1
|
Zhang X, Zhuo J, Wang D, Zhu X. Supramolecular Polymers for Drug Delivery. Chemistry 2025; 31:e202404617. [PMID: 39961052 DOI: 10.1002/chem.202404617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Indexed: 03/21/2025]
Abstract
Supramolecular polymers are constructed through highly reversible and directionally specific non-covalent interactions between monomer units. This unique feature enables supramolecular polymers to undergo controlled structural reconfiguration and functional transformation in response to external stimuli, imparting them with high environmental responsiveness and self-healing properties. In particular, supramolecular polymers exhibit several specific advantages compared to conventional polymers, such as inherent degradability, the ease of preparation and the incorporation of functional units, and smart responsiveness to various biological stimuli. These characters make supramolecular polymers promising candidates for intelligent drug delivery systems in complex biological environments. In this review, we comprehensively summarize the latest developments and representative achievements of supramolecular polymers in drug delivery fields, focusing primarily on the design and synthesis, the properties and functionalities, and the practical applications of supramolecular polymers in small molecule drug delivery, gene therapy, and protein delivery. Finally, we highlight future research directions, focusing on multifunctionality, adaptability, and personalized therapy. We focus on recent studies that address key challenges in the field, providing rational polymer design, important properties, functionality, and understanding delivery strategies. These developments are expected to advance supramolecular polymers as new platforms of intelligent drug delivery systems, offering innovative solutions for the treatment of complex diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jiaxin Zhuo
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Kong H, Valverde-González A, Maruchenko R, Bouteiller L, Raynal M. Enhanced Stability and Properties of Benzene-1,3,5-Tricarboxamide Supramolecular Copolymers through Engineered Coupled Equilibria. Angew Chem Int Ed Engl 2025; 64:e202421991. [PMID: 39569591 PMCID: PMC11914932 DOI: 10.1002/anie.202421991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Improving the stability of multi-component and functional assemblies such as supramolecular copolymers without impeding their dynamicity is key for their implementation as innovative materials. Up to now, this has been achieved by a trial-and-error approach, requiring the time-consuming characterization of a series of supramolecular coassemblies. We report herein that this is possible to significantly enhance the stability of supramolecular copolymers by a minimal change in the chemical nature of one of the interacting monomers. This is achieved by replacing an ester function by an ether function in the structure of a chiral benzene-1,3,5-tricarboxamide (BTA) monomer, used as "sergeant", coassembled with achiral monomers, the "soldiers". Pseudo-phase diagrams, constructed by probing the nature of the coassemblies with multifarious analytical techniques, confirm that the greater stability of the resulting copolymers is mainly due to the minimization of competing species. This leads to better rheological and catalytic properties of the corresponding supramolecular copolymers. Favouring coassembly over undesired assembly pathways must be considered as a blueprint for the development of better-performing supramolecular multi-component systems.
Collapse
Affiliation(s)
- Huanjun Kong
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Antonio Valverde-González
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Régina Maruchenko
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
3
|
Schock Vaiani J, Broekgaarden M, Coll JL, Sancey L, Busser B. In vivo vectorization and delivery systems for gene therapies and RNA-based therapeutics in oncology. NANOSCALE 2025; 17:5501-5525. [PMID: 39927415 DOI: 10.1039/d4nr05371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Gene and RNA-based therapeutics represent a promising frontier in oncology, enabling targeted modulation of tumor-associated genes and proteins. This review explores the latest advances in payload vectorization and delivery systems developed for in vivo cancer treatments. We discuss viral and non-viral organic particles, including lipid based nanoparticles and polymeric structures, for the effective transport of plasmids, siRNA, and self-amplifying RNA therapeutics. Their physicochemical properties, strategies to overcome intracellular barriers, and innovations in cell-based carriers and engineered extracellular vesicles are highlighted. Moreover, we consider oncolytic viruses, novel viral capsid modifications, and approaches that refine tumor targeting and immunomodulation. Ongoing clinical trials and regulatory frameworks guide future directions and emphasize the need for safe, scalable production. The potential convergence of these systems with combination therapies paves the way toward personalized cancer medicine.
Collapse
Affiliation(s)
- Julie Schock Vaiani
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Mans Broekgaarden
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Jean-Luc Coll
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Lucie Sancey
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Benoit Busser
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
- Grenoble Alpes Univ. Hospital (CHUGA), 38043 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
4
|
Hu M, Ye FY, Yu W, Sheng K, Xu ZR, Fu JJ, Wen X, Feng HT, Liu M, Zheng YS. Highly enhanced chiroptical effect from self-inclusion helical nanocrystals of tetraphenylethylene bimacrocycles. Chem Sci 2024:d4sc03599b. [PMID: 39309089 PMCID: PMC11414835 DOI: 10.1039/d4sc03599b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
The helical structure is often the key factor for forming and enhancing chiroptical properties, such as circular dichroism (CD) and circular polarized luminescence (CPL) effects. However, no matter whether helical molecules or helical aggregates, they usually display modest chiroptical signals, which limits their practical applications. Herein, chiral tetraphenylethylene (TPE) bimacrocycles prepared in almost quantitative yield show strong and repeatable CD signals up to more than 7000 mdeg, which is very rare for general organic compounds, besides emitting very strong CPL light with an absolute g lum value up to 6.2 × 10-2. It is found that the superhelices formed by self-inclusion between the cavity and outward cyclohexyl ring of TPE bimacrocycles in crystal state are the key factor for highly enhanced chiroptical effect, and the self-inclusion superhelices in assemblies are confirmed by High Resolution Transmission Electron Microscopy (HR-TEM), Powder X-ray Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR) data. Furthermore, the chiral TPE bimacrocycle shows great potential in chiral recognition and chiral analysis not only for chiral acids but also for chiral amines, chiral amino acids, and neutral chiral alcohol. Using self-inclusion helical nanocrystals of chiral macrocycles, this work provides a new strategy for chiroptical materials with excellent chiroptical properties.
