1
|
Taief KA, Nemec S, Middleton IA, Kilian KA, Thordarson P. Scrambled RGD Hexameric Peptide Hydrogel Supports Efficient Self-Assembly and Cell Activity. Chemistry 2025:e202404410. [PMID: 40192287 DOI: 10.1002/chem.202404410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
The amino acid sequence is crucial in controlling peptide-based hydrogel formation, whereby changing the position of a single amino acid can significantly alter the gel's properties. Herein, we report the gelation kinetics and cell viability of scrFmoc-GFFRDG (where we have scrambled the RGD-based gel hexapeptide; Fmoc-GFFRGD). The scrambled sequence showed improved gelation properties compared to the original Fmoc-GFFRGD sequence, with scrFmoc-GFFRDG forming a gel in under 10 min, significantly faster than the 2-h gelation time, and at a concentration eight times lower than the original Fmoc-GFFRGD sequence. We also examined the combination of the two gelators in a ratio of 1:1, final concentration of 0.4% (w/v). Interestingly, the stiffness of the hybrid hydrogel was ∼3 kPa, whereas individually, neither gelator at the same concentration exceeded 0.5 kPa. The cell-adhesion motif RGD improves the ability of the peptides to promote attachment of cells due to integrin recognition. However, when fibroblasts were cultured on the hydrogels, scrFmoc-GFFRDG yielded a higher level of α-SMA expression in cells than those cultured on Fmoc-GFFRGD, suggesting a microenvironment conducive to myofibroblast transitions. This study provides a new outlook on how a well-known scrambled peptide motif (RDG) can fine-tune hydrogel assembly and cell culture applications.
Collapse
Affiliation(s)
- Karrar Al Taief
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- The UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephanie Nemec
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Isis A Middleton
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- The UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pall Thordarson
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- The UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Du Z, Dai J, Wang Z, Ye Z, Lei H, Guo QY, Yan XY, Li M, Li M, Zhao W, Zhang B, Huang Y, Yang Z, Huang Z, Yin P, Jiang L, Zhang R, Tang W. Engineering the Self-Assembly Pathways of POSS-Peptide Amphiphiles to Form Diverse Cross-β Structures. Angew Chem Int Ed Engl 2025; 64:e202420043. [PMID: 39715729 DOI: 10.1002/anie.202420043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 12/25/2024]
Abstract
Cross-β structures are crucial in driving protein folding and aggregation. However, due to their strong aggregating tendency, the precise control of the self-assembly of β-sheet-forming peptides remains a challenge. We propose a molecular geometry strategy to study and control the self-assembly of cross-β structures. We conjugate the peptide with shape-persistent polyhedral oligomeric silsesquioxane (POSS), which acts as a hydrophilic head and senses the solvent environment. The POSS-peptide amphiphiles display two distinct self-assembly pathways: twisted nanoribbons transforming into either nanotubes at low water content or flat nanoribbons at high water content. The peptide packing in flat nanoribbons is predominantly modulated by POSS, diverting the system away from crystal formation, which is the absolute lowest energy state of pure peptide self-assemblies. For the first time, we have demonstrated that POSS can serve as a useful tool to adjust the interactions between cross-β strands, achieving fine-tuning of the pathway complexity (i.e., the kinetic and thermodynamic aspects of peptide self-assembly). With this versatile molecular platform incorporating multiple functionalities of POSS and programable peptide sequences, this study provides a platform to exploit cross-β-based nanomaterials with functional and pathological significance.
Collapse
Affiliation(s)
- Zhen Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Junhao Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhibo Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zushan Ye
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Minzhao Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Wangshen Zhao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Beijing Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yupeng Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ziqiong Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zongwu Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Castillo-Díaz LA, Gough JE, Miller AF, Saiani A. RGD-functionalised self-assembling peptide hydrogel induces a proliferative profile in human osteoblasts in vitro. J Pept Sci 2025; 31:e3653. [PMID: 39329311 DOI: 10.1002/psc.3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Self-assembling peptide hydrogels (SAPHs) have been used in the past decade as reliable three-dimensional (3D) synthetic scaffolds for the culture of a variety of mammalian cells in vitro. Thanks to their versatile physicochemical properties, they allow researchers to tailor the hydrogel properties, including stiffness and functionality to the targeted cells and cells' behaviour. One of the advantages of using SAPH scaffolds is the ease of functionalisation. In the present work, we discuss the effect that functionalising the FEFEFKFK (F, phenylalanine; K, lysine; and E, glutamic acid) hydrogel scaffold using the cell-binding RGDS (fibronectin - R, arginine; G, glycine; D, aspartic acid; S, serine) epitope affects the material properties as well as the function of encapsulated human osteoblast cells. RGDS functionalisation resulted in cells adopting an elongated morphology, suggesting attachment and increased proliferation. While this led to higher cell viability, it also resulted in a decrease in extra-cellular matrix (ECM) protein production as well as a decrease in calcium ion deposition, suggesting lower mineralisation capabilities. The work clearly shows that SAPHs are a flexible platform that allow the modification of scaffolds in a controlled manner to investigate cell-material interactions.
