1
|
Wang S, Gong Z, Hübner R, Karring H, Wu C. Pickering Emulsion Biocatalysis with Engineered Living Cells for Degrading Polycarbonate Plastics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2504376. [PMID: 40411881 DOI: 10.1002/smll.202504376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/10/2025] [Indexed: 05/26/2025]
Abstract
The efficient degradation of plastics remains a pressing environmental challenge due to their inherent resistance to breakdown. While biocatalysis offers a promising approach for sustainable and effective plastic degradation, the inherently low solubility of plastics in aqueous systems severely limits the efficiency of enzymatic reactions. To address this issue, we developed a biocompatible polymer coating strategy to engineer living cell surfaces, enabling the stabilization of Pickering emulsions for over 192 h and significantly enhancing plastic accessibility to biocatalysts. Leveraging this platform, Escherichia coli (E. coli) cells containing overexpressed Candida antarctica Lipase B performed well by dispersing at the emulsion interface of water and toluene, facilitating the efficient biodegradation of polycarbonate (PC) plastics. Under optimized reaction conditions (pH 9, 45 °C), this Pickering emulsion system achieved efficient PC degradation, producing up to 4.5 mm bisphenol A within 72 h-far exceeding the performance of biphasic systems using native E. coli cells. The findings highlight the transformative potential of surface-engineered whole-cell catalysts in addressing environmental challenges, particularly plastic waste remediation.
Collapse
Affiliation(s)
- Shan Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Zhimin Gong
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, P.R. China
| | - René Hübner
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| |
Collapse
|
2
|
Zhang P, Dong Z, Meng S, Li Z, Ji Y, Schwaneberg U. Anchor Peptide-Based Immobilization Strategy Promote the Applications of Pickering Emulsion System in Natural Products Glycosylation. Angew Chem Int Ed Engl 2025; 64:e202500834. [PMID: 40055975 PMCID: PMC12087810 DOI: 10.1002/anie.202500834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 04/04/2025]
Abstract
Pickering emulsion systems serve as an advanced platform for efficient fine chemical production in biphasic enzymatic catalysis, though their applications are currently limited to a few commercial enzyme classes. Herein, we designed an anchor peptide-based immobilization strategy for Pickering emulsions to achieve efficient glycosylation of natural products by glycosyltransferases (GTs). Firstly, through enzyme mining, natural GTs were utilized to synthesize pharmaceutically important acacetin glucoside and galactoside. However, the best-performing enzymes, BacGT and BarGT-3, still showed low conversions for acacetin glucoside (<40%) and galactoside (<10%). Then, Spy chemistry was employed to cyclize these two GTs (Spy_BacGT and Spy_BarGT-3) for improved robustness, and a Pickering emulsion was formed with the free two Spy_GTs, using 20% 2-hexanone and 1% mesoporous silica nanoparticles (carriers of mesoporous, CM), achieving 70% and 66% conversions of acacetin glucoside and galactoside, respectively. Further immobilization of the cyclized GTs onto CM via the anchor peptide liquid chromatography peak I (LCI) (Spy_BacGT/BarGT-3_LCI@CM) further enabled the system to reach more than 90% conversions of acacetin glycosides, retaining 90% conversions after 6-8 cycles. Moreover, this strategy was applied to GTs exhibiting substrate selectivity, achieving efficient nonselective catalysis. This study provides a simple and efficient immobilization strategy to broaden the applications of the Pickering emulsion system in enzymatic glycosylation.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Zhe Dong
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- School of Food Science and BioengineeringChangsha University of Science & TechnologyChangsha410114China
| | - Shuaiqi Meng
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Zhongyu Li
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Yu Ji
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- State Key Laboratory of Green Biomanufacturing, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
3
|
Ali DC, Pan T, Wu Q, Wang Z. Oil-water interfaces of Pickering emulsions: microhabitats for living cell biocatalysis. Trends Biotechnol 2025; 43:790-801. [PMID: 39395882 DOI: 10.1016/j.tibtech.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
Based on the size of bacterial cells and bacterial surface hydrophobicity, some bacteria meet the requirements of Pickering particles to stabilize Pickering emulsions. Here, we discuss the oil-water interfaces of bacteria-stabilized Pickering emulsions as microhabitats for microbial metabolism of oil-soluble chemicals. The correlation between living bacteria-stabilized Pickering emulsions and microhabitats of living bacteria at oil-water interfaces offers a new perspective to study bioprocess engineering at the mesoscale between the cell and reactor scales, which not only provides novel parameters to optimize the bioprocess engineering, but also unravels the paradox of some natural phenomena related to living cell biocatalysis.
Collapse
Affiliation(s)
- Daniel Chikere Ali
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Tao Pan
- Jiangxi Province Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Qingping Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China.
| |
Collapse
|
4
|
Wu X, Karring H, Wang Z, Wu C. Protein-cell conjugates as artificial surface display for interfacial biocatalysis. Chem Sci 2025; 16:4892-4899. [PMID: 39944123 PMCID: PMC11811893 DOI: 10.1039/d4sc08063g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Interfacial whole-cell biocatalysis has great potential for advanced chemical synthesis due to its ability to efficiently mediate complex reactions. However, the practical use of this approach is often limited by the fragility of living cells and the difficulty of maintaining enzyme activity under interfacial conditions. Here, we propose an artificial surface display strategy for interfacial biocatalysis by directly coupling sodium caseinate (NaCas) to the surface of E. coli cells. This coupling creates a robust biointerface that provides two main benefits: protecting cells from harsh interfacial environments and enabling the formation of Pickering emulsions for catalysis. The resulting protein-cell conjugates demonstrated thermal stability and strong resistance to organic solvents. Furthermore, the direct attachment of additional enzymes onto the cell surface allowed for efficient multienzyme cascade reactions, achieving an 80% yield in benzoin synthesis. The platform also showed multienzyme recyclability, retaining over 80% of enzyme activity after five reuse cycles, with emulsions that remained stable for more than 24 hours, enabling long-term catalytic applications. Therefore, these features demonstrate the significant benefits of our artificial surface display strategy, providing an environmentally friendly and versatile platform for interfacial biocatalysis applicable to synthetic chemistry and industrial biotechnology.
Collapse
Affiliation(s)
- Xiankun Wu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark Campusvej 55 5230 Odense Denmark
| |
Collapse
|
5
|
Lu H, Wu C, Li J. Enzyme-particle Complexes Facilitate Pickering Interfacial Biocatalysis. Chempluschem 2025; 90:e202400644. [PMID: 39617727 DOI: 10.1002/cplu.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/26/2024] [Indexed: 03/18/2025]
Abstract
Pickering interfacial biocatalysis (PIB), where biocatalysts stabilize emulsions through carrier coupling or polymer grafting, has emerged as a powerful platform for organic synthesis due to its ability to accommodate water-insoluble substrates within enzymatic cascade reactions. PIB provides a large interfacial area for two-phase reactions, reducing diffusional resistance and enhancing transformation efficiency. The performance of PIB relies heavily on enzyme-particle conjugates, which serve a dual function: stabilizing the emulsion and acting as the active biocatalysts in the system. In this Concept, we discuss the latest advancements, current challenges, and future directions in the development of protein-particle conjugates for PIB.