Collapse
Affiliation(s)
- Ming Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Feng-Ying Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Wei Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Kang Sheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhi-Rong Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jin-Jin Fu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xin Wen
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
5
|
Ye B, Hu W, Yu G, Yang H, Gao B, Ji J, Mao Z, Huang F, Wang W, Ding Y. A Cascade-Amplified Pyroptosis Inducer: Optimizing Oxidative Stress Microenvironment by Self-Supplying Reactive Nitrogen Species Enables Potent Cancer Immunotherapy. ACS NANO 2024; 18:16967-16981. [PMID: 38888082 DOI: 10.1021/acsnano.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.
Collapse
Affiliation(s)
- Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
6
|
Cai C, Wu S, Zhang Y, Li F, Tan Z, Dong S. Bulk transparent supramolecular glass enabled by host-guest molecular recognition. Nat Commun 2024; 15:3929. [PMID: 38724556 PMCID: PMC11082146 DOI: 10.1038/s41467-024-48089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Supramolecular glass is a non-covalently cross-linked amorphous material that exhibits excellent optical properties and unique intrinsic structural features. Compared with artificial inorganic/organic glass, which has been extensively developed, supramolecular glass is still in the infancy stage, and itself is rarely recognized and studied thus far. Herein, we present the development of the host-guest molecular recognition motifs between methyl-β-cyclodextrin and para-hydroxybenzoic acid as the building blocks of supramolecular glass. Non-covalent polymerization resulting from the host-guest complexation and hydrogen bonding formation enables high transparency and bulk state to supramolecular glass. Various advantages, including recyclability, compatibility, and thermal processability, are associated with dynamic assembly pattern. Short-range order (host-guest complexation) and long-range disorder (three dimensional polymeric network) structures are identified simultaneously, thus demonstrating the typical structural characteristics of glass. This work provides a supramolecular strategy for constructing transparent materials from organic components.
Collapse
Affiliation(s)
- Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shuanggen Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, P. R. China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
| |
Collapse
|
7
|
Alfei S. Cationic Materials for Gene Therapy: A Look Back to the Birth and Development of 2,2-Bis-(hydroxymethyl)Propanoic Acid-Based Dendrimer Scaffolds. Int J Mol Sci 2023; 24:16006. [PMID: 37958989 PMCID: PMC10649874 DOI: 10.3390/ijms242116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Gene therapy is extensively studied as a realistic and promising therapeutic approach for treating inherited and acquired diseases by repairing defective genes through introducing (transfection) the "healthy" genetic material in the diseased cells. To succeed, the proper DNA or RNA fragments need efficient vectors, and viruses are endowed with excellent transfection efficiency and have been extensively exploited. Due to several drawbacks related to their use, nonviral cationic materials, including lipidic, polymeric, and dendrimer vectors capable of electrostatically interacting with anionic phosphate groups of genetic material, represent appealing alternative options to viral carriers. Particularly, dendrimers are highly branched, nanosized synthetic polymers characterized by a globular structure, low polydispersity index, presence of internal cavities, and a large number of peripheral functional groups exploitable to bind cationic moieties. Dendrimers are successful in several biomedical applications and are currently extensively studied for nonviral gene delivery. Among dendrimers, those derived by 2,2-bis(hydroxymethyl)propanoic acid (b-HMPA), having, unlike PAMAMs, a neutral polyester-based scaffold, could be particularly good-looking due to their degradability in vivo. Here, an overview of gene therapy, its objectives and challenges, and the main cationic materials studied for transporting and delivering genetic materials have been reported. Subsequently, due to their high potential for application in vivo, we have focused on the biodegradable dendrimer scaffolds, telling the history of the birth and development of b-HMPA-derived dendrimers. Finally, thanks to a personal experience in the synthesis of b-HMPA-based dendrimers, our contribution to this field has been described. In particular, we have enriched this work by reporting about the b-HMPA-based derivatives peripherally functionalized with amino acids prepared by us in recent years, thus rendering this paper original and different from the existing reviews.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| |
Collapse
|
8
|
García Coll J, Ulrich S. Nucleic-Acid-Templated Synthesis of Smart Polymer Vectors for Gene Delivery. Chembiochem 2023; 24:e202300333. [PMID: 37401911 DOI: 10.1002/cbic.202300333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Nucleic acids are information-rich and readily available biomolecules, which can be used to template the polymerization of synthetic macromolecules. Here, we highlight the control over the size, composition, and sequence one can nowadays obtain by using this methodology. We also highlight how templated processes exploiting dynamic covalent polymerization can, in return, result in therapeutic nucleic acids fabricating their own dynamic delivery vector - a biomimicking concept that can provide original solutions for gene therapies.