Collapse
Affiliation(s)
- Luis A Castillo-Díaz
- School of Chemical Engineering & Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Departamento de Medicina y Ciencias de la Salud, Facultad Interdisciplinaria de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Julie E Gough
- School of Materials & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Aline F Miller
- School of Chemical Engineering & Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Alberto Saiani
- Division of Pharmacy and Optometry & Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Sen S, Kumar R, Tomar RS, Roy S. Designing Short Cardin-Motif Peptide and Biopolymer-Based Multicomponent Hydrogels for Developing Advanced Composite Scaffolds for Improving Cellular Behavior. Macromol Biosci 2025:e2400555. [PMID: 39838741 DOI: 10.1002/mabi.202400555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability. This advanced strategy can address the limitation of the lower mechanical strength of the individual peptide hydrogel by incorporating the biopolymer, resulting in the formation of a composite scaffold. In this direction, this advanced strategy is explored using noncovalent interactions between cellulose nano-fiber (CNF) and cationic Cardin-motif peptide to develop advanced composite scaffolds. The bioactive cationic peptide otherwise failed to form hydrogel at physiological conditions. Interestingly, the differential mixing ratio of CNF and peptide modulated the surface charge, functionality, and mechanical properties of the composite scaffolds, resulting in diverse cellular responses. 10:1 (w/w) ratio of CNF and peptide-based composite scaffold demonstrates improved cellular survival and proliferation in 2D culture conditions. Notably, in 3D cultures, cell proliferation on the 10:1 matrix is comparable to Matrigel, highlighting its potential for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Rakesh Kumar
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Rahul Singh Tomar
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
5
|
Sun X, Wu B, Li N, Liu B, Li S, Ma L, Zhang H. Influence of Electrostatic Interactions on the Self-Assembly of Charged Peptides. Gels 2025; 11:80. [PMID: 39852051 PMCID: PMC11765140 DOI: 10.3390/gels11010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels. This peptide displays salt-triggered self-assembly resulting in the formation of a nanofiber network with a high β-sheet content. The peptide self-assembly and the hydrogel properties can be modified according to the ionic environment. It is noteworthy that the Z5 hydrogel in normal saline (NS) shows exceptional self-healing properties, demonstrating the ability to recover its initial strength in seconds after the removal of shear force, thus rendering it an acceptable material for printing. In contrast, the strong salt shielding effect and the ionic cross-linking of Z5 hydrogels in PBS result in the bundling of peptide nanofibers, which impedes the recovery of the initial strength post-destruction. Furthermore, incorporating materials with varied charging properties into Z5 hydrogels can alter the electrostatic interactions among peptide nanofibers, further modulating the rheological properties and the printability of SAP hydrogels.
Collapse
Affiliation(s)
- Xue Sun
- Faculty of Medicine, Dalian University of Technology, Dalian 116033, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (B.W.); (N.L.); (B.L.)
| | - Bolan Wu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (B.W.); (N.L.); (B.L.)
| | - Na Li
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (B.W.); (N.L.); (B.L.)
| | - Bo Liu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (B.W.); (N.L.); (B.L.)
| | - Shijun Li
- Faculty of Medicine, Dalian University of Technology, Dalian 116033, China
| | - Liang Ma
- Faculty of Medicine, Dalian University of Technology, Dalian 116033, China
| | - Hangyu Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian 116033, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (B.W.); (N.L.); (B.L.)
| |
Collapse
|
6
|
Sarkar D, Khan AH, Polepalli S, Sarkar R, Das PK, Dutta S, Sahoo N, Bhunia A. Multiscale Materials Engineering via Self-Assembly of Pentapeptide Derivatives from SARS CoV E Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404373. [PMID: 39011730 DOI: 10.1002/smll.202404373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Short peptide-based supramolecular hydrogels hold enormous potential for a wide range of applications. However, the gelation of these systems is very challenging to control. Minor changes in the peptide sequence can significantly influence the self-assembly mechanism and thereby the gelation propensity. The involvement of SARS CoV E protein in the assembly and release of the virus suggests that it may have inherent self-assembling properties that can contribute to the development of hydrogels. Here, three pentapeptide sequences derived from C-terminal of SARS CoV E protein are explored with same amino acid residues but different sequence distributions and discovered a drastic difference in the gelation propensity. By combining spectroscopic and microscopic techniques, the relationship between peptide sequence arrangement and molecular assembly structure are demonstrated, and how these influence the mechanical properties of the hydrogel. The present study expands the variety of secondary structures for generating supramolecular hydrogels by introducing the 310-helix as the primary building block for gelation, facilitated by a water-mediated structural transition into β-sheet conformation. Moreover, these Fmoc-modified pentapeptide hydrogels/supramolecular assemblies with tunable morphology and mechanical properties are suitable for tissue engineering, injectable delivery, and 3D bio-printing applications.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata, 700 091, India
| | - Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A&B Raja S C Mullick Road, Kolkata, 700 032, India
| | - Sainath Polepalli
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | | | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A&B Raja S C Mullick Road, Kolkata, 700 032, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Nirakar Sahoo
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata, 700 091, India
| |
Collapse
|
7
|
Sen S, Roy S. Designing highly tunable anion responsive Cardin-motif peptide based self-assembled nanostructures for accessing diverse cellular response. Colloids Surf B Biointerfaces 2024; 245:114315. [PMID: 39427396 DOI: 10.1016/j.colsurfb.2024.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Several anions present in the extracellular matrix (ECM) not only have significant physiological functions in ECM but also play an important role in regulating peptide-based self-assembly. Herein, we have employed a non-conventional approach to overcome the limitations of the positively charged Cardin-motif peptide that failed to self-assemble at physiological pH. We used a simple and elegant strategy by employing different anions such as HPO42-, Cl- and I- to mask the overall surface charge of peptide. Interestingly, these anions were utilized to modulate the nanostructure formation and mechanical stiffness of peptide hydrogels owing to their differential interactions with water molecules according to the Hofmeister series. Interestingly, these anions induced hydrogels showed diverse cellular responses on two different cell lines, fibroblast and neuronal, indicating diverse application potential of the new scaffold. Thus, this study emphasizes the importance of anions to regulate the self-assembly of Cardin-motif peptide and this approach can be utilized in developing the ideal biomimetic model of ECM for futuristic applications.