Collapse
Affiliation(s)
- Haofan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
6
|
Chen L, Batista VF, Karring H, Wu C. Protein-Polymer Conjugates as Biocompatible and Recyclable ATRP Catalysts. Biomacromolecules 2025; 26:1023-1031. [PMID: 39778213 DOI: 10.1021/acs.biomac.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Atom transfer radical polymerization (ATRP) is a leading method for creating polymers with precise control over molecular weight, yet its reliance on metal catalysts limits its application in metal-sensitive and environmental contexts. Addressing these limitations, we have developed a recyclable, biocompatible, robust, and tunable ATRP catalyst composed of a protein-polymer-copper conjugate, synthesized by polymerizing an L-proline-based monomer onto bovine serum albumin and complexing with Cu(II). The use of this conjugate catalyst maintains ATRP's precision while ensuring biocompatibility with bothEscherichia coli and HEK 293 cells, and its high molecular weight allows for easy recycling through dialysis. Therefore, our efforts extend ATRP's applicability across diverse fields, including biotechnology and green chemistry, marking a significant advance toward environmentally friendly and safe polymerization technologies.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Vasco Figueiredo Batista
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| |
Collapse
|
7
|
Song P, Chen J, Zhao D, Shi K, Xu R, Zhu M, Zhao L, Pashuck ET, Ouyang L, Jiao F, Lin Y. Evolving Emulsion Microcompartments via Enzyme-Mimicking Amyloid-Mediated Interfacial Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409601. [PMID: 39670696 DOI: 10.1002/smll.202409601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Living organisms take in matter and energy from their surroundings, transforming these inputs into forms that cells can use to sustain metabolism and power various functions. A significant advancement in the development of protocells and life-like materials has been the creation of cell-like microcompartments capable of evolving into higher-order structures characterized by hierarchy and complexity. In this study, a smart emulsion system is designed to digests chemical substrates and generates organic or inorganic products, driving the self-organization and structuration of microcompartments. Central to this system is a lipase-derived peptide that undergoes amyloid fibrillation, exhibiting hydrolase-like activity and stabilizing Pickering emulsions. Through catalytic hydrolysis or silicatein-inspired mineralization, these emulsion microcompartments generate self-organized surfactant layers from organic substrates or silica scaffolds from inorganic substrates at the oil-water interface, respectively, helping to prevent coalescence. This process further facilitates a structural evolution into high-internal phase emulsion gels that are suitable for direct-ink-writing 3D printing. The findings underscore the potential for designing self-evolving soft materials that replicate the structures and functions of living organisms.
Collapse
Affiliation(s)
- Peiyong Song
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Zhao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Runze Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengyue Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Zhao
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Carubio RJ, Wang B, Ansorge‐Schumacher MB. Reaction Engineering for Asymmetric R-/ S-PAC Synthesis With Ephedrine or Pseudoephedrine Dehydrogenase in Pickering Emulsion. Eng Life Sci 2025; 25:e202400069. [PMID: 39990765 PMCID: PMC11842280 DOI: 10.1002/elsc.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025] Open
Abstract
The synthesis of enantiopure α-hydroxy ketones, particularly R- and S-phenylacetylcarbinol (PAC), represents an important process in the pharmaceutical industry, serving as a pivotal step in the production of drugs. Recently, two novel enzymes, ephedrine dehydrogenase (EDH) and pseudoephedrine dehydrogenase (PseDH), have been described. These enzymes enable the specific reduction of 1-phenyl-1,2-propanedione (PPD) to R-PAC and S-PAC, respectively. In this study, we transferred these enzymes into Pickering emulsions, which is an attractive reaction set-up for large-scale synthesis. The bioactive w/o Pickering emulsion (bioactive Pickering emulsion [BioPE]), in which methyl tert-butyl ether served as the continuous phase, was stabilized by silica nanoparticles. Formate dehydrogenase from Rhodococcus jostii was utilized for cofactor regeneration. Given the considerable complexity of the BioPE, this reaction system underwent a first-time application of design of experiment (DOE) for systematic engineering. A definitive screening design was employed to identify significant factors affecting space-time yield (STY) and conversion. Response surface methodology was used to optimize the conditions, resulting in the observation of a high STY of 4.2 g L⁻¹ h⁻¹ and a conversion of 83.2% for BioPE with EDH, and an STY of 4.4 g L⁻¹ h⁻¹ and a conversion of 64.5% for BioPE with PseDH.
Collapse
Affiliation(s)
| | - Bao‐Hsiang Wang
- Chair of Molecular BiotechnologyDresden University of TechnologyDresdenGermany
| | | |
Collapse
|
9
|
Yin L, Feng W, Hu Y, Mao X. Phase-Specific Immobilization of Phospholipase D as an Efficient Pickering Emulsion Interfacial Catalyst for Converting Antarctic Krill Oil Phospholipid. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1834-1846. [PMID: 39420812 DOI: 10.1021/acsami.4c14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Phosphatidylserine (PS), a rare phospholipid in Antarctic krill oil (AKO) critical for brain development, can be produced from the abundant phosphatidylcholine (PC) using phospholipase D (PLD) in Pickering emulsion interfacial catalysis (PIC) systems. However, the exposure of PLD to organic solvent around the emulsion interface diminished PLD activity, limiting the conversion efficiency of PS. In this study, we proposed a strategy to fabricate a PIC system with high efficiency and stability by immobilizing PLD in a specific phase on the emulsion interface, based on investigating the effect of the interfacial microenvironment on PLD activity. Janus-poly(acrylic acid)/polystyrene (JPP) and Janus-polyethylenimine/octadecane (JPO) particles were fabricated as carriers to realize the specific-phase immobilization of PLD. The highest activity was observed when PLD was immobilized on the hydrophilic side of JPP (PLD@JPP(W)), 1.9-fold that of free PLD. The catalytic efficiency of PLD@JPP(W) was 1.7-fold that of free PLD, confirmed by the kcat/Km value enhancement. Immobilization on the hydrophilic side also enhanced the thermal stability of PLD. The half-lives of PLD were extended from 4 to 36 h at 40 °C and from 6 to 28 days at 4 °C. Importantly, PLD@JPP(W) showed excellent catalytic efficiency as a PIC system, achieving a PS productivity of 93% within a short time of 2 h at an enzyme dosage of 0.05 mg. PLD@JPP(W) exhibited a 3.6 times higher yield than free PLD in the production of PS from PC rich in Antarctic krill oil. The strategy in this work could also be applied to other lipases, providing a promising method for the efficient conversion of functional lipids.