Collapse
Affiliation(s)
- José García Coll
- IBMM, Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| |
Collapse
|
9
|
Yang H, Li S, Zheng J, Chen G, Wang W, Miao Y, Zhu N, Cong Y, Fu J. Erasable, Rewritable, and Reprogrammable Dual Information Encryption Based on Photoluminescent Supramolecular Host-Guest Recognition and Hydrogel Shape Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301300. [PMID: 37358043 DOI: 10.1002/adma.202301300] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Information encryption technologies are very important for security, health, commodity, and communications, etc. Novel information encryption mechanisms and materials are desired to achieve multimode and reprogrammable encryption. Here, a supramolecular strategy is demonstrated to achieve multimodal, erasable, reprogrammable, and reusable information encryption by reversibly modulating fluorescence. A butyl-naphthalimide with flexible ethylenediamine functionalized β-cyclodextrin (N-CD) is utilized as a fluorescent responsive ink for printing or patterning information on polymer brushes with dangling adamantane group grafted on responsive hydrogels. The photoluminescent naphthalimide moiety is bonded to β-CD and entrapped in the cavity. Its fluorescence is highly weakened in β-CD cavity and recovers after being expelled from the cavity by a competing guest molecule to emit bright green photoluminescence under UV. Experiments and theoretical calculations suggest π-π stacking and ICT as the primary mechanism for the naphthalimides assembly and fluorescence, which can be quenched through insertion of conjugated molecules and recover by removing the insert. Such reversible quenching and recovering are used to achieve repeated writing, erasing, and re-writing of information. Supramolecular recognition and hydrogel shape memory are further combined to achieve reversible dual-encryption. This study provides a novel strategy to develop smart materials with improved information security for broad applications.
Collapse
Affiliation(s)
- Hailong Yang
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, P. R. China
| | - Shengnan Li
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, P. R. China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, P. R. China
| | - Guoqi Chen
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, P. R. China
| | - Wenquan Wang
- Hospital of Stomatology Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, P. R. China
| | - Yueyue Miao
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, P. R. China
| | - Nannan Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, P. R. China
| | - Yang Cong
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang Institute of Tianjin University, Tianjin University, Ningbo, 315201, P. R. China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, P. R. China
| |
Collapse
|
10
|
Cortón P, Fernández-Labandeira N, Díaz-Abellás M, Peinador C, Pazos E, Blanco-Gómez A, García MD. Aqueous Three-Component Self-Assembly of a Pseudo[1]rotaxane Using Hydrazone Bonds. J Org Chem 2023; 88:6784-6790. [PMID: 37114355 PMCID: PMC10731646 DOI: 10.1021/acs.joc.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
We present herein the synthesis of a new polycationic pseudo[1]rotaxane, self-assembled in excellent yield through hydrazone bonds in aqueous media of three different aldehyde and hydrazine building blocks. A thermodynamically controlled process has been studied sequentially by analyzing the [1 + 1] reaction of a bisaldehyde and a trishydrazine leading to the macrocyclic part of the system, the ability of this species to act as a molecular receptor, the conversion of a hydrazine-pending cyclophane into the pseudo[1]rotaxane and, lastly, the one-pot [1 + 1 + 1] condensation process. The latter was found to smoothly produce the target molecule through an integrative social self-sorting process, a species that was found to behave in water as a discrete self-inclusion complex below 2.5 mM concentration and to form supramolecular aggregates in the 2.5-70 mM range. Furthermore, we demonstrate how the abnormal kinetic stability of the hydrazone bonds on the macrocycle annulus can be advantageously used for the conversion of the obtained pseudo[1]rotaxane into other exo-functionalized macrocyclic species.
Collapse
Affiliation(s)
- Pablo Cortón
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Natalia Fernández-Labandeira
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mauro Díaz-Abellás
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos Peinador
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Elena Pazos
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Arturo Blanco-Gómez
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Marcos D. García
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
11
|
Hu W, Ye B, Yu G, Huang F, Mao Z, Ding Y, Wang W. Recent Development of Supramolecular Cancer Theranostics Based on Cyclodextrins: A Review. Molecules 2023; 28:molecules28083441. [PMID: 37110674 PMCID: PMC10147063 DOI: 10.3390/molecules28083441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
With the development of personalized medical demands for precise diagnosis, rational management and effective cancer treatment, supramolecular theranostic systems have received widespread attention due to their reversibly switchable structures, sensitive response to biological stimuli and integration ability for multiple capabilities in a single platform with a programmable fashion. Cyclodextrins (CDs), benefiting from their excellent characteristics, such as non-toxicity, easy modification, unique host-guest properties, good biocompatibility, etc., as building blocks, serve as an all-purpose strategy for the fabrication of a supramolecular cancer theranostics nanodevice that is capable of biosafety, controllability, functionality and programmability. This review focuses on the supramolecular systems of CD-bioimaging probes, CD-drugs, CD-genes, CD-proteins, CD-photosensitizers and CD-photothermal agents as well as multicomponent cooperation systems with regards to building a nanodevice with functions of diagnosis and (or) therapeutics of cancer treatment. By introducing several state-of-the-art examples, emphasis will be placed on the design of various functional modules, the supramolecular interaction strategies under the fantastic topological structures and the hidden "bridge" between their structures and therapeutic efficacy, aiming for further comprehension of the important role of a cyclodextrin-based nanoplatform in advancing supramolecular cancer theranostics.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
12
|
Komiyama M. Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:218-232. [PMID: 36793325 PMCID: PMC9924364 DOI: 10.3762/bjnano.14.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cyclodextrins have been widely employed for drug delivery systems (DDSs) in which drugs are selectively delivered to a target site in the body. Recent interest has been focused on the construction of cyclodextrin-based nanoarchitectures that show sophisticated DDS functions. These nanoarchitectures are precisely fabricated based on three important features of cyclodextrins, namely (1) the preorganized three-dimensional molecular structure of nanometer size, (2) the easy chemical modification to introduce functional groups, and (3) the formation of dynamic inclusion complexes with various guests in water. With the use of photoirradiation, drugs are released from cyclodextrin-based nanoarchitectures at designated timing. Alternatively, therapeutic nucleic acids are stably protected in the nanoarchitectures and delivered to the target site. The efficient delivery of the CRISPR-Cas9 system for gene editing was also successful. Even more complicated nanoarchitectures can be designed for sophisticated DDSs. Cyclodextrin-based nanoarchitectures are highly promising for future applications in medicine, pharmaceutics, and other relevant fields.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
13
|
Su DD, Gervais V, Ulrich S, Barboiu M. Complexation Preferences of Dynamic Constitutional Frameworks as Adaptive Gene Vectors. Chemistry 2023; 29:e202203062. [PMID: 36345945 PMCID: PMC10108089 DOI: 10.1002/chem.202203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry. Herein, we designed and synthesized 40 new DCFs that vary in hydrophilic/hydrophobic balance, number of cationic headgroups. The results of DNA complexation obtained through gel electrophoresis and fluorescent displacement assays reveal binding preferences of different DCFs toward different DNAs. The formation of compact spherical architectures with an optimal diameter of 100-200 nm suggests that condensation into nanoparticles is more effective for longer PEG chains and PEI groups that induce a better binding performance in the presence of DNA targets.
