1
|
Zhang J, Gai T, Wang J, Wu Y, Zeng SM, Zhao D, Li W. Nucleic Acid-Locked Smart Carrier for Photothermal/Chemotherapy-Amplified Immunogenic Cell Death to Enhance Systemic Antitumor Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503299. [PMID: 40184610 DOI: 10.1002/advs.202503299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Immunotherapy holds great promise in the fight against cancer; however, it often encounters poor immunogenicity with limited therapeutic efficacy. Combining multiple treatment modalities provides a trustworthy strategy for achieving a robust antitumor effect. In this study, a nucleic acid-locked smart carrier (NASC) is developed to amplify immunogenic cell death (ICD) through the synergistic integration of photothermal therapy (PTT) and chemotherapy for high-performance monotherapy. Mesoporous silica-coated gold nanorod (MSGNR) serves as the reservoir for anticancer drug doxorubicin (DOX) and is capped with a sequence-specific duplex unit containing a tumor-specific targeting AS1411 fragment, resulting in the formation of NASC. With AS1411 targeting, the NASC can specifically target and be internalized into tumor cells with high expression of nucleolin, where the duplex capping can be unlocked by the intracellularly overexpressed adenosine triphosphate. Subsequently, the released DOX synergized with MSGNR-mediated PTT following laser irradiation induces direct cell killing, which, concurrently, triggers ICD to activate antineoplastic immunity with an increased number of T lymphocytes. This triple-collaborative strategy, further combined with anti-programmed death-1 antibody (αPD-1)-mediated immune checkpoint blockade (ICB) therapy, shows a robust therapeutic efficacy in both unilateral and bilateral tumor models.
Collapse
Affiliation(s)
- Jiayang Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Tianyu Gai
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Jiwei Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yucai Wu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Si-Ming Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Hu JJ, Yang J, Liu Y, Lu G, Zhao Z, Xia F, Lou X. Tuning the affinity of probes with transmembrane proteins by constructing peptide-conjugated cis/ trans isomers based on molecular scaffolds. J Mater Chem B 2024; 12:12523-12529. [PMID: 39494739 DOI: 10.1039/d4tb01801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
For protein analysis, the current peptide-based probes rely almost on the specific recognition of the protein while neglecting the potential influence of the environment near the protein. Herein, we propose that to achieve high recognition of transmembrane protein integrin αvβ3, the interactions from the membrane substrate could be helpful. Moreover, to guarantee the additive effect of different interactions, the cis and trans isomers of peptide-based probes are distinguished. In detail, we synthesized the peptide-conjugated cis/trans isomers (cis-RTP and trans-RTP) by modifying the Arg-Gly-Asp (RGD)-targeting peptide and palmitic acid-conjugated Arg-Arg-Arg-Arg (Pal-RRRR) peptide to the two ends of the molecular scaffold-tetraphenylethene derivative. Due to the difference in spatial structure, isothermal titration calorimetry and simulation experiments demonstrated that cis-RTP can bind more stably to integrin αvβ3 than trans-RTP. As a result, cis-RTP has shown more excellent properties in inhibiting cell migration and killing cells by regulating actin and extracellular signal-regulated kinase. Unlike the existing probe design for protein, this study provides a concept of microenvironment-helpful recognition and a promising strategy of cis/trans isomers to modulate the interaction between proteins and probes.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Juliang Yang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Yiheng Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Guangwen Lu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Zujin Zhao
- Department State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| |
Collapse
|
3
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
5
|
Yang G, Wang H, Jiang G, Zhao L, Qu F. Aptamer inhibitor selection of SpyCas9 through CE-SELEX. Talanta 2024; 273:125837. [PMID: 38479030 DOI: 10.1016/j.talanta.2024.125837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 04/09/2024]
Abstract
CRISPR/Cas9 is a natural immune system of archaea and bacteria, which has been widely used in gene editing. In order to better control and improve the accuracy and safety of the system, inhibitors for SpyCas9 as "switches" have been selected for several years. The available inhibitors currently are all natural polypeptides inhibitors derived from phages, except one small molecule inhibitor. These natural inhibitors are challenging to obtain and are available in limited quantities, and the small molecule inhibitor is cytotoxic. Herein, we discover aptamers against the SpyCas9 protein, by coupling CE-SELEX within one-round pressure controllable selection strategy. One of the identified aptamers, Apt2, shows high affinity at the nanomolar level and leads for effective SpyCas9 enzymatic inhibition in vitro. It is predicted that Apt2 interacts with the HNH and RuvC domains of SpyCas9, competitively inhibiting the binding of substrate DNA to SpyCas9. The proposed aptamer inhibitor is the oligonucleotide inhibitor of SpyCas9, which has the potential in construction of the universal, simple and precise CRISPR-Cas9 system activity control strategy. Meanwhile, these aptamers could also be valuable tools for study of the functions of CRISPR/Cas9 and the related functional mechanisms.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China; CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Huimin Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Guangyu Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liping Zhao
- Institute of Quality Standard and Testing Technology of BAAFS, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing, 100097, China.