Collapse
Affiliation(s)
- Lili Yin
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Wenjia Feng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Yang Hu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
10
|
Jiang C, Meng Z. Natural shellac-based microcapsules as lipase carriers for recyclable efficient Pickering interfacial biocatalysis. Food Chem 2024; 460:140466. [PMID: 39032294 DOI: 10.1016/j.foodchem.2024.140466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Enzyme is an important class of catalyst. However, the efficiency of enzyme-catalyzed reactions is constrained by the limited contact between the enzyme and its substrate. In this study, to overcome this challenge, lipase-loaded microcapsules were prepared from natural shellac and nanoparticles using the emulsion template method. These microcapsules can perform dual roles as stabilizers and enzyme carriers to construct a water-in-oil Pickering interfacial biocatalytic system. The results showed that the hydrolytic conversion of the microcapsules could reach 90% within 20 min, which was significantly higher than that of the traditional biphasic system. The catalytic activity was influenced by the oil-to-water volume ratio and the microcapsule content. The microcapsules remained highly catalytic efficiency even after storage for three months or seven cycles of reuse. These microcapsules were prepared without the use of any cross-linkers or harsh solvents. This green and efficient catalytic system has great application prospects in the food industry.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Liu Y, Hou H, Zhang Y, Zheng Y, Sun M, Yuan H, Guo T, Meng T. Polyethylene Glycol-Enzyme Nanocomplexes as Carrier-free Biocatalyst for Pickering Interfacial Catalysis. ACS APPLIED BIO MATERIALS 2024; 7:7023-7029. [PMID: 39365689 DOI: 10.1021/acsabm.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
PEG-enzyme nanocomplexes are prepared and stabilized in an oil-in-water-type emulsion for Pickering interfacial biocatalysis, and these nanocomplexes function as catalysts and emulsifiers at the emulsion interface. The nanocomplexes are self-assembled by cross-linking mPEG-ALD with lipase, without complicated synthesis steps, toxic chemical reagents, and external carriers. Moreover, the mild cross-linking process preserves the original structure of the enzyme, the retention rate of enzyme activity is 82.1%, and the nanocomplexes are used to emulsify biphasic aqueous-organic solution into Pickering emulsion. The system exhibits excellent reusability, with enzyme activity remaining at 86.05% after five cycles, providing a desirable eco-friendly platform for carrier-free Pickering interfacial biocatalysis.
Collapse
Affiliation(s)
- Yu Liu
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Haoyue Hou
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuli Zhang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yingling Zheng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mengmeng Sun
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Meng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
12
|
Wang W, Yu Y, Wang M, Wang Y, Liu S, Xu J, Sun Z. Pickering Emulsion Promoted Interfacial Sequential Chemo-Biocatalytic Reaction for the Synthesis of Chiral Alcohols from Styrene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54799-54806. [PMID: 39315994 DOI: 10.1021/acsami.4c10461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chemo-biocatalytic cascades have emerged as a promising approach in the realm of advanced synthesis. However, reconciling the incompatible reaction conditions among distinct catalytic species presents a significant challenge. Herein, we introduce an innovative solution using an emulsion system stabilized by Janus silica nanoparticles, which serve as a bridge for both chemo-catalysts and biocatalysts at the interface. The chemo-catalyst is securely anchored within a hydrophobic polymer matrix, ensuring its residence in an organic environment. Meanwhile, the negatively charged E. coli cells containing enzymes are attracted to the aqueous phase at the interface, facilitating their optimal positioning. We demonstrate the efficacy of this system through a two-step cascade reaction. Initially, the oxidation of styrene to acetophenone using palladium as a chemocatalyst achieves a 6-fold increase in yield compared to the control system. Subsequently, the reduction of achiral acetophenone to its chiral alcohol derivative presents a 17-fold yield enhancement relative to that of the control reaction. Importantly, our system exhibits versatility, accommodating a wide range of substrates for both individual and sequential reactions. This work not only validates the concept but also paves the way for the integration of chemo- and biocatalysts in the synthesis of a broader array of high-value chemical compounds.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, 226001 Nantong, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, 226001 Nantong, China
| | - Mengyao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Shanqiu Liu
- College of Material Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| |
Collapse
|
13
|
Sun Z, Wu C. Pickering Emulsions Biocatalysis: Recent Developments and Emerging Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402208. [PMID: 38716793 DOI: 10.1002/smll.202402208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Indexed: 10/01/2024]
Abstract
Biocatalysis within biphasic systems is gaining significant attention in the field of synthetic chemistry, primarily for its ability to solve the problem of incompatible solubilities between biocatalysts and organic compounds. By forming an emulsion from these two-phase systems, a larger surface area is created, which greatly improves the mass transfer of substrates to the biocatalysts. Among the various types of emulsions, Pickering emulsions stand out due to their excellent stability, compatibility with biological substances, and the ease with which they can be formed and separated. This makes them ideal for reusing both the emulsifiers and the biocatalysts. This review explores the latest developments in biocatalysis using Pickering emulsions. It covers the structural features, methods of creation, innovations in flow biocatalysis, and the role of interfaces in these processes. Additionally, the challenges and future directions are discussed in combining chemical and biological catalysts within Pickering emulsion frameworks to advance synthetic methodologies.
Collapse
Affiliation(s)
- Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Chaowang road 18, Hangzhou, 310014, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| |
Collapse
|
14
|
Li K, Zou H, Tong X, Yang H. Enhanced Photobiocatalytic Cascades at Pickering Droplet Interfaces. J Am Chem Soc 2024; 146:17054-17065. [PMID: 38870463 DOI: 10.1021/jacs.4c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Developing new methods to engineer photobiocatalytic reactions is of utmost significance for artificial photosynthesis, but it remains a grand challenge due to the intrinsic incompatibility of biocatalysts with photocatalysts. In this work, photocatalysts and enzymes were spatially colocalized at Pickering droplet interfaces, where the reaction microenvironment and the spatial distance between two distinct catalysts were exquisitely regulated to achieve unprecedented photobiocatalytic cascade reactions. As proof of the concept, ultrathin graphitic carbon nitride nanosheets loaded with Au nanoparticles were precisely positioned in the outer interfacial layer of Pickering oil droplets to produce H2O2 under light irradiation, while enzymes were exactly placed in the inner interfacial layer to catalyze the subsequent biocatalytic oxidation reactions using in situ formed H2O2 as an oxidant. In the alkene epoxidation and thioether oxidation, our interfacial photobiocatalytic cascades showed a 2.0-5.8-fold higher overall reaction efficiency than the photobiocatalytic cascades in the bulk water phase. It was demonstrated that spatial localization of the photocatalyst and the enzyme at Pickering oil droplet interfaces not only provided their respective preferable reaction environments and intimate proximity for rapid H2O2 transport but also protected the enzyme from oxidative inactivation caused by the photogenerated species. These remarkable interfacial effects contributed to the significantly enhanced photobiocatalytic cascading efficiency. Our work presents an innovative photobiocatalytic reaction system with manifold benefits, providing a cutting-edge platform for solar-driven chemical transformations via photobiocatalysis.