Collapse
Affiliation(s)
- Sourav Sen
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India.
| |
Collapse
|
8
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Al Musaimi O, Ng KW, Gavva V, Mercado-Valenzo OM, Haroon HB, Williams DR. Elastin-Derived Peptide-Based Hydrogels as a Potential Drug Delivery System. Gels 2024; 10:531. [PMID: 39195060 DOI: 10.3390/gels10080531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
A peptide-based hydrogel sequence was computationally predicted from the Ala-rich cross-linked domains of elastin. Three candidate peptides were subsequently synthesised and characterised as potential drug delivery vehicles. The elastin-derived peptides are Fmoc-FFAAAAKAA-NH2, Fmoc-FFAAAKAA-NH2, and Fmoc-FFAAAKAAA-NH2. All three peptide sequences were able to self-assemble into nanofibers. However, only the first two could form hydrogels, which are preferred as delivery systems compared to solutions. Both of these peptides also exhibited favourable nanofiber lengths of at least 1.86 and 4.57 µm, respectively, which are beneficial for the successful delivery and stability of drugs. The shorter fibre lengths of the third peptide (maximum 0.649 µm) could have inhibited their self-assembly into the three-dimensional networks crucial to hydrogel formation.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Keng Wooi Ng
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Varshitha Gavva
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - Hajira Banu Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daryl R Williams
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
10
|
Mohanty S, Sen S, Sharma P, Roy S. Designing Pathway-Controlled Multicomponent Ultrashort Peptide Hydrogels with Diverse Functionalities at the Nanoscale for Directing Cellular Behavior. Biomacromolecules 2024; 25:3271-3287. [PMID: 38712837 DOI: 10.1021/acs.biomac.3c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tuning self-assembling pathways by implementing different external stimuli has been extensively studied, owing to their effective control over structural and mechanical properties. Consequently, multicomponent peptide hydrogels with high structural tunability and stimuli responsiveness are crucial in dictating cellular behavior. Herein, we have implemented both coassembly approach and pathway-dependent self-assembly to design nonequilibrium nanostructures to understand the thermodynamic and kinetic aspects of peptide self-assembly toward controlling cellular response. Our system involved an ultrashort peptide gelator and a hydrophilic surfactant which coassembled through different pathways, i.e., heat-cool and sonication methods with variable energy input. Interestingly, it was possible to access diverse structural and mechanical properties at the nanoscale in a single coassembled system. Further, the hydrophilic surfactant provided additional surface functionalities, thus creating an efficient hydrophilic matrix for cellular interaction. Such diverse functionalities in a single coassembled system could lead to the development of advanced scaffolds, with applications in various biomedical fields.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Pooja Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| |
Collapse
|
11
|
Liu B, Fang R, Li W, Wu X, Liu T, Lin M, Sun J, Chen X. Fast Catalyst-Free Synthesis of Stereoselective Polypeptides via Hierarchical Chiral Assembly. J Am Chem Soc 2024. [PMID: 38858162 DOI: 10.1021/jacs.4c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Understanding how life's essential homochiral biopolymers arose from racemic precursors is a challenging quest. Herein, we present a groundbreaking approach involving hierarchical chiral assembly-driven stereoselective ring-opening polymerization of ε-benzyloxycarbonyl-l/d-lysine N-carboxyanhydrides assisted by ultrasonication in an aqueous medium. This method enabled a narrow dispersity within a few minutes and the achievement of high molecular weight for polypeptides, employing a living polymerization mechanism. The polymerization of l and d enantiomers yielded predominantly right- and left-handed superhelical assemblies in a one-pot preparation, respectively. Notably, stereoselective polypeptide segments were efficiently prepared through hierarchical assembly-driven polymerization of racemic monomers in the absence of a catalyst. This research offers an innovative strategy for the convenient preparations of stereoenriched polypeptides and, more importantly, sheds light on the plausible emergence of homochiral peptides in the origin of life.
Collapse
Affiliation(s)
- Borui Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Rui Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Wenlong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xiaoyu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Tianli Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| |
Collapse
|
12
|
Najafi H, Farahavar G, Jafari M, Abolmaali SS, Azarpira N, Tamaddon AM. Harnessing the Potential of Self-Assembled Peptide Hydrogels for Neural Regeneration and Tissue Engineering. Macromol Biosci 2024; 24:e2300534. [PMID: 38547473 DOI: 10.1002/mabi.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Spinal cord injury, traumatic brain injury, and neurosurgery procedures usually lead to neural tissue damage. Self-assembled peptide (SAP) hydrogels, a type of innovative hierarchical nanofiber-forming peptide sequences serving as hydrogelators, have emerged as a promising solution for repairing tissue defects and promoting neural tissue regeneration. SAPs possess numerous features, such as adaptable morphologies, biocompatibility, injectability, tunable mechanical stability, and mimicking of the native extracellular matrix. This review explores the capacity of neural cell regeneration and examines the critical aspects of SAPs in neuroregeneration, including their biochemical composition, topology, mechanical behavior, conductivity, and degradability. Additionally, it delves into the latest strategies involving SAPs for central or peripheral neural tissue engineering. Finally, the prospects of SAP hydrogel design and development in the realm of neuroregeneration are discussed.
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, 71937-11351, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| |
Collapse
|
13
|
Asokan-Sheeja H, Awad K, Xu J, Le M, Nguyen JN, Nguyen N, Nguyen TP, Nguyen KT, Hong Y, Varanasi VG, Liu X, Dong H. In Situ Synthesis and Self-Assembly of Peptide-PEG Conjugates: A Facile Method for the Construction of Fibrous Hydrogels. Biomacromolecules 2024; 25:2814-2822. [PMID: 38598701 PMCID: PMC11867594 DOI: 10.1021/acs.biomac.3c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Peptide-based hydrogels have gained considerable attention as a compelling platform for various biomedical applications in recent years. Their attractiveness stems from their ability to seamlessly integrate diverse properties, such as biocompatibility, biodegradability, easily adjustable hydrophilicity/hydrophobicity, and other functionalities. However, a significant drawback is that most of the functional self-assembling peptides cannot form robust hydrogels suitable for biological applications. In this study, we present the synthesis of novel peptide-PEG conjugates and explore their comprehensive hydrogel properties. The hydrogel comprises double networks, with the first network formed through the self-assembly of peptides to create a β-sheet secondary structure. The second network is established through covalent bond formation via N-hydroxysuccinimide chemistry between peptides and a 4-arm PEG to form a covalently linked network. Importantly, our findings reveal that this hydrogel formation method can be applied to other peptides containing lysine-rich sequences. Upon encapsulation of the hydrogel with antimicrobial peptides, the hydrogel retained high bacterial killing efficiency while showing minimum cytotoxicity toward mammalian cells. We hope that this method opens new avenues for the development of a novel class of peptide-polymer hydrogel materials with enhanced performance in biomedical contexts, particularly in reducing the potential for infection in applications of tissue regeneration and drug delivery.
