancheng C Huang
- Department of Metabolic Biology, John Innes CentreNorwich Research ParkNorwichUK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes CentreNorwich Research ParkNorwichUK
| |
Collapse
|
42
|
Sun X, Cai YS, Yuan Y, Bian G, Ye Z, Deng Z, Liu T. Genome mining in Trichoderma viride J1-030: discovery and identification of novel sesquiterpene synthase and its products. Beilstein J Org Chem 2019; 15:2052-2058. [PMID: 31501673 PMCID: PMC6720227 DOI: 10.3762/bjoc.15.202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023] Open
Abstract
Sesquiterpene synthases in Trichoderma viride have been seldom studied, despite the efficiency of filamentous fungi for terpenoid production. Using the farnesyl diphosphate-overexpressing Saccharomyces cerevisiae platform to produce diverse terpenoids, we herein identified an unknown sesquiterpene synthase from T. viride by genome mining and determined the structure of its corresponding products. One new 5/6 bicyclic sesquiterpene and its esterified derivative were characterised by GC–MS and 1D and 2D NMR spectroscopy. To the best of our knowledge, this is the first well-identified sesquiterpene synthase from T. viride to date.
Collapse
Affiliation(s)
- Xiang Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - You-Sheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Yujie Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Ziling Ye
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
43
|
Liu M, Sun W, Shen L, He Y, Liu J, Wang J, Hu Z, Zhang Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from
Bipolaris
sp. TJ403‐B1. Angew Chem Int Ed Engl 2019; 58:12091-12095. [DOI: 10.1002/anie.201905966] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yan He
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
44
|
Liu M, Sun W, Shen L, He Y, Liu J, Wang J, Hu Z, Zhang Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from
Bipolaris
sp. TJ403‐B1. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yan He
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
45
|
Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 2019; 364:364/6440/eaau6389. [DOI: 10.1126/science.aau6389] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Plant specialized metabolites have ecological functions, yet the presence of numerous uncharacterized biosynthetic genes in plant genomes suggests that many molecules remain unknown. We discovered a triterpene biosynthetic network in the roots of the small mustard plant Arabidopsis thaliana. Collectively, we have elucidated and reconstituted three divergent pathways for the biosynthesis of root triterpenes, namely thalianin (seven steps), thalianyl medium-chain fatty acid esters (three steps), and arabidin (five steps). A. thaliana mutants disrupted in the biosynthesis of these compounds have altered root microbiota. In vitro bioassays with purified compounds reveal selective growth modulation activities of pathway metabolites toward root microbiota members and their biochemical transformation and utilization by bacteria, supporting a role for this biosynthetic network in shaping an Arabidopsis-specific root microbial community.
Collapse
|
46
|
Li Q, Chen C, Wei M, Dai C, Cheng L, Tao J, Li XN, Wang J, Sun W, Zhu H, Zhang Y. Niduterpenoids A and B: Two Sesterterpenoids with a Highly Congested Hexacyclic 5/5/5/5/3/5 Ring System from the Fungus Aspergillus nidulans. Org Lett 2019; 21:2290-2293. [DOI: 10.1021/acs.orglett.9b00581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Chong Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Li Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- College of Pharmacy, Hubei University of Medicine, Shiyan 442000, People’s Republic of China
| | - Jiafeng Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People’s Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| |
Collapse
|
47
|
Zhang QC, Li X, Wang X, Li SJ, Qu LB, Lan Y, Wei D. Insights into highly selective ring expansion of oxaziridines under Lewis base catalysis: a DFT study. Org Chem Front 2019. [DOI: 10.1039/c8qo01370e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The possible mechanism and stereoselectivity of the NHC-catalyzed ring expansion reaction of oxaziridines have been theoretically studied for the first time.
Collapse
Affiliation(s)
- Qiao-Chu Zhang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xue Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xinghua Wang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Shi-Jun Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Ling-Bo Qu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yu Lan
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
- School of Chemistry and Chemical Engineering
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
48
|
Sato H, Saito K, Yamazaki M. Acceleration of Mechanistic Investigation of Plant Secondary Metabolism Based on Computational Chemistry. FRONTIERS IN PLANT SCIENCE 2019; 10:802. [PMID: 31293608 PMCID: PMC6606707 DOI: 10.3389/fpls.2019.00802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
This review describes the application of computational chemistry to plant secondary metabolism, focusing on the biosynthetic mechanisms of terpene/terpenoid, alkaloid, flavonoid, and lignin as representative examples. Through these biosynthetic studies, we exhibit several computational methods, including density functional theory (DFT) calculations, theozyme calculation, docking simulation, molecular dynamics (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) calculation. This review demonstrates how modern computational chemistry can be employed as an effective tool for revealing biosynthetic mechanisms and the potential of computational chemistry-for example, elucidating how enzymes regulate regio- and stereoselectivity, finding the key catalytic residue of an enzyme, and assessing the viability of hypothetical pathways. Furthermore, insights for the next research objective involving application of computational chemistry to plant secondary metabolism are provided herein. This review will be helpful for plant scientists who are not well versed with computational chemistry.
Collapse
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Center for Sustainable Resource Science, Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- *Correspondence: Mami Yamazaki,
| |
Collapse
|
49
|
Sato H, Mitsuhashi T, Yamazaki M, Abe I, Uchiyama M. Computational Studies on Biosynthetic Carbocation Rearrangements Leading to Quiannulatene: Initial Conformation Regulates Biosynthetic Route, Stereochemistry, and Skeleton Type. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1 Inohana, Chuoku Chiba 260-8675 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1 Inohana, Chuoku Chiba 260-8675 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
50
|
Bian G, Rinkel J, Wang Z, Lauterbach L, Hou A, Yuan Y, Deng Z, Liu T, Dickschat JS. Eine chimäre pilzliche Diterpensynthase der Klade II-D aus Colletotrichum gloeosporioides
produziert Dolasta-1(15),8-dien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Zhangqian Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Anwei Hou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Yujie Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan 430075 China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan 430075 China
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|