Collapse
Affiliation(s)
- Ke Li
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Houbing Zou
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan 030032, China
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Xili Tong
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan 030032, China
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
15
|
Xing C, Qi Z, Zhou B, Yan D, Fang WH. Solid-State Photochemical Cascade Process Boosting Smart Ultralong Room-Temperature Phosphorescence in Bismuth Halides. Angew Chem Int Ed Engl 2024; 63:e202402634. [PMID: 38466630 DOI: 10.1002/anie.202402634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Molecular ultralong room-temperature phosphorescence (RTP), exhibiting multiple stimuli-responsive characteristics, has garnered considerable attention due to its potential applications in light-emitting devices, sensors, and information safety. This work proposes the utilization of photochemical cascade processes (PCCPs) in molecular crystals to design a stepwise smart RTP switch. By harnessing the sequential dynamics of photo-burst movement (induced by [2+2] photocycloaddition) and photochromism (induced by photogenerated radicals) in a bismuth (Bi)-based metal-organic halide (MOH), a continuous and photo-responsive ultralong RTP can be achieved. Furthermore, utilizing the same Bi-based MOH, diverse application demonstrations, such as multi-mode anti-counterfeiting and information encryption, can be easily implemented. This work thus not only serves as a proof-of-concept for the development of solid-state PCCPs that integrate photosalient effect and photochromism with light-chemical-mechanical energy conversion, but also lays the groundwork for designing new Bi-based MOHs with dynamically responsive ultralong RTP.
Collapse
Affiliation(s)
- Chang Xing
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Bo Zhou
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
16
|
Liu Y, Huang S, Liu WQ, Ba F, Liu Y, Ling S, Li J. An In Vitro Hybrid Biocatalytic System Enabled by a Combination of Surface-Displayed, Purified, and Cell-Free Expressed Enzymes. ACS Synth Biol 2024; 13:1434-1441. [PMID: 38695987 DOI: 10.1021/acssynbio.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 μM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.
Collapse
Affiliation(s)
- Ying Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
17
|
Yin C, Chen X, Zhang H, Xue Y, Dong H, Mao X. Pickering emulsion biocatalysis: Bridging interfacial design with enzymatic reactions. Biotechnol Adv 2024; 72:108338. [PMID: 38460741 DOI: 10.1016/j.biotechadv.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.
Collapse
Affiliation(s)
- Chengmei Yin
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xiangyao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yong Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
18
|
Ouyang J, Zhang Z, Li J, Wu C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400105. [PMID: 38386281 DOI: 10.1002/anie.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β-CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self-assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron-scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Zhenfang Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
19
|
Zou H, Li Q, Zhang R, Xiong Z, Li B, Wang J, Wang R, Fang Q, Yang H. Amphiphilic Covalent Organic Framework Nanoparticles for Pickering Emulsion Catalysis with Size Selectivity. Angew Chem Int Ed Engl 2024; 63:e202314650. [PMID: 38296796 DOI: 10.1002/anie.202314650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Exploiting advanced amphiphilic solid catalysts is crucial to the development of Pickering emulsion catalysis. Herein, covalent organic framework (COF) nanoparticles constructed with highly hydrophobic monomers as linkers were found to show superior amphiphilicity and they were then developed as a new class of solid emulsifiers for Pickering emulsion catalysis. Employing amphiphilic COFs as solid emulsifiers, Pickering emulsions with controllable emulsion type and droplet sizes were obtained. COF materials have also been demonstrated to serve as porous surface coatings to replace traditional surface modifications for stabilizing Pickering emulsions. After implanting Pd nanoparticles into amphiphilic COFs, the obtained catalyst displayed a 3.9 times higher catalytic efficiency than traditional amphiphilic solid catalysts with surface modifications in the biphasic oxidation reaction of alcohols. Such an enhanced activity was resulted from the high surface area and regular porous structure of COFs. More importantly, because of their tunable pore diameters, Pickering emulsion catalysis with remarkable size selectivity was achieved. This work is the first example that COFs were applied in Pickering emulsion catalysis, providing a platform for exploring new frontiers of Pickering emulsion catalysis.
Collapse
Affiliation(s)
- Houbing Zou
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030032, China
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, China
| | - Qibiao Li
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Rongyan Zhang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zeshan Xiong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Binghua Li
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Junhao Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, China
| | - Runwei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030032, China
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
20
|
Jiang L, Liang X, Jia J, Han H, Tang J, Li Q. Ribonuclease A-polymer conjugates via in situ growth for cancer treatment. J Mater Chem B 2024; 12:2869-2876. [PMID: 38426261 DOI: 10.1039/d3tb02387g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Efficient delivery of therapeutic proteins is a critical aspect for protein-based cancer treatment. Herein, an in situ growth approach was employed to prepare ribonuclease A (RNase A)-polymer conjugates by incorporating a cationic polymer, poly(N,N'-dimethylamino-2-ethyl methacrylate) (P(DMAEMA)), and a hydrophobic polymer, poly(N-isopropylacrylamide) (P(NIPAM)), through atom transfer radical polymerization (ATRP). The synthesized RNase A-polymer conjugates (namely R-P(D-b-N)) could preserve the integrity of RNase A and exhibit a unique combination of cationic and hydrophobic properties, leading to enhanced intracellular delivery efficiency. The successful delivery of RNase A by R-P(D-b-N) conjugates effectively triggered the cell apoptosis through the mitochondria-dependent signaling pathway to achieve the anti-proliferative response. Additionally, the conjugates could inhibit cell migration and thus possess the potential for the suppression of tumor metastasis. Overall, our findings highlight that the introduction of cationic and hydrophobic moieties via ATRP provides a versatile platform for the intracellular delivery of therapeutic proteins, offering a new avenue for treating diverse diseases.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
21
|
Lu H, Ouyang J, Liu WQ, Wu C, Li J. Enzyme-Polymer-Conjugate-Based Pickering Emulsions for Cell-Free Expression and Cascade Biotransformation. Angew Chem Int Ed Engl 2023; 62:e202312906. [PMID: 37966024 DOI: 10.1002/anie.202312906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
In this study, we addressed the limitations of conventional enzyme-polymer-conjugate-based Pickering emulsions for interfacial biocatalysis, which traditionally suffer from nonspecific and uncontrollable conjugation positions that can impede catalytic performance. By introducing a non-canonical amino acid (ncAA) at a specific site on target enzymes, we enabled precise polymer-enzyme conjugation. These engineered conjugates then acted as biocatalytically active emulsifiers to stabilize Pickering emulsions, while encapsulating a cell-free protein synthesis (CFPS) system in the aqueous phase for targeted enzyme expression. The resulting cascade reaction system leveraged enzymes expressed in the aqueous phase and on the emulsion interface for optimized chemical biosynthesis. The use of the cell-free system eliminated the need for intact whole cells or purified enzymes, representing a significant advancement in biocatalysis. Remarkably, the integration of Pickering emulsion, precise enzyme-polymer conjugation, and CFPS resulted in a fivefold enhancement in catalytic performance as compared to traditional single-phase reactions. Therefore, our approach harnesses the combined strengths of advanced biochemical engineering techniques, offering an efficient and practical solution for the synthesis of value-added chemicals in various biocatalysis and biotransformation applications.