Collapse
Affiliation(s)
- Haritha Asokan-Sheeja
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kamal Awad
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Myan Le
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jenny N. Nguyen
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Na Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Tam P. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kytai T. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Venu G. Varanasi
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Xiaohua Liu
- Department of Chemical and Biomedical Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - He Dong
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
14
|
Kashyap S, Pal VK, Mohanty S, Roy S. Exploring a Solvent Dependent Strategy to Control Self-Assembling Behavior and Cellular Interaction in Laminin-Mimetic Short Peptide based Supramolecular Hydrogels. Chembiochem 2024; 25:e202300835. [PMID: 38390634 DOI: 10.1002/cbic.202300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.
Collapse
Affiliation(s)
- Shambhavi Kashyap
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Vijay Kumar Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sweta Mohanty
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| |
Collapse
|
15
|
Tan T, Hou Y, Shi J, Wang B, Zhang Y. Biostable hydrogels consisting of hybrid β-sheet fibrils assembled by a pair of enantiomeric peptides. Mater Today Bio 2024; 25:100961. [PMID: 38304341 PMCID: PMC10831280 DOI: 10.1016/j.mtbio.2024.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
The assembly of chiral peptides facilitates the formation of diverse supramolecular structures with unique physicochemical and biological properties. However, the effects of chirality on peptide assembly and resulting hydrogel properties remain underexplored. In this study, we systematically investigated the assembly propensity, morphology, and biostability of mixture of a pair of enantiomeric peptides LELCLALFLF (ECF-5) and DEDCDADFDF (ecf-5) at various ratios. Results indicate the development of β-sheet fibrils, ultimately leading to the formation of self-supporting hybrid hydrogels. The hydrogel formed at a ratio of 1:1 exhibits a significantly lower storage modulus (G') than of the ratios of 0:1, 1:3, 3:1 and 1:0 (nD/nL; same below). Kink-separated fragments of approximately 100 nm in length predominate at ratios of 1:3 and 3:1, compared with the smooth fibrils at other ratios, probably attributed to an alternating arrangement of the co-assembled and self-assembled peptide fragments. The introduction of ecf-5 to the hybrid hydrogels improves resistance to proteolytic digestion and maintains commendable biocompatibility in both MIN6 and HUVECs cells. These findings provide valuable insights into the development of hydrogels with tailored properties, positing them potential scaffolds for 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Tingyuan Tan
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yangqian Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiali Shi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Biao Wang
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
16
|
Inada A, Motomura A, Oshima T. Water-Based Synthesis of β-Sheet-Like Supramolecular Metallohydrogel Organized by Using a Native Ultrashort Peptide Sequence. Chemistry 2024; 30:e202303160. [PMID: 38016928 DOI: 10.1002/chem.202303160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Designing supramolecular hydrogels using short peptides is challenging. To control self-assembly, a certain amount of organic solvent is typically added to the system, or the short peptide is modified with a functional group that is hydrophobic, hydrophilic, or highly coordinative. We discovered that l-His-l-Ile-l-Thr (HIT), a very short unmodified "native" tripeptide, selectively responds to Cu2+ ions in pure water to form a transparent supramolecular metallohydrogel. Circular dichroism analysis revealed that Cu2+ ions, but no other metal species, caused HIT to change from a random-coil-like to a β-sheet-like structure. Other spectroscopic methods were used to characterize the properties of the supramolecular metallohydrogel. These results are expected to facilitate the development of native short peptides as advanced functional biomaterials.
Collapse
Affiliation(s)
- Asuka Inada
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Aki Motomura
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Tatsuya Oshima
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan
| |
Collapse
|
17
|
Zhou H, Zhu Y, Yang B, Huo Y, Yin Y, Jiang X, Ji W. Stimuli-responsive peptide hydrogels for biomedical applications. J Mater Chem B 2024; 12:1748-1774. [PMID: 38305498 DOI: 10.1039/d3tb02610h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Stimuli-responsive hydrogels can respond to external stimuli with a change in the network structure and thus have potential application in drug release, intelligent sensing, and scaffold construction. Peptides possess robust supramolecular self-assembly ability, enabling spontaneous formation of nanostructures through supramolecular interactions and subsequently hydrogels. Therefore, peptide-based stimuli-responsive hydrogels have been widely explored as smart soft materials for biomedical applications in the last decade. Herein, we present a review article on design strategies and research progress of peptide hydrogels as stimuli-responsive materials in the field of biomedicine. The latest design and development of peptide hydrogels with responsive behaviors to stimuli are first presented. The following part provides a systematic overview of the functions and applications of stimuli-responsive peptide hydrogels in tissue engineering, drug delivery, wound healing, antimicrobial treatment, 3D cell culture, biosensors, etc. Finally, the remaining challenges and future prospects of stimuli-responsive peptide hydrogels are proposed. It is believed that this review will contribute to the rational design and development of stimuli-responsive peptide hydrogels toward biomedical applications.
Collapse
Affiliation(s)
- Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yanhua Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Bingbing Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
18
|
Zhang Y, Zhou T, Qi Y, Li Y, Zhang Y, Zhao Y, Han H, Wang Y. Engineered assemblies from isomeric pentapeptides augment dry eye treatment. J Control Release 2024; 365:521-529. [PMID: 38040342 DOI: 10.1016/j.jconrel.2023.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Changing positions of amino acid residues in the peptide sequence alters the peptide' s assembly behaviors, affording various nanostructures. However, it remains elusive that how subtle changes in the peptide sequence influence the in vivo bioactivity of peptide-based nanocarriers, further impacting the efficacy of the encapsulated drugs. We report here a class of isomeric pentapeptide amphiphiles that associate into filaments with different dimensions, which were further used as carriers of Diquafosol tetrasodium (DQS), for the treatment of dry eye disease. Our results suggest that subtle changes in peptide sequences resulted in dramatically different molecular packings and distinct morphologies, which were verified by molecular dynamics simulations. In vivo results show that the drug retention time could be prolonged by the peptidic nanostructures on the ocular surface but were highly morphological-dependent. The longer retention time promised better therapeutic efficacy. In terms of facile synthesis and good biocompatibility, we believe that these peptides could be used for eye disease treatments or other related areas.