Collapse
Affiliation(s)
- Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France.,Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| |
Collapse
|
14
|
Su DD, Ali LMA, Coste M, Laroui N, Bessin Y, Barboiu M, Bettache N, Ulrich S. Structure-Activity Relationships in Nucleic-Acid-Templated Vectors Based on Peptidic Dynamic Covalent Polymers. Chemistry 2023; 29:e202202921. [PMID: 36342312 PMCID: PMC10108046 DOI: 10.1002/chem.202202921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
The use of nucleic acids as templates, which can trigger the self-assembly of their own vectors represent an emerging, simple and versatile, approach toward the self-fabrication of tailored nucleic acids delivery vectors. However, the structure-activity relationships governing this complex templated self-assembly process that accompanies the complexation of nucleic acids remains poorly understood. Herein, the class of arginine-rich dynamic covalent polymers (DCPs) composed of different monomers varying the number and position of arginines were studied. The combinations that lead to nucleic acid complexation, in saline buffer, using different templates, from short siRNA to long DNA, are described. Finally, a successful peptidic DCP featuring six-arginine repeating unit that promote the safe and effective delivery of siRNA in live cancer cells was identified.
Collapse
Affiliation(s)
- Dan-Dan Su
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France.,Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Lamiaa M A Ali
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France.,Department of Biochemistry Medical Research Institute, University of Alexandria, 21561, Alexandria, Egypt
| | - Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| | - Nabila Laroui
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| | - Yannick Bessin
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Nadir Bettache
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| |
Collapse
|
15
|
Liu Z, Tian M, Zhang H, Liu Y. Reversible dynamic optical sensing based on coumarin modified β-cyclodextrin for glutathione in living cells. Chem Commun (Camb) 2023; 59:896-899. [PMID: 36594783 DOI: 10.1039/d2cc06512f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coumarin acting as an optical probe was modified on ethylenediamine β-cyclodextrin, which not only enhanced its molecular binding affinity to glutathione (GSH) by a reversible Michael addition, showing 113 times more affinity than that of coumarin itself, but also achieved dynamic real-time sensing of glutathione in living HeLa cells.
Collapse
Affiliation(s)
- Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengdi Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
16
|
Development of non-toxic and water-soluble nanofibers from oseltamivir in the presence of cyclodextrins for drug release. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Wang H, Fu Y, Mao J, Jiang H, Du S, Liu P, Tao J, Zhang L, Zhu J. Strong and Tough Supramolecular Microneedle Patches with Ultrafast Dissolution and Rapid-Onset Capabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207832. [PMID: 36189863 DOI: 10.1002/adma.202207832] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Dissolving microneedle (DMN) patches are emerging as a minimally invasive and efficient transdermal drug delivery platform. Generally, noncrystalline, water-soluble, and high-molecular-weight polymers are employed in DMNs because their sufficient intermolecular interactions can endow the DMNs with necessary mechanical strength and toughness. However, high viscosity and heavy chain entanglement of polymer solutions greatly hinder processing and dissolution of polymeric DMNs. Here, a strong and tough supramolecular DMN patch made of highly water-soluble cyclodextrin (CD) derivatives is described. Due to the synergy of multiple supramolecular interactions, the CD DMN patch exhibits robust mechanical strength outperforming the state-of-the-art polymeric DMNs. The CD DMN displays ultrafast dissolution (<30 s) in skin models by virtue of the dynamic and weak noncovalent bonds, which also enables the CD DMN and its payloads to diffuse rapidly into the deep skin layer. Moreover, the unique supramolecular structure of CD allows the CD DMNs to load not only hydrophilic drugs (e.g., rhodamine B as a model) but also hydrophobic model drugs (e.g., ibuprofen). As a proof-of-concept, CD DMNs loading ibuprofen show a rapid onset of therapeutic action in a xylene-induced acute inflammation model in mice. This work opens a new avenue for the development of mechanically robust supramolecular DMNs and broadens the applications of supramolecular materials.