Collapse
Affiliation(s)
- Haofan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
22
|
Ao Q, Jiang L, Tong X, Song Y, Lv X, Tang J. Construction of molecular enrichment accelerators via assembly of enzyme surface grafted polymer and cyclodextrin achieving rapid and stable ester catalysis for biodiesel synthesis. Carbohydr Polym 2023; 322:121337. [PMID: 37839844 DOI: 10.1016/j.carbpol.2023.121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023]
Abstract
Efficient and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Here, we constructed molecular enrichment accelerators to synergistically enhance enzyme activity and stability by assembling enzyme surface grafted polymer and cyclodextrin. At 40 °C, the enzyme activity of CalB-PNIPAM212/β-CD was 2.9 times that of CalB-PNIPAM212. The enzyme activity of CalB-PNIPAM428/γ-CD had reached 1.61 times that of CalB. At the same time, the stability of CalB-PNIPAM212/β-CD and CalB-PNIPAM428/γ-CD are slightly better than that of CalB under high temperature, organic solution and extreme pH conditions. The synergistic increase in activity and stability of the lipase-polymer assembly was achieved due to the structure of assembly, in which the role of cyclodextrin could enrich substrate affecting molecular diffusion. In addition, the lipase-polymer assembly proved to be an efficient catalyst for biodiesel synthesis, with a biodiesel conversion 1.4 times that of CalB at 60 °C. Therefore, this simple and low-cost lipase-polymer assembly provides new possibilities for the construction of high-efficiency industrial biocatalytic catalysts.
Collapse
Affiliation(s)
- Qi Ao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinglai Tong
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying Song
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
23
|
Pei X, Song W. CO 2-Triggered Hierarchical-Pore UiO-66-Based Pickering Emulsions for Efficient and Recyclable Suzuki-Miyaura Cross-Coupling in Biphasic Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15046-15054. [PMID: 37812683 DOI: 10.1021/acs.langmuir.3c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Hierarchical-pore metal-organic frameworks (H-MOFs) are considered to be emerging stabilizers for Pickering emulsion formation because of their hierarchically arranged pores, tailorable structures, and ultrahigh surface areas. However, stimulus-triggered Pickering emulsions built by H-MOFs have been seldom presented to date despite their great significance in diverse applications. Herein, by grafting Pd(OAc)2 on the hierarchical-pore zirconium MOF UiO-66, namely, H-UiO-66, with the aid of 1-alkyl-3-methylimidazolium 2-cyanopyrrolide salts ([CnMIM][2-CN-Pyr], n = 4, 6, and 8), a series of Pd(OAc)2-[CnMIM][2-CN-Pyr]@H-UiO-66 have been developed and utilized as emulsifiers for constructing CO2-switching Pickering emulsions. It was found that Pd(OAc)2-[CnMIM][2-CN-Pyr]@H-UiO-66 was able to stabilize the n-hexane-water mixture to form a Pickering emulsion even at an amount of 0.5 wt %. Upon alternate addition of CO2 and N2 at normal pressure, Pickering emulsions could be smartly converted between demulsification and re-emulsification. Through combining varieties of spectroscopic techniques, the mechanism of the switchable phase transformation lay in the acid-base reaction of ionic liquids with CO2 on H-UiO-66 and the creation of more hydrophilic salts, which reduced the wettability of the emulsifier and destabilized the emulsion. As an example of application, the stimulus-triggered Pickering emulsion was employed as a palladium-catalyzed Suzuki-Miyaura cross-coupling microreactor to achieve the combination of chemical reactions, isolation of products, and recovery of catalysts.
Collapse
Affiliation(s)
- Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, P. R. China
| | - Wangyue Song
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, P. R. China
| |
Collapse
|
24
|
Yin Z, Zhou Y, Liu X, Zhang S, Binks BP. Highly efficient and recyclable monolithic bioreactor for interfacial enzyme catalysis. J Colloid Interface Sci 2023; 648:308-316. [PMID: 37301155 DOI: 10.1016/j.jcis.2023.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
HYPOTHESIS Biocatalysts are key to the realization of all bioconversions in nature. However, the difficulty of combining the biocatalyst and other chemicals in one system limits their application in artificial reaction systems. Although some effort, such as Pickering interfacial catalysis and enzyme-immobilized microchannel reactors, have addressed this challenge an effective method to combine chemical substrates and biocatalysts in a highly efficient and re-usable monolith system is still to be developed. EXPERIMENTS A repeated batch-type biphasic interfacial biocatalysis microreactor was developed using enzyme-loaded polymersomes in the void surface of porous monoliths. Polymersomes, loaded with Candida antarctica Lipase B (CALB), are fabricated by self-assembly of the copolymer PEO-b-P(St-co-TMI) and used to stabilize oil-in-water (o/w) Pickering emulsions as a template to prepare monoliths. By adding monomer and Tween 85 to the continuous phase, controllable open-cell monoliths are prepared to inlay CALB-loaded polymersomes in the pore walls. FINDINGS The microreactor is proven to be highly effective and recyclable when a substrate flows through it, which offers superior benefits of absolute separation to a pure product and no enzyme loss. The relative enzyme activity is constantly maintained above 93% in 15 cycles. The enzyme is constantly present in the microenvironment of the PBS buffer ensuring its immunity to inactivation and facilitating its recycling.
Collapse
Affiliation(s)
- Zhengqiao Yin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiding Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiucai Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX. UK.
| |
Collapse
|
25
|
Tian D, Hao R, Zhang X, Shi H, Wang Y, Liang L, Liu H, Yang H. Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis. Nat Commun 2023; 14:3226. [PMID: 37270555 DOI: 10.1038/s41467-023-38949-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid-liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb' catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24-5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.
Collapse
Affiliation(s)
- Danping Tian
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Ruipeng Hao
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yuwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
26
|
Chang C, Li X, Zhai J, Su Y, Gu L, Li J, Yang Y. Stability of protein particle based Pickering emulsions in various environments: review on strategies to inhibit coalescence and oxidation. Food Chem X 2023; 18:100651. [PMID: 37091511 PMCID: PMC10113778 DOI: 10.1016/j.fochx.2023.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The emerging research interests in fabrication of protein particles as soft-particle emulsifiers show the prospective potential of using protein particles in novel poly-phase dispersing food systems. This review first provides a comprehensive summary and analysis on the dominant role of key physicochemical properties of protein particles including wettability, morphology, surface charge and protein concentration on their emulsifying abilities to construct Pickering emulsions. It was found that the constructed emulsions showed high sensitivity to changes in pH, ionic strength and temperature (thermal and freeze-thaw treatment). Moreover, oxidation remains as a challenge for protein particle based Pickering emulsions during prolonged storage, reducing their acceptance in food products. Current strategies for improving the stability of these emulsions to variable aqueous conditions and variable temperatures, and restricting oxidation event are summarized. In summary, an "ideal" protein particle-based Pickering emulsion system is proposed, encompassing aspects of interfacial property, emulsion network and texture, and antioxidant enrichment, thus promoting industrial translation into novel food and nutraceutical products.