Collapse
Affiliation(s)
- Yanwen Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuzhen Qi
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijie Li
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaxue Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China.
| | - Yin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Fan W, Chen M, Raza F, Zafar H, Jahan F, Chen Y, Ge L, Yang M, Wu Y. pH-sensitive peptide hydrogel encapsulating the anti-angiogenesis drug conbercept and chemotherapeutic drug dox as a combination therapy for retinoblastoma. MATERIALS ADVANCES 2024; 5:2175-2184. [DOI: 10.1039/d3ma01028g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Retinoblastoma (RB) is a malignant tumor originating from the retina.
Collapse
Affiliation(s)
- Wen Fan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mingkang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faryal Jahan
- Shifa Tameer-e-Millat University Islamabad, Pakistan
| | - Yuejian Chen
- Nanjing iChemBridge Pharmaceutical Technology Co., Ltd, China
| | - Lexin Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minyan Yang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Yiqun Wu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211100, China
| |
Collapse
|
20
|
Xiong Y, Hu X, Ding J, Wang X, Xue Z, Niu Y, Zhang S, Sun C, Xu W. Mechanical Properties of Low-Molecular-Weight Peptide Hydrogels Improved by Thiol-Ene Click Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16750-16759. [PMID: 37963300 DOI: 10.1021/acs.langmuir.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Low-molecular-weight peptide hydrogels can be formed by self-assembly through weak interactions, but the application of the hydrogel is influenced by its weak mechanical properties. Therefore, it is important to construct low-molecular-weight peptide hydrogels with excellent mechanical properties. In this work, we designed the pentapeptide molecule Fmoc-FFCKK-OH (abbreviated as FFCKK) with a sulfhydryl group, and another low-molecular-weight cross-linker N,N'-methylenebis(acrylamide) (MBA) was introduced to construct a hydrogel with excellent mechanical properties. The secondary structure change process of FFCKK and the assembly mechanism of hydrogel were analyzed using theoretical calculations and experimental characterizations. The occurrence of thiol-ene click chemistry provides covalent interaction in the hydrogel, and the synergistic effect ofcovalent interaction and hydrogen bonding improves the mechanical properties of the hydrogel by nearly 10-fold. The hydrogel was observed to be able to withstand a stress of 368 Pa and to break in a layer-by-layer manner by compression testing. The micromechanics of the hydrogels were characterized, and the excellent mechanical properties of the hydrogels were confirmed. The synergistic approach provides a new idea for the preparation of low-molecular-weight peptide hydrogels and facilitates the expansion of their potential applications in biomedical fields.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiaohan Hu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Junjie Ding
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xinze Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Zhongxin Xue
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| |
Collapse
|
21
|
Xu J, Zhu X, Zhao J, Ling G, Zhang P. Biomedical applications of supramolecular hydrogels with enhanced mechanical properties. Adv Colloid Interface Sci 2023; 321:103000. [PMID: 37839280 DOI: 10.1016/j.cis.2023.103000] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
Supramolecular hydrogels bound by hydrogen bonding, host-guest, hydrophobic, and other non-covalent interactions are among the most attractive biomaterials available. Supramolecular hydrogels have attracted extensive attention due to their inherent dynamic reversibility, self-healing, stimuli-response, excellent biocompatibility, and near-physiological environment. However, the inherent contradiction between non-covalent interactions and mechanical strength makes the practical application of supramolecular hydrogels a great challenge. This review describes the mechanical strength of hydrogels mediated by supramolecular interactions, and focuses on the potential strategies for enhancing the mechanical strength of supramolecular hydrogels and illustrates their applications in related fields, such as flexible electronic sensors, wound dressings, and three-dimensional (3D) scaffolds. Finally, the current problems and future research prospects of supramolecular hydrogels are discussed. This review is expected to provide insights that will motivate more advanced research on supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| |
Collapse
|
22
|
Hu Y, Rigoldi F, Sun H, Gautieri A, Marelli B. Unbiased in silico design of pH-sensitive tetrapeptides. Chem Commun (Camb) 2023; 59:10157-10160. [PMID: 37530567 DOI: 10.1039/d3cc02412a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We used coarse-grain molecular dynamics simulations to screen all possible histidine-bearing tetrapeptide sequences, finding novel peptide sequences with pH-tunable assembly properties. These tetrapeptides could be used for various biological applications, such as triggered delivery of bioactive molecules.