Collapse
Affiliation(s)
- Hua Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, P. R. China
| | - Jinzhu Mao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, P. R. China
| | - Hao Jiang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Pei Liu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, P. R. China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Rajamohan R, Mohandoss S, Ashokkumar S, Madi F, Leila N, Murugavel K, Lee YR. A novel and water-soluble material for coronavirus inactivation from oseltamivir in the cavity of methyl and sulfated-β-cyclodextrins through inclusion complexation. J Pharm Biomed Anal 2022; 221:115057. [PMID: 36126612 PMCID: PMC9476363 DOI: 10.1016/j.jpba.2022.115057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
A potentially active water-soluble anti-viral with lesser toxic material from the Oseltamivir (OTV) has been produced by the sonication method. The formed material has been further characterized by UV–visible, FT-IR, powder XRD, SEM, TGA/DTA, ROESY, XPS, AFM and etc., The results of DFT calculation have proven that inclusion complexes (ICs) are theoretically and energetically more advantageous models and structures have also been proposed based on the results. Analysis of drug release has been carried out at three pH levels, and it is revealed the analysis is most helpful at acidic pH levels for the ICs with S-CD over H-CD. Over OTV without CDs, OTV:S-CD-ICs exhibited a very less cytotoxic ability on cancer cell lines than ICs with M-CD. ICs enhanced the coronavirus inactivation nature of OTV. This study provides for the first time a full characterization of ICs of OTV with CDs and highlights the impact of complexation on pharmacological activity.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongson 38541, Republic of Korea.
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongson 38541, Republic of Korea
| | - Sekar Ashokkumar
- PBRC Research center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Fatiha Madi
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 8 May 1945, Guelma, Algeria
| | - Neour Leila
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 8 May 1945, Guelma, Algeria
| | - Kuppusamy Murugavel
- PG and Research Department of Chemistry, Government Arts College, Chidambaram 608102, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongson 38541, Republic of Korea.
| |
Collapse
|
20
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
21
|
Carbajo‐Gordillo AI, López‐Fernández J, Benito JM, Blanco JLJ, Santana‐Armas ML, Marcelo G, Giorgio CD, Przybylski C, Mellet CO, Ilarduya CT, Mendicuti F, Fernández JMG. Enhanced Gene Delivery Triggered by Dual pH/Redox Responsive Host‐Guest Dimerization of Cyclooligosaccharide Star Polycations. Macromol Rapid Commun 2022; 43:e2200145. [DOI: 10.1002/marc.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - José López‐Fernández
- Instituto de Investigaciones Químicas (IIQ) C/ Américo Vespucio 49 Sevilla 41092 Spain
| | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ) C/ Américo Vespucio 49 Sevilla 41092 Spain
| | - José L. Jiménez Blanco
- Department of Organic Chemistry Faculty of Chemistry University of Seville C/ Profesor García González 1 Seville 41012 Spain
| | - María L. Santana‐Armas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition University of Navarra Pamplona 31080 Spain
| | - Gema Marcelo
- Department of Analytical Chemistry Physical Chemistry and Chemical Engineering Faculty of Chemistry University of Alcalá Alcalá de Henares Madrid Spain
| | - Christophe Di Giorgio
- Institut de Chimie Nice UMR 7272 Université Côte d'Azur 28, Avenue de Valrose Nice F‐06108 France
| | - Cédric Przybylski
- Institut Parisien de Chimie Moléculaire (IPCM) CNRS Sorbonne Université Paris France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry Faculty of Chemistry University of Seville C/ Profesor García González 1 Seville 41012 Spain
| | - Conchita Tros Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition University of Navarra Pamplona 31080 Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry Physical Chemistry and Chemical Engineering Faculty of Chemistry University of Alcalá Alcalá de Henares Madrid Spain
| | | |
Collapse
|
22
|
Deng B, Yang J, Guo M, Yang R. Highly efficient Catalytic performance on CuAAC reaction by polymer‐like supramolecular self‐assemblies‐Cu (I) in aqueous solution. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Deng
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| | - Jing Yang
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| | - Mengbi Guo
- Industrial Crop Research Institute Yunnan Academy of Agricultural Sciences Kunming Yunnan P. R. China
| | - Rui Yang
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| |
Collapse
|
23
|
Liu YH, Liu Y. Highly effective gene delivery based on cyclodextrin multivalent assembly in target cancer cells. J Mater Chem B 2022; 10:958-965. [DOI: 10.1039/d1tb02585f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A supramolecular assembly based on cyclodextrins for highly effective gene delivery responded to NIR light and reductase in targeted cancer cells.
Collapse
Affiliation(s)
- Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Yu HJ, Zhou Q, Dai X, Shen FF, Zhang YM, Xu X, Liu Y. Photooxidation-Driven Purely Organic Room-Temperature Phosphorescent Lysosome-Targeted Imaging. J Am Chem Soc 2021; 143:13887-13894. [PMID: 34410118 DOI: 10.1021/jacs.1c06741] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The construction of host-guest-binding-induced phosphorescent supramolecular assemblies has become one of increasingly significant topics in biomaterial research. Herein, we demonstrate that the cucurbit[8]uril host can induce the anthracene-conjugated bromophenylpyridinium guest to form a linear supramolecular assembly, thus facilitating the enhancement of red fluorescence emission by the host-stabilized charge-transfer interactions. When the anthryl group is photo-oxidized to anthraquinone, the obtained linear nanoconstructs can be readily converted into the homoternary inclusion complex, accompanied by the emergence of strong green phosphorescence in aqueous solution. More intriguingly, dual organelle-targeted imaging abilities have been also distinctively achieved in nuclei and lysosomes after undergoing photochemical reaction upon UV irradiation. This photooxidation-driven purely organic room-temperature phosphorescence provides a convenient and feasible strategy for supramolecular organelle identification to track specific biospecies and physiological events in the living cells.