Collapse
|
27
|
Chen L, Zhang S, Liu X, Ge X. Recent Advances in Water-Mediated Multiphase Catalysis. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
28
|
High Internal Phase Pickering Emulsion Stabilized by Lipase-Coated ZIF-8 Nanoparticles towards Recyclable Biphasic Biocatalyst. Catalysts 2023. [DOI: 10.3390/catal13020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
High internal phase Pickering emulsion (Pickering HIPE) stabilized by enzyme-decorated metal-organic frameworks (MOFs) nanoparticles is developed for biphasic biocatalysts to enhance lipase catalysis and recycling. Specifically, enzyme decorated nanoparticles are prepared via ZIF-8 physisorption of a model lipase Candida antarctica Lipase B (CALB), named ZIF-8@CALB, to be both Pickering stabilizer and catalytic sites. An oil-in-water (o/w) Pickering HIPE with oil/water volume ratio of 3 could then be fabricated by homogenizing p-nitrophenyl palmitate (p-NPP) n-heptane solution into the ZIF-8@CALB aqueous dispersion. The biocatalytic hydrolysis of p-NPP is conducted by just standing the biphasic system at room temperature. The Pickering HIPE system achieves a product conversion of up to 48.9% within 0.5 h, whereas the p-NPP n-heptane solution system containing free CALB only achieves a stable product conversion of 6.8% for the same time. Moreover, the ZIF@CALB could be recovered by a simple centrifugation at 800 rpm, and then reused in the next cycle. The hydrolysis equilibrium conversion rate of p-NPP keeps over 40% for all 8 cycles, reflecting the high catalytic efficiency and recyclability of the Pickering HIPE. This study provides a new opportunity in designing Enzyme-MOFs-based Pickering interfacial biocatalyst for practical applications.
Collapse
|
29
|
Shi CY, Zhan YF, Liu Y, Zhang ZP, Shen XY, Wu CK, Bai ZY, Zhang ZA, Wang J. Hydrophobic effects enhance xylooligosaccharides production from mulberry branch using xylanase-methacrylate conjugate-catalyzed hydrolysis. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
30
|
Mathieu‐Gaedke M, Böker A, Glebe U. How to Characterize the Protein Structure and Polymer Conformation in Protein‐Polymer Conjugates – a Perspective. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maria Mathieu‐Gaedke
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Ulrich Glebe
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
31
|
Wang Y, Zhao Q, Haag R, Wu C. Biocatalytic Synthesis Using Self-Assembled Polymeric Nano- and Microreactors. Angew Chem Int Ed Engl 2022; 61:e202213974. [PMID: 36260531 PMCID: PMC10100074 DOI: 10.1002/anie.202213974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Biocatalysis is increasingly being explored for the sustainable development of green industry. Though enzymes show great industrial potential with their high efficiency, specificity, and selectivity, they suffer from poor usability and stability under abiological conditions. To solve these problems, researchers have fabricated nano- and micro-sized biocatalytic reactors based on the self-assembly of various polymers, leading to highly stable, functional, and reusable biocatalytic systems. This Review highlights recent progress in self-assembled polymeric nano- and microreactors for biocatalytic synthesis, including polymersomes, reverse micelles, polymer emulsions, Pickering emulsions, and static emulsions. We categorize these reactors into monophasic and biphasic systems and discuss their structural characteristics and latest successes with representative examples. We also consider the challenges and potential solutions associated with the future development of this field.
Collapse
Affiliation(s)
- Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, P.R. China
| | - Qingcai Zhao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
32
|
Zeng Q, Sun M, Xie X, Zhang Y, Hou H, Fang X, Guo T, Yuan H, Meng T. Lipase-Entrapped Colloidosomes with Tunable Positioning at the Oil-Water Interface for Pickering Emulsion-Enhanced Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54781-54789. [PMID: 36453582 DOI: 10.1021/acsami.2c17451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pickering interfacial biocatalysis (PIB) paves the way for efficient enzymatic catalysis in the biphasic system. However, the Pickering interfacial biocatalysts located on the oil-water interface still face the inevitable deactivation when one of the phases contains the reactant that inactivates the enzyme. Herein, the positioning of lipase-entrapped colloidosomes (LECs) at the emulsion interface is rationally designed by physically tuning the wettability, which allows LECs to protrude into the selected phase to protect the lipase away from the damage of the reactant. As a proof of concept, LECs with different positioning at the interface are used as Pickering interfacial biocatalysts to produce biodiesel by esterification of lauric acid and methanol. Impressively, the LECs that protrude into the oil phase possess an optimal catalytic performance to protect more lipases away from the damage of the reactant of short-chain alcohol, which shows an 8.18-fold enhancement in specific activity relative to the free lipase, reach a biodiesel yield of 80.37% after 8 h, and retain the 96.44% of relative activity after 10 cycles. This study provides a novel and robust platform for Pickering emulsion-enhanced biocatalysis.
Collapse
Affiliation(s)
- Qi Zeng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| | - Mengmeng Sun
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| | - Xin Xie
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| | - Yuli Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| | - Haoyue Hou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| | - Xingyuan Fang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| | - Ting Guo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| | - Hao Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| | - Tao Meng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, P.R. China
| |
Collapse
|
33
|
Zhang N, Wu C. Tailoring Protein-Polymer Conjugates as Efficient Artificial Enzymes for Aqueous Asymmetric Aldol Reactions. ACS Synth Biol 2022; 11:3797-3804. [PMID: 36343337 DOI: 10.1021/acssynbio.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Artificial enzymes are becoming a powerful toolbox for selective organic syntheses. Herein, we first propose an advanced artificial enzyme by polymeric modularity as an efficient aldolase mimic for aqueous asymmetric aldol reactions. Based on an in-depth understanding of the aldolase reaction mechanism and our previous work, we demonstrate the modular design of protein-polymer conjugates by co-incorporating l-proline and styrene onto a noncatalytic protein scaffold with a high degree of controllability. The tailored conjugates exhibited remarkable catalytic performance toward the aqueous asymmetric aldol reaction of p-nitrobenzaldehyde and cyclohexanone, achieving 94% conversion and excellent selectivity (95/5 diastereoselectivity, 98% enantiomeric excess). In addition, this artificial enzyme showed high tolerance against extreme conditions (e.g., wide pH range, high temperature) and could be reused for more than four times without significant loss of reactivity. Experiments have shown that the artificial enzyme displayed broad specificity for various aldehydes.