Collapse
Affiliation(s)
- Yue Hu
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | - Federica Rigoldi
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | - Hui Sun
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Benedetto Marelli
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| |
Collapse
|
23
|
Wang Q, Zhou FP, Tao DD, Wei JH, Cai R, Jiang YB. Amyloid peptide hydrogels via formation of coordination polymers with Ag + by its core peptide equipped with a C-cysteine. Chem Commun (Camb) 2023; 59:9599-9602. [PMID: 37461336 DOI: 10.1039/d3cc02076b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
We report that the core sequence of amyloid β (Aβ) peptide, KLVFF, when equipped with a C-terminal cysteine residue, exhibited an extremely low minimum hydrogelation concentration of 0.05 wt% in the presence of Ag+ in pH 5 buffer, with this concentration 2 orders of magnitude lower than that of the pentapeptide itself. The CD signal of the Ag+-L-KLVFFC hydrogel was observed to be sensitive to the early-stage aggregation of amyloid β peptide.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Fu-Peng Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Dan-Dan Tao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Jin-Hong Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Rui Cai
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
24
|
Sharma P, Roy S. Designing ECM-inspired supramolecular scaffolds by utilizing the interactions between a minimalistic neuroactive peptide and heparin. NANOSCALE 2023; 15:7537-7558. [PMID: 37022122 DOI: 10.1039/d2nr06221f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Short bioactive peptide-based supramolecular hydrogels are emerging as interesting candidates for developing scaffolds for tissue engineering applications. However, proteins and peptides represent only a single class of molecules present in the native ECM, thus, recapitulating the complete ECM microenvironment via only peptide-based biomaterials is extremely challenging. In this direction, complex multicomponent-based biomaterials have started gaining importance for achieving the biofunctional complexity and structural hierarchy of the native ECM. Sugar-peptide complexes can be explored in this direction as they provide essential biological signaling required for cellular growth and survival in vivo. In this direction, we explored the fabrication of an advanced scaffold by employing heparin and short bioactive peptide interactions at the molecular level. Interestingly, the addition of heparin into the peptide has significantly modulated the supramolecular organization, nanofibrous morphology and the mechanical properties of the scaffold. Additionally, the combined hydrogels demonstrated superior biocompatibility as compared to the peptide counterpart at certain ratios. These newly developed scaffolds were also observed to be stable under 3-D cell culture conditions and supported cellular adhesion and proliferation. Most importantly, the inflammatory response was also minimized in the case of combined hydrogels as compared to heparin. We expect that this approach of using simple non-covalent interactions between the ECM-inspired small molecules to fabricate biomaterials with improved mechanical and biological properties could advance the current knowledge on designing ECM mimetic biomaterials. Such an attempt would create a novel, adaptable and simplistic bottom-up strategy for the invention of new and more complex biomaterials of ECM origin with advanced functions.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
25
|
Binaymotlagh R, Chronopoulou L, Palocci C. Peptide-Based Hydrogels: Template Materials for Tissue Engineering. J Funct Biomater 2023; 14:jfb14040233. [PMID: 37103323 PMCID: PMC10145623 DOI: 10.3390/jfb14040233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Tissue and organ regeneration are challenging issues, yet they represent the frontier of current research in the biomedical field. Currently, a major problem is the lack of ideal scaffold materials' definition. As well known, peptide hydrogels have attracted increasing attention in recent years thanks to significant properties such as biocompatibility, biodegradability, good mechanical stability, and tissue-like elasticity. Such properties make them excellent candidates for 3D scaffold materials. In this review, the first aim is to describe the main features of a peptide hydrogel in order to be considered as a 3D scaffold, focusing in particular on mechanical properties, as well as on biodegradability and bioactivity. Then, some recent applications of peptide hydrogels in tissue engineering, including soft and hard tissues, will be discussed to analyze the most relevant research trends in this field.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
26
|
Petit N, Dyer JM, Gerrard JA, Domigan LJ, Clerens S. Insight into the self-assembly and gel formation of a bioactive peptide derived from bovine casein. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
27
|
Ultralong hydroxyapatite nanowires-incorporated dipeptide hydrogel with enhanced mechanical strength and superior in vivo osteogenesis activity. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
28
|
Bayón-Fernández A, Méndez-Ardoy A, Alvarez-Lorenzo C, Granja JR, Montenegro J. Self-healing cyclic peptide hydrogels. J Mater Chem B 2023; 11:606-617. [PMID: 36533555 DOI: 10.1039/d2tb01721k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hydrogels are soft materials of great interest in different areas such as chemistry, biology, and therapy. Gels made by the self-assembly of small molecules are known as supramolecular gels. The modulation of their properties by monomer molecular design is still difficult to predict due to the potential impact of subtle structural modifications in the self-assembly process. Herein, we introduce the design principles of a new family of self-assembling cyclic octapeptides of alternating chirality that can be used as scaffolds for the development of self-healing hydrogelator libraries with tunable properties. The strategy was used in the preparation of an amphiphilic cyclic peptide monomer bearing an alkoxyamine connector, which allowed the insertion of different aromatic aldehyde pendants to modulate the hydrophobic/hydrophilic balance and fine-tune the properties of the resulting gel. The resulting amphiphiles were able to form self-healable hydrogels with viscoelastic properties (loss tangent, storage modulus), which were strongly dependent on the nature and number of aromatic moieties anchored to the hydrophilic peptide. Structural studies by SEM, STEM and AFM indicated that the structure of the hydrogels was based on a dense network of peptide nanotubes. Excellent agreement was established between the peptide primary structure, nanotube length distributions and viscoelastic behaviour.
Collapse
Affiliation(s)
- Alfonso Bayón-Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Yang P, Ju Y, Hu Y, Xie X, Fang B, Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater Res 2023; 27:1. [PMID: 36597149 PMCID: PMC9808966 DOI: 10.1186/s40824-022-00338-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Plastic surgery is a discipline that uses surgical methods or tissue transplantation to repair, reconstruct and beautify the defects and deformities of human tissues and organs. Three-dimensional (3D) bioprinting has gained widespread attention because it enables fine customization of the implants in the patient's surgical area preoperatively while avoiding some of the adverse reactions and complications of traditional surgical approaches. In this paper, we review the recent research advances in the application of 3D bioprinting in plastic surgery. We first introduce the printing process and basic principles of 3D bioprinting technology, revealing the advantages and disadvantages of different bioprinting technologies. Then, we describe the currently available bioprinting materials, and dissect the rationale for special dynamic 3D bioprinting (4D bioprinting) that is achieved by varying the combination strategy of bioprinting materials. Later, we focus on the viable clinical applications and effects of 3D bioprinting in plastic surgery. Finally, we summarize and discuss the challenges and prospects for the application of 3D bioprinting in plastic surgery. We believe that this review can contribute to further development of 3D bioprinting in plastic surgery and provide lessons for related research.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yue Hu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| | - Lanjie Lei
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
30
|
Batra R, Loeffler TD, Chan H, Srinivasan S, Cui H, Korendovych IV, Nanda V, Palmer LC, Solomon LA, Fry HC, Sankaranarayanan SKRS. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat Chem 2022; 14:1427-1435. [PMID: 36316409 PMCID: PMC9844539 DOI: 10.1038/s41557-022-01055-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2022] [Indexed: 12/23/2022]
Abstract
Peptide materials have a wide array of functions, from tissue engineering and surface coatings to catalysis and sensing. Tuning the sequence of amino acids that comprise the peptide modulates peptide functionality, but a small increase in sequence length leads to a dramatic increase in the number of peptide candidates. Traditionally, peptide design is guided by human expertise and intuition and typically yields fewer than ten peptides per study, but these approaches are not easily scalable and are susceptible to human bias. Here we introduce a machine learning workflow-AI-expert-that combines Monte Carlo tree search and random forest with molecular dynamics simulations to develop a fully autonomous computational search engine to discover peptide sequences with high potential for self-assembly. We demonstrate the efficacy of the AI-expert to efficiently search large spaces of tripeptides and pentapeptides. The predictability of AI-expert performs on par or better than our human experts and suggests several non-intuitive sequences with high self-assembly propensity, outlining its potential to overcome human bias and accelerate peptide discovery.