Collapse
Affiliation(s)
- Hua-Jiang Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingyang Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang-Fang Shen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Programmed Synthesis of Hepta‐Differentiated β‐Cyclodextrin: 1 out of 117655 Arrangements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Liu J, Wang B, Przybylski C, Bistri-Aslanoff O, Ménand M, Zhang Y, Sollogoub M. Programmed Synthesis of Hepta-Differentiated β-Cyclodextrin: 1 out of 117655 Arrangements. Angew Chem Int Ed Engl 2021; 60:12090-12096. [PMID: 33650730 DOI: 10.1002/anie.202102182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/23/2023]
Abstract
Cyclodextrin poly-functionalization has fueled progress in their use in multiple applications such as enzyme mimicry, but also in the polymer sciences, luminescence, as sensors or for biomedical applications. However, regioselective access to a given pattern of functions on β-cyclodextrin is still very limited. We uncover a new orienting group, the thioacetate, that expands the toolbox available for cyclodextrin poly-hetero-functionalization using diisobutylaluminum hydride (DIBAL-H) promoted debenzylation. The usefulness of this group is illustrated in the first synthesis of a precisely hepta-hetero-functionalized β-cyclodextrin. By way of comparison, a random hepta-functionalization would give 117655 different molecules. This synthesis is not simply the vain quest for the Holy Grail of CD hetero-functionalization, but it illustrates the versatility of the DIBAL-H oriented hetero-functionalization strategy, opening the way to a multitude of useful functionalization patterns for new practical applications.
Collapse
Affiliation(s)
- Jiang Liu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Bo Wang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Olivia Bistri-Aslanoff
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Mickaël Ménand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| |
Collapse
|
27
|
Coste M, Kotras C, Bessin Y, Gervais V, Dellemme D, Leclercq M, Fossépré M, Richeter S, Clément S, Surin M, Ulrich S. Synthesis, Self‐Assembly, and Nucleic Acid Recognition of an Acylhydrazone‐Conjugated Cationic Tetraphenylethene Ligand. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maëva Coste
- IBMM Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Clément Kotras
- ICGM Institut Charles Gerhardt Montpellier UMR 5253 Université de Montpellier CNRS, ENSCM Montpellier France
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | - Yannick Bessin
- IBMM Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Virginie Gervais
- CNRS Institut de Pharmacologie et de Biologie Structurale (IPBS) Université de Toulouse, UPS 205 route de Narbonne 31077 Toulouse France
| | - David Dellemme
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | - Maxime Leclercq
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | - Sébastien Richeter
- ICGM Institut Charles Gerhardt Montpellier UMR 5253 Université de Montpellier CNRS, ENSCM Montpellier France
| | - Sébastien Clément
- ICGM Institut Charles Gerhardt Montpellier UMR 5253 Université de Montpellier CNRS, ENSCM Montpellier France
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | | |
Collapse
|
28
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary-Bobo M, Bettache N, Ulrich S. Cell-Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self-Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021; 60:5783-5787. [PMID: 33289957 DOI: 10.1002/anie.202014066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Dynamic covalent libraries enable exploring complex chemical systems from which bioactive assemblies can adaptively emerge through template effects. In this work, we studied dynamic covalent libraries made of complementary bifunctional cationic peptides, yielding a diversity of species from macrocycles to polymers. Although polymers are typically expressed only at high concentration, we found that siRNA acts as a template in the formation of dynamic covalent polymers at low concentration in a process guided by electrostatic binding. Using a glycosylated building block, we were able to show that this templated polymerization further translates into the multivalent presentation of carbohydrate ligands, which subsequently promotes cell uptake and even cell-selective siRNA delivery.
Collapse
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561, Alexandria, Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
29
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary‐Bobo M, Bettache N, Ulrich S. Cell‐Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self‐Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Department of Biochemistry Medical Research Institute University of Alexandria 21561 Alexandria Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Mihail Barboiu
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Magali Gary‐Bobo
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| |
Collapse
|
30
|
Liu J, Ding X, Fu Y, Xiang C, Yuan Y, Zhang Y, Yu P. Cyclodextrins based delivery systems for macro biomolecules. Eur J Med Chem 2020; 212:113105. [PMID: 33385835 DOI: 10.1016/j.ejmech.2020.113105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Macro biomolecules are of vital importance in regulating the biofunctions in organisms, in which proteins (including peptides when mentioned below) and nucleic acids (NAs) are the most important. Therefore, these proteins and NAs can be applied as "drugs" to regulate the biofunctions from abnormal to normal. Either for proteins and NAs, the most challenging thing is to avoid the biodegradation or physicochemical degradation before they reach the targeted location, and then functions as complete functional structures. Hence, appropriate delivery systems are very important which can protect them from these degradations. Cyclodextrins (CDs) based delivery systems achieved mega successes due to their outstanding pharmaceutical properties and there have been several reviews on CDs based small molecule drug delivery systems recently. But for biomolecules, which are getting more and more important for modern therapies, however, there are very few reviews to systematically summarize and analyze the CDs-based macro biomolecules delivery systems, especially for proteins. In this review, there were some of the notable examples were summarized for the macro biomolecules (proteins and NAs) delivery based on CDs. For proteins, this review included insulin, lysozyme, bovine serum albumin (BSA), green fluorescent protein (GFP) and IgG's, etc. deliveries in slow release, stimulating responsive release or targeting release manners. For NAs, this review summarized cationic CD-polymers and CD-cluster monomers as NAs carriers, notably, including the multicomponents targeting CD-based carriers and the virus-like RNA assembly method siRNA carriers.