Collapse
Affiliation(s)
- Ningning Zhang
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.,Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
34
|
Hybrid protein-polymer nanoparticles based on P(NVCL-co-DMAEMA) loaded with cisplatin as a potential anti-cancer agent. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Zhang N, Bessel P, Wu C. Copper-Containing Artificial Polyenzymes as a Clickase for Bioorthogonal Chemistry. Bioconjug Chem 2022; 33:1892-1899. [PMID: 36194410 DOI: 10.1021/acs.bioconjchem.2c00363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial polyenzymes (ArPoly) are tailored combinations of universal protein scaffolds and polymers newly proposed as promising alternatives to natural enzymes to expand the biocatalyst toolbox. The concept of ArPoly has been continuously extended to metal-containing ArPoly to overcome the drawbacks faced by conventional artificial metalloenzymes. Herein, we present a sustainable route to synthesize a novel water-soluble metalloenzyme for copper-catalyzed azide-alkyne cycloadditions in water with remarkable selectivity. In this case, synthetic l-proline monomers were polymerized onto bovine serum albumen in an aqueous medium via copper-mediated "grafting-from" atom-transfer radical polymerization, resulting in protein-polymer-copper conjugates named ArPolyclickase. The copper in ArPolyclickase plays pivotal bifunctional roles, not only as the catalyst for polymerization but also as the coordinated active site for alkyne-azide click catalysis. ArPolyclickase showcases high efficiency, substrate generality, regioselectivity, and ease of product separation for "click chemistry" in water. Notably, ArPolyclickase displays good biocompatibility without imposing copper toxicity on living cells, which offers the prospect for the upcoming bioorthogonal chemistry.
Collapse
Affiliation(s)
- Ningning Zhang
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.,Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Patrick Bessel
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.,Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
36
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202115885. [PMID: 35524649 DOI: 10.1002/anie.202115885] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Pickering emulsions are particle-stabilized surfactant-free dispersions composed of two immiscible liquid phases, and emerge as attractive catalysis platform to surpass traditional technique barrier in some cases. In this review, we have comprehensively summarized the development and the catalysis applications of Pickering emulsions since the pioneering work in 2010. The explicit mechanism for Pickering emulsions will be initially discussed and clarified. Then, summarization is given to the design strategy of amphiphilic emulsion catalysts in two categories of intrinsic and extrinsic amphiphilicity. The progress of the unconventional catalytic reactions in Pickering emulsion is further described, especially for the polarity/solubility difference-driven phase segregation, "smart" emulsion reaction system, continuous flow catalysis, and Pickering interfacial biocatalysis. Challenges and future trends for the development of Pickering emulsion catalysis are finally outlined.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.,State Key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
37
|
Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquida and liquid-gas interfaces. Adv Colloid Interface Sci 2022; 308:102743. [DOI: 10.1016/j.cis.2022.102743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
|
38
|
Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis. Nat Commun 2022; 13:3142. [PMID: 35668090 PMCID: PMC9170730 DOI: 10.1038/s41467-022-30915-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
The natural bacterial spores have inspired the development of artificial spores, through coating cells with protective materials, for durable whole-cell catalysis. Despite attractiveness, artificial spores developed to date are generally limited to a few microorganisms with their natural endogenous enzymes, and they have never been explored as a generic platform for widespread synthesis. Here, we report a general approach to designing artificial spores based on Escherichia coli cells with recombinant enzymes. The artificial spores are simply prepared by coating cells with polydopamine, which can withstand UV radiation, heating and organic solvents. Additionally, the protective coating enables living cells to stabilize aqueous-organic emulsions for efficient interfacial biocatalysis ranging from single reactions to multienzyme cascades. Furthermore, the interfacial system can be easily expanded to chemoenzymatic synthesis by combining artificial spores with metal catalysts. Therefore, this artificial-spore-based platform technology is envisioned to lay the foundation for next-generation cell factory engineering.
Collapse
|
39
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Ni
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chang Yu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Qianbing Wei
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Dongming Liu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Jieshan Qiu
- Dalian University of Technology School of Chemical Engineering High Technology Zone, No. 2 Ling Gong Road 116024 Dalian CHINA
| |
Collapse
|
40
|
Wang Z, Fu Z, Jian Y, Han Y, Xia M, Zhang S, Yan B, Jiang G, Lu D, Wu J, Liu Z. Glucose Induces Heme Leakage and Suppresses H2O2 Uptake of Chloroperoxidase in the Asymmetric Hydroxylation of Ethylbenzene. ChemCatChem 2022. [DOI: 10.1002/cctc.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheyu Wang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Zhongwang Fu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Yupei Jian
- Tsinghua University Department of Chemical Engineering CHINA
| | - Yilei Han
- Tsinghua University Department of Chemical Engineering CHINA
| | - Meng Xia
- Tsinghua University Department of Chemical Engineering CHINA
| | - Shuiwei Zhang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Binhang Yan
- Tsinghua University Department of Chemical Engineering CHINA
| | - Guoqiang Jiang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Diannan Lu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Jianzhong Wu
- University of California Riverside Department of Chemical and Environmental and Engineering CHINA
| | - Zheng Liu
- Tsinghua University Chemical Engineering Qinghua Yuan 1 100084 Beijing CHINA
| |
Collapse
|
41
|
Zhou S, Zeng M, Liu Y, Sui X, Yuan J. Stimuli-Responsive Pickering Emulsions Regulated via Polymerization-Induced Self-Assembly Nanoparticles. Macromol Rapid Commun 2022; 43:e2200010. [PMID: 35393731 DOI: 10.1002/marc.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
With the development of reversible deactivated radical polymerization techniques, polymerization-induced self-assembly (PISA) is emerging as a facile method to prepare block copolymer nanoparticles in situ with high concentrations, providing wide potential applications in different fields, including nanomedicine, coatings, nanomanufacture, and Pickering emulsions. Polymeric emulsifiers synthesized by PISA have many advantages comparing with conventional nanoparticle emulsifiers. The morphologies, size, and amphiphilicity can be readily regulated via the synthetic process, post-modification, and external stimuli. By introducing stimulus responsiveness into PISA nanoparticles, Pickering emulsions stabilized with these nanoparticles can be endowed with "smart" behaviors. The emulsions can be regulated in reversible emulsification and demulsification. In this review, the authors focus on recent progress on Pickering emulsions stabilized by PISA nanoparticles with stimuli-responsiveness. The factors affecting the stability of emulsions during emulsification and demulsification are discussed in details. Furthermore, some viewpoints for preparing stimuli-responsive emulsions and their applications in antibacterial agents, diphase reaction platforms, and multi-emulsions are discussed as well. Finally, the future developments and applications of stimuli-responsive Pickering emulsions stabilized by PISA nanoparticles are highlighted.