Collapse
Affiliation(s)
- Rohit Batra
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Troy D Loeffler
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Henry Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Srilok Srinivasan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Lee A Solomon
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
31
|
Sun S, Liang HW, Wang H, Zou Q. Light-Triggered Self-Assembly of Peptide Nanoparticles into Nanofibers in Living Cells through Molecular Conformation Changes and H-Bond Interactions. ACS NANO 2022; 16:18978-18989. [PMID: 36354757 DOI: 10.1021/acsnano.2c07895] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controlled self-assembly has attracted extensive interest in biological and nanotechnological applications. Enzymatic or biocatalytic triggered self-assembly is widely used for the diagnostic and prognostic marker in different pathologies because of their nanostructures and biological effects. However, it remains a great challenge to control the self-assembly of peptides in living cells with a high degree of spatial and temporal precision. Here we demonstrate a light-triggered platform that enables spatiotemporal control of self-assembly from nanoparticles into nanofibers in living cells through subtle molecular conformational changes and internal H-bonding interactions. The platform contained 3-methylene-2-(quinolin-8-yl) isoindolin-1-one, which acts as the light-controlled unit to disrupt the hydrophilic/lipophilic balance through the change of molecular conformation, and a peptide that can be a faster recombinant to assemble via H-bonding interactions. The process has good biocompatibility because it does not involve waste generation or oxygen consumption; moreover, the assembly rate constant was fast and up to 0.17 min-1. It is applied to the regulation of molecular assembly in living cells. As such, our findings demonstrate that light-triggered controllable assembly can be applied for initiative regulating cellular behaviors in living systems.
Collapse
Affiliation(s)
- Si Sun
- National Engineering Research Center of Immunological Products, Third Military Medical University, Gaotanyan No. 30, Shapingba District, Chongqing, 400038, China
| | - Hong-Wen Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing100190, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Third Military Medical University, Gaotanyan No. 30, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
32
|
Hao L, Wang A, Fu J, Sen Liang, Han Q, Jing Y, Li J, Li Q, Bai S, Seeberger PH, Yin J. Biomineralized Dipeptide Self-Assembled Hydrogel with Ultrahigh Mechanical Strength and Osteoinductivity for Bone Regeneration. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Flexibility, size and hydrophobicity of alkyl side groups in methoxy-poly (ethylene glycol)-polypeptide for the nano-assembly and thermo-sensitivity. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Wang Z, Sun C, Yang K, Chen X, Wang R. Cucurbituril‐Based Supramolecular Polymers for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202206763. [DOI: 10.1002/anie.202206763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery Chemical and Biomolecular Engineering and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| |
Collapse
|
35
|
Hou S, Zhang J, Huang B, Wang X, Xing P. Organic solvent vapor/thermal responsive binary gels with tunable transparency and mechanical strength. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5871. [PMID: 36079250 PMCID: PMC9456777 DOI: 10.3390/ma15175871] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 05/09/2023]
Abstract
Peptide-based hydrogels have attracted increasing attention for biological applications and diagnostic research due to their impressive features including biocompatibility and biodegradability, injectability, mechanical stability, high water absorption capacity, and tissue-like elasticity. The aim of this review will be to present an updated report on the advancement of peptide-based hydrogels research activity in recent years in the field of anticancer drug delivery, antimicrobial and wound healing materials, 3D bioprinting and tissue engineering, and vaccines. Additionally, the biosensing applications of this key group of hydrogels will be discussed mainly focusing the attention on cancer detection.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
37
|
Wang Z, Sun C, Yang K, Chen X, Wang R. Cucurbituril‐based Supramolecular Polymers for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Wang
- University of Macau School of Pharmacy MACAU
| | - Chen Sun
- University of Macau School of Pharmacy MACAU
| | - Kuikun Yang
- University of Macau School of Pharmacy MACAU
| | - Xiaoyuan Chen
- National University of Singapore School of Medicine and Faculty of Engineering 10 Medical Dr 117597 Singapore SINGAPORE
| | | |
Collapse
|
38
|
Ghosh T, Wang S, Kashyap D, Jadhav RG, Rit T, Jha HC, Cousins BG, Das AK. Self-assembled benzoselenadiazole-capped tripeptide hydrogels with inherent in vitro anti-cancer and anti-inflammatory activity. Chem Commun (Camb) 2022; 58:7534-7537. [PMID: 35703336 DOI: 10.1039/d2cc01160c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled benzoselenadiazole (BSe)-capped tripeptide based nanofibrillar hydrogels have been developed with inherent anticancer and anti-inflammatory activity.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Shu Wang
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Rohit G Jadhav
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Brian G Cousins
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
39
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
40
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
41
|
Chen H, Zhang T, Tian Y, You L, Huang Y, Wang S. Novel self-assembling peptide hydrogel with pH-tunable assembly microstructure, gel mechanics and the entrapment of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Ghosh G, Barman R, Mukherjee A, Ghosh U, Ghosh S, Fernández G. Control over Multiple Nano‐ and Secondary Structures in Peptide Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Goutam Ghosh
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 36 48149 Münster Germany
| | - Ranajit Barman
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation Science 2A and 2B Raja S. C. Mullick Road Kolkata India
| | - Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation Science 2A and 2B Raja S. C. Mullick Road Kolkata India
| | - Uttam Ghosh
- Department of Organic Chemistry Indian Institute of Science Bengaluru 560012 Karnataka India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation Science 2A and 2B Raja S. C. Mullick Road Kolkata India
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 36 48149 Münster Germany
| |
Collapse
|
43
|