Collapse
Affiliation(s)
- Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Xin Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuan Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
31
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
32
|
Neva T, Carbajo-Gordillo AI, Benito JM, Lana H, Marcelo G, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. Chemistry 2020; 26:15259-15269. [PMID: 32710799 DOI: 10.1002/chem.202002951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/25/2022]
Abstract
Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.
Collapse
Affiliation(s)
- Tania Neva
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ana I Carbajo-Gordillo
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - José M García Fernández
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
33
|
Carbajo-Gordillo AI, Jiménez Blanco JL, Benito JM, Lana H, Marcelo G, Di Giorgio C, Przybylski C, Hinou H, Ceña V, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules 2020; 21:5173-5188. [PMID: 33084317 DOI: 10.1021/acs.biomac.0c01283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.
Collapse
Affiliation(s)
- Ana I Carbajo-Gordillo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - José L Jiménez Blanco
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Christophe Di Giorgio
- Institut de Chimie Nice, UMR 7272, Université Côte d'Azur, 28 Avenue de Valrose, F-06108 Nice, France
| | - Cédric Przybylski
- CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, Paris, France
| | - Hiroshi Hinou
- Graduate School and Faculty of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
34
|
Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, Cabezón A, Piñeiro Á, Garcia-Fandino R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588:119689. [PMID: 32717282 PMCID: PMC7381410 DOI: 10.1016/j.ijpharm.2020.119689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. “One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them.” J. R. R. Tolkien.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Fabián Suárez
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Conde
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
35
|
Pamuła M, Nissinen M, Helttunen K. Correlating Solution- and Solid-State Structures of Conformationally Flexible Resorcinarenes: Significance of a Sulfonyl Group in Intramolecular Self-Inclusion. Chemistry 2020; 26:7374-7383. [PMID: 32083359 PMCID: PMC7317440 DOI: 10.1002/chem.201905211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Indexed: 01/13/2023]
Abstract
The synthesis of tetramethoxyresorcinarene podands bearing p-toluene arms connected by -SO3 - (1) and -CH2 O- (2) linkers is presented herein. In the solid state, the resorcinarene podand 1 forms an intramolecular self-inclusion complex with the pendant p-toluene group of a podand arm, whereas the resorcinarene podand 2 does not show self-inclusion. The conformations of the flexible resorcinarene podands in solution were investigated by variable-temperature experiments using 1D and 2D NMR spectroscopic techniques as well as by computational methods, including a conformational search and subsequent DFT optimisation of representative structures. The 1 H NMR spectra of 1 and 2 at room temperature show a single set of proton signals that are in agreement with C4v symmetry. At low temperatures, the molecules exist as a mixture of boat conformations featuring slow exchange on the NMR timescale. Energy barriers (ΔG≠ 298 ) of 55.5 and 52.0 kJ mol-1 were calculated for the boat-to-boat exchange of 1 and 2, respectively. The results of the ROESY experiments performed at 193 K and computational modelling suggest that in solution the resorcinarene podand 1 adopts a similar conformation to that present in its crystal structure, whereas podand 2 populates a more versatile range of conformations in solution.
Collapse
Affiliation(s)
- Małgorzata Pamuła
- Department of ChemistryNanoscience CenterUniversity of JyvaskylaP.O. Box 3540014JyvaskylaFinland
| | - Maija Nissinen
- Department of ChemistryNanoscience CenterUniversity of JyvaskylaP.O. Box 3540014JyvaskylaFinland
| | - Kaisa Helttunen
- Department of ChemistryNanoscience CenterUniversity of JyvaskylaP.O. Box 3540014JyvaskylaFinland
| |
Collapse
|
36
|
Gao B, Wang G, Li B, Wu L. Self-Inclusion and Dissociation of a Bridging β-Cyclodextrin Triplet. ACS OMEGA 2020; 5:8127-8136. [PMID: 32309722 PMCID: PMC7161068 DOI: 10.1021/acsomega.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
To understand the self-inclusion and the dissociation in a branched β-cyclodextrin (CD) system, we designed and synthesized a β-CD trimer in which each CD group is connected to one of bridging arms of a planar triphenylbenzene core through a CuAAC click reaction. Only one rather than two or all of the three host CDs was demonstrated to be in a self-including state in water, while no self-inclusion was observed to occur in dimethylsulfoxide (DMSO) via the characterization of 1H and NOESY NMR spectra. The configuration structures of the CD groups in the self-included state were evaluated, and the dissociation to free state in water was investigated under various conditions like heating, increased acidity, and discharging versus the addition of competitive guests. While raised temperature and increased acidity did not break the self-inclusion, two adamantane guest molecules were found to show capability in driving the equilibrium to get back to free state against the self-inclusion. The inclusion process of the added guests was believed to involve in the dissociation of the self-inclusion and the occupation of the guests in CD cavity. The results of host-guest interaction study indicated that the stable combination of guests was favorable for blocking the structural overturning of glucose toward trapping the bridging group into the cavity.