Collapse
Affiliation(s)
- Shuo Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yanlin Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Liu Y, Ba F, Liu WQ, Wu C, Li J. Plug-and-Play Functionalization of Protein–Polymer Conjugates for Tunable Catalysis Enabled by Genetically Encoded “Click” Chemistry. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
43
|
Xi Y, Liu B, Wang S, Wei S, Yin S, Ngai T, Yang X. CO 2-responsive Pickering emulsions stabilized by soft protein particles for interfacial biocatalysis. Chem Sci 2022; 13:2884-2890. [PMID: 35432851 PMCID: PMC8905849 DOI: 10.1039/d1sc06146a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Pickering emulsions are emulsions stabilized by colloidal particles and serve as an excellent platform for biphasic enzymatic catalysis. However, developing simple and green strategies to avoid enzyme denaturation, facilitate product separation, and achieve the recovery of enzyme and colloidal particle stabilizers is still a challenge. This study aimed to report an efficient and sustainable biocatalysis system via a robust CO2/N2-responsive Pickering oil-in-water (o/w) emulsion stabilized solely by pure sodium caseinate (NaCas), which was made naturally in a scalable manner. The NaCas-stabilized emulsion displayed a much higher reaction efficiency compared with conventional CO2/N2-responsive Pickering emulsions stabilized by solid particles with functional groups from polymers or surfactants introduced to tailor responsiveness, reflected by the fact that most enzymes were transferred and enriched at the oil-water interface. More importantly, the demulsification, product separation, and recycling of the NaCas emulsifier as well as the enzyme could be facilely achieved by alternatively bubbling CO2/N2 more than 30 times. Moreover, the recycled enzyme still maintained its catalytic activity, with a conversion yield of more than 90% after each cycle, which was not found in any of the previously reported CO2-responsive systems. This responsive system worked well for many different types of oils and was the first to report on a protein-based CO2/N2-responsive emulsion, holding great promise for the development of more sustainable, green chemical conversion processes for the food, pharmaceutical, and biomedical industries.
Collapse
Affiliation(s)
- Yongkang Xi
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Bo Liu
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Shuxin Wang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Shuheng Wei
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Shouwei Yin
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China .,Sino-Singapore International Joint Research Institute Guangzhou 510640 P. R. China.,Research Institute for Food Nutrition and Human Health Guangzhou P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - Xiaoquan Yang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
44
|
W/W droplet-based microfluidic interfacial catalysis of xylanase-polymer conjugates for xylooligosaccharides production. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions. Nat Commun 2022; 13:475. [PMID: 35078989 PMCID: PMC8789915 DOI: 10.1038/s41467-022-28100-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
A continuous flow cascade of multi-step catalytic reactions is a cutting-edge concept to revolutionize stepwise catalytic synthesis yet is still challenging in practical applications. Herein, a method for practical one-pot cascade catalysis is developed by combining Pickering emulsions with continuous flow. Our method involves co-localization of different catalytically active sub-compartments within droplets of a Pickering emulsion yielding cell-like microreactors, which can be packed in a column reactor for continuous flow cascade catalysis. As exemplified by two chemo-enzymatic cascade reactions for the synthesis of chiral cyanohydrins and chiral ester, 5 − 420 fold enhancement in the catalysis efficiency and as high as 99% enantioselectivity were obtained even over a period of 80 − 240 h. The compartmentalization effect and enriching-reactant properties arising from the biomimetic microreactor are theoretically and experimentally identified as the key factors for boosting the catalysis efficiency and for regulating the kinetics of cascade catalysis. A continuous flow cascade of multi-step catalytic reactions would provide significant advantages in faster reaction times, waste reduction, and lowered step-count of syntheses, yet this ideal remains challenging in practical applications. Here the authors describe continuous flow cascade catalysis through co-localization of two catalytically active subcompartments within Pickering emulsion droplets.
Collapse
|
46
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid-Liquid and Gas-Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022; 61:e202107537. [PMID: 34528366 PMCID: PMC9293096 DOI: 10.1002/anie.202107537] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Pickering emulsions, foams, bubbles, and marbles are dispersions of two immiscible liquids or of a liquid and a gas stabilized by surface-active colloidal particles. These systems can be used for engineering liquid-liquid-solid and gas-liquid-solid microreactors for multiphase reactions. They constitute original platforms for reengineering multiphase reactors towards a higher degree of sustainability. This Review provides a systematic overview on the recent progress of liquid-liquid and gas-liquid dispersions stabilized by solid particles as microreactors for engineering eco-efficient reactions, with emphasis on biobased reagents. Physicochemical driving parameters, challenges, and strategies to (de)stabilize dispersions for product recovery/catalyst recycling are discussed. Advanced concepts such as cascade and continuous flow reactions, compartmentalization of incompatible reagents, and multiscale computational methods for accelerating particle discovery are also addressed.
Collapse
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
| | - Loïc Leclercq
- Univ LilleCNRSCentrale LilleUniv ArtoisUMR 8181 UCCSF-59000LilleFrance
| | | | - Jacques Leng
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologySchool of Chemistry and Chemical EngineeringGuangxi University530004NanningChina
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
47
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
| | - Loïc Leclercq
- Univ Lille CNRS Centrale Lille Univ Artois UMR 8181 UCCS F-59000 Lille France
| | | | - Jacques Leng
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning China
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
48
|
Sun Z, Jurica J, Hübner R, Wu C. Pickering interfacial catalysts for asymmetric organocatalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytically active Pickering emulsion was established for asymmetric aldol reaction. Both high reactivity and high selectivity were achieved on the emulsion interface via tailoring the hydrophobicity of the proline-functionalized nanoparticles.
Collapse
Affiliation(s)
- Zhiyong Sun
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jan Jurica
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
49
|
Zhu Y, Wang A. Pickering emulsions and foams stabilization based on clay minerals. DEVELOPMENTS IN CLAY SCIENCE 2022:169-227. [DOI: 10.1016/b978-0-323-91858-9.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Jiang H, Hu X, Li Y, Yang C, Ngai T. Engineering proteinaceous colloidosomes as enzyme carriers for efficient and recyclable Pickering interfacial biocatalysis. Chem Sci 2021; 12:12463-12467. [PMID: 34603677 PMCID: PMC8480340 DOI: 10.1039/d1sc03693a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Despite Pickering interfacial biocatalysis being a popular topic in biphasic biocatalysis, the development of water-in-oil (w/o) emulsion systems stabilized by single particles remains a challenge. For the first time, hydrophobized proteinaceous colloidosomes with magnetic-responsiveness are developed to function as both an enzyme carrier and emulsifier, achieving a breakthrough in protein-based w/o Pickering bioconversion. Enzyme-loaded protein colloidosomes are synthesized by a facile and mild method via emulsion templating. This system exhibits superior catalytic activity to other systems at the oil–water interface. Besides, feasible enzyme recovery and reusability ensure that this novel system can be employed as an efficient and eco-friendly recyclable platform. Engineering proteinaceous colloidosomes with magnetic-responsiveness are designed as both enzyme carrier and emulsifier, achieving a breakthrough in protein-based w/o Pickering interfacial biocatalysis.![]()
Collapse
Affiliation(s)
- Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Xiaofeng Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Yunxing Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Cheng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - To Ngai
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China .,Department of Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong P. R. China
| |
Collapse
|