Ghosh G, Barman R, Mukherjee A, Ghosh U, Ghosh S, Fernández G. Control over Multiple Nano- and Secondary Structures in Peptide Self-Assembly. Angew Chem Int Ed Engl 2022; 61:e202113403. [PMID: 34758508 PMCID: PMC9300061 DOI: 10.1002/anie.202113403] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 12/15/2022]
Abstract
Herein, we report the rich morphological and conformational versatility of a biologically active peptide (PEP-1), which follows diverse self-assembly pathways to form up to six distinct nanostructures and up to four different secondary structures through subtle modulation in pH, concentration and temperature. PEP-1 forms twisted β-sheet secondary structures and nanofibers at pH 7.4, which transform into fractal-like structures with strong β-sheet conformations at pH 13.0 or short disorganized elliptical aggregates at pH 5.5. Upon dilution at pH 7.4, the nanofibers with twisted β-sheet secondary structural elements convert into nanoparticles with random coil conformations. Interestingly, these two self-assembled states at pH 7.4 and room temperature are kinetically controlled and undergo a further transformation into thermodynamically stable states upon thermal annealing: whereas the twisted β-sheet structures and corresponding nanofibers transform into 2D sheets with well-defined β-sheet domains, the nanoparticles with random coil structures convert into short nanorods with α-helix conformations. Notably, PEP-1 also showed high biocompatibility, low hemolytic activity and marked antibacterial activity, rendering our system a promising candidate for multiple bio-applications.
Collapse
Affiliation(s)
- Goutam Ghosh
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrenstrasse 3648149MünsterGermany
| | - Ranajit Barman
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation Science2A and 2B Raja S. C. Mullick RoadKolkataIndia
| | - Anurag Mukherjee
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation Science2A and 2B Raja S. C. Mullick RoadKolkataIndia
| | - Uttam Ghosh
- Department of Organic ChemistryIndian Institute of ScienceBengaluru560012KarnatakaIndia
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation Science2A and 2B Raja S. C. Mullick RoadKolkataIndia
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrenstrasse 3648149MünsterGermany
| |
Collapse
|
44
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Saha R, Bhattacharjee S. Coiled‐Coil Helical Nano‐Assemblies: Shape Persistent, Thixotropic, and Tunable Chiroptical Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202103942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN, Sector V, Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur- 732103 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
45
|
Hamsici S, White AD, Acar H. Peptide framework for screening the effects of amino acids on assembly. SCIENCE ADVANCES 2022; 8:eabj0305. [PMID: 35044831 PMCID: PMC8769536 DOI: 10.1126/sciadv.abj0305] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Discovery of peptide domains with unique intermolecular interactions is essential for engineering peptide-based materials. Rather than attempting a brute-force approach, we instead identify a previously unexplored strategy for discovery and study of intermolecular interactions: “co-assembly of oppositely charged peptide” (CoOP), a framework that “encourages” peptide assembly by mixing two oppositely charged hexapeptides. We used an integrated computational and experimental approach, probed the free energy of association and probability of amino acid contacts during co-assembly with atomic-resolution simulations, and correlated them to the physical properties of the aggregates. We introduce CoOP with three examples: dialanine, ditryptophan, and diisoleucine. Our results indicated that the opposite charges initiate the assembly, and the subsequent stability is enhanced by the presence of an undisturbed hydrophobic core. CoOP represents a unique, simple, and elegant framework that can be used to identify the structure-property relationships of self-assembling peptide-based materials.
Collapse
Affiliation(s)
- Seren Hamsici
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73069 USA
| | - Andrew D. White
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Corresponding author. (A.D.W.); (H.A.)
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73069 USA
- Corresponding author. (A.D.W.); (H.A.)
| |
Collapse
|
46
|
Murphy RD, Garcia RV, Heise A, Hawker CJ. Peptides as 3D printable feedstocks: Design strategies and emerging applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Denzer BR, Kulchar RJ, Huang RB, Patterson J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021; 7:158. [PMID: 34698172 PMCID: PMC8544384 DOI: 10.3390/gels7040158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
With the increased research on supramolecular hydrogels, many spectroscopic, diffraction, microscopic, and rheological techniques have been employed to better understand and characterize the material properties of these hydrogels. Specifically, spectroscopic methods are used to characterize the structure of supramolecular hydrogels on the atomic and molecular scales. Diffraction techniques rely on measurements of crystallinity and help in analyzing the structure of supramolecular hydrogels, whereas microscopy allows researchers to inspect these hydrogels at high resolution and acquire a deeper understanding of the morphology and structure of the materials. Furthermore, mechanical characterization is also important for the application of supramolecular hydrogels in different fields. This can be achieved through atomic force microscopy measurements where a probe interacts with the surface of the material. Additionally, rheological characterization can investigate the stiffness as well as the shear-thinning and self-healing properties of the hydrogels. Further, mechanical and surface characterization can be performed by micro-rheology, dynamic light scattering, and tribology methods, among others. In this review, we highlight state-of-the-art techniques for these different characterization methods, focusing on examples where they have been applied to supramolecular hydrogels, and we also provide future directions for research on the various strategies used to analyze this promising type of material.
Collapse
Affiliation(s)
- Bridget R. Denzer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Rachel J. Kulchar
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA;
| | - Richard B. Huang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Jennifer Patterson
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, Getafe, 28906 Madrid, Spain
- Independent Consultant, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
49
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
50
|
High water content hydrogels with instant mechanical recovery, anti-high temperature and anti-high ionic strength properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|