Collapse
|
37
|
Surin M, Ulrich S. From Interaction to Function in DNA-Templated Supramolecular Self-Assemblies. ChemistryOpen 2020; 9:480-498. [PMID: 32328404 PMCID: PMC7175023 DOI: 10.1002/open.202000013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel MaterialsCenter of Innovation and Research in Materials and Polymers (CIRMAP)University of Mons-UMONS7000MonsBelgium
| | | |
Collapse
|
38
|
Zhang YM, Liu YH, Liu Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806158. [PMID: 30773709 DOI: 10.1002/adma.201806158] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Cyclodextrins (CDs), which are a class of cyclic oligosaccharides extracted from the enzymatic degradation of starch, are often utilized in molecular recognition and assembly constructs, primarily via host-guest interactions in water. In this review, recent progress in CD-based supramolecular nanoassemblies that are sensitive to chemical, biological, and physical stimuli is updated and reviewed, and intriguing examples of the biological functions of these nanoassemblies are presented, including pH- and redox-responsive drug and gene delivery, enzyme-activated specific cargo release, photoswitchable morphological interconversion, microtubular aggregation, and cell-cell communication, as well as a geomagnetism-controlled nanosystem for the suppression of tumor invasion and metastasis. Moreover, future perspectives and challenges in the fabrication of intelligent CD-based biofunctional materials are also discussed at the end of this review, which is expected to promote the translational development of these nanomaterials in the biomedical field.
Collapse
Affiliation(s)
- Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
39
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
40
|
Neva T, Ortiz Mellet C, Fernández JMG, Benito JM. Multiply–linked cyclodextrin–aromatic hybrids: Caps, hinges and clips. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1609020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ), CSIC–University of Seville, Seville, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC–University of Seville, Seville, Spain
| |
Collapse
|
41
|
Neva T, Carmona T, Benito JM, Przybylski C, Ortiz Mellet C, Mendicuti F, García Fernández JM. Dynamic Control of the Self-Assembling Properties of Cyclodextrins by the Interplay of Aromatic and Host-Guest Interactions. Front Chem 2019; 7:72. [PMID: 30873399 PMCID: PMC6401617 DOI: 10.3389/fchem.2019.00072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
The presence of a doubly-linked naphthylene clip at the O-2I and O-3II positions in the secondary ring of β-cyclodextrin (βCD) derivatives promoted their self-assembly into head-to-head supramolecular dimers in which the aromatic modules act either as cavity extension walls (if the naphthalene moiety is 1,8-disubstituted) or as folding screens that separate the individual βCD units (if 2,3-disubstituted). Dimer architecture is governed by the conformational properties of the monomer constituents, as determined by NMR, fluorescence, circular dichroism, and computational techniques. In a second supramolecular organization level, the topology of the assembly directs host-guest interactions and, reciprocally, guest inclusion impacts the stability of the supramolecular edifice. Thus, inclusion of adamantane carboxylate, a well-known βCD cavity-fitting guest, was found to either preserve the dimeric arrangement, leading to multicomponent species, or elicit dimer disruption. The ensemble of results highlights the potential of the approach to program self-organization and external stimuli responsiveness of CD devices in a controlled manner while keeping full diastereomeric purity.
Collapse
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Sevilla, Spain
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Sevilla, Spain
| | - Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Paris, France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
42
|
|
43
|
Abstract
Delivery remains a major obstacle restricting the potential action of small molecular drugs as well as novel biologics which cannot readily enter cells without the help of a vector. A successful active delivery process involves three steps: (a) tagging the drug with a vector, (b) effective trafficking of this [drug-vector] conjugate through biological barriers, and finally (c) controlled drug release. While covalent bond formation and/or supramolecular association is involved in the making of the [drug-vector] conjugate, the final step requires precisely a controlled dissociation in order to trigger drug release. Therefore, in pursuit of smart, effective, and nontoxic delivery systems, it has become widely recognized that control over dynamic self-assembly could unleash the efficacy of artificial vectors. In this Account, I discuss our endeavors, and those of colleagues, in the recent implementation of Dynamic Covalent Chemistry (DCvC) in delivery applications. DCvC exploits reversible covalent reactions to generate covalent systems that can self-fabricate, adapt, respond, and fall apart in a controlled fashion. A privileged set of reversible covalent reactions has emerged in the community working on delivery applications and is based on condensation reactions (imine, acylhydrazone, oxime), and disulfide and boronate ester formations. The latest developments making this chemistry particularly attractive for such a DCvC approach are discussed. The rational justifying the potential of DCvC in delivery is based on the principle that using such reversible covalent reactions afford transient [drug-vector] conjugates which form spontaneously and chemoselectively, then adapt and self-correct their structure during self-assembly and trafficking thanks to the dynamic nature of the reversible covalent bonds, and finally respond to physicochemical stimuli such as pH and redox changes, thereby enabling controlled dissociation and concomitant drug release. For these reasons, DCvC has recently emerged as a leverage tool with growing prospects for advancing toward smarter delivery systems. The implementation of DCvC can follow three approaches that are discussed herein: (1) dynamic covalent bioconjugates, involving the transient covalent conjugation with a vector, (2) dynamic covalent vectors, involving the controlled dynamic and adaptive assembly and disassembly of vectors that complex drugs through supramolecular association, and (3) dynamic covalent targeting, involving the transient chemoselective formation of covalent bonds with the constituents of cell membranes. While DCvC has already attracted interest in material sciences, the recent results described in this Account showcase the vast potential of DCvC in biological sciences, and in particular in delivery applications where self-fabricated, adaptive, and responsive devices are of utmost importance.
Collapse
Affiliation(s)
- Sébastien Ulrich
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
44
|
Ali W, Ning G, Hassan M, Gong W. Construction of Pillar[5]arene Tetramer-Based Cross-Linked Supramolecular Polymers through Hierarchical Charge-Transfer and Host-Guest Interactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wajahat Ali
- School of Chemical Engineering; State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 P. R. China
| | - Guiling Ning
- School of Chemical Engineering; State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 P. R. China
| | - Mehdi Hassan
- Department of Chemistry; University of Baltistan; Skardu Pakistan
| | - Weitao Gong
- School of Chemical Engineering; State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 P. R. China
| |
Collapse
|