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
6
|
Liu Y, Hu B, Li J, Pei X, Hu X. Perspectives and Prospects on the Application of DNA Aptamer in SARS-CoV-2. Curr Med Chem 2024; 31:273-279. [PMID: 37031389 DOI: 10.2174/0929867330666230408193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/10/2023]
Affiliation(s)
- Yunyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Molecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Bei Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Molecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Juan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Molecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaming Pei
- Department of Urology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. Changsha, Hunan, 410013, China
| | - Xiaoxiao Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Molecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- Research Institute of Hunan University in Chongqing, Chongqing, 401120, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China
| |
Collapse
|
7
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
8
|
Zhang Y, Su M, Fang X, Huang W, Jiang H, Li Q, Hussain N, Ye M, Liu H, Tan W. Single-nucleobase resolution of a surface energy transfer nanoruler for in situ measurement of aptamer binding at the receptor subunit level in living cells. Chem Sci 2023; 14:9560-9573. [PMID: 37712043 PMCID: PMC10498721 DOI: 10.1039/d3sc01244a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
In situ identification of aptamer-binding targets on living cell membrane surfaces is of considerable interest, but a major challenge, specifically, when advancing recognition to the level of membrane receptor subunits. Here we propose a novel nanometal surface energy transfer (NSET) based nanoruler with a single-nucleobase resolution (SN-nanoruler), in which FAM-labeled aptamers and single-sized gold nanoparticle (GNP) antibody conjugates act as a donor and an acceptor. A single nucleobase resolution of the SN-nanoruler was experimentally illustrated by molecular size, orientation, quenching nature, and other dye-GNP pairs. The SN-nanoruler provides high reproducibility and precision for measuring molecule distance on living cell membranes at the nanometer level owing to only the use of single-sized antibody-capped GNPs. In situ identification of the aptamer binding site was advanced to the protein subunit level on the living cell membrane for the utilization of this SN-nanoruler. The results suggest that the proposed strategy is a solid step towards the wider application of optical-based rulers to observe the molecular structural configuration and dynamic transitions on the membrane surface of living cells.
Collapse
Affiliation(s)
- Yu Zhang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology Hefei 230601 P. R. China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology Hefei 230601 P. R. China
| | - Xingru Fang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology Hefei 230601 P. R. China
| | - Wenwen Huang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology Hefei 230601 P. R. China
| | - Hao Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology Hefei 230601 P. R. China
| | - Qi Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology Hefei 230601 P. R. China
| | - Nisar Hussain
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology Hefei 230601 P. R. China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University Changsha 410082 China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology Hefei 230601 P. R. China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University Changsha 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University Changsha 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
9
|
Zhao Q, Gong Z, Wang J, Fu L, Zhang J, Wang C, Miron RJ, Yuan Q, Zhang Y. A Zinc- and Calcium-Rich Lysosomal Nanoreactor Rescues Monocyte/Macrophage Dysfunction under Sepsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205097. [PMID: 36596693 PMCID: PMC9951326 DOI: 10.1002/advs.202205097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/05/2022] [Indexed: 05/31/2023]
Abstract
Sepsis is a dysregulation of the immune response to pathogens and has high morbidity and mortality worldwide. However, the unclear mapping and course of dysregulated immune cells currently hinders the development of advanced therapeutic strategies to treat sepsis. Here, evidence is provided using single-cell RNA sequencing from peripheral blood mononuclear cells in sepsis that pathogens attacking monocytes/macrophages disrupt their immune function. The results reveal an enormous decline in monocytes/macrophages in sepsis and chart the evolution of their impaired phagocytosis (Pha) capabilities. Inspired by these findings, nanoparticles, named "Alpha-MOFs," are developed that target dysfunctional monocytes/macrophages to actively (A) lift (L) Pha by the release of lysosome-sensitive ions from a mineralized metal-organic framework (MOF). Alpha-MOFs have good stability and biosafety in peripheral blood and efficiently targeted monocytes/macrophages. They also release calcium and zinc ions into monocyte/macrophage lysosomes to promote the Pha and degradation of bacteria. Taken together, these results suggest that Alpha-MOFs rescue monocytes/macrophages dysfunction and effectively improve their survival rate during sepsis.
Collapse
Affiliation(s)
- Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Zijian Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Jiaolong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Liangliang Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Can Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Richard J. Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| | - Quan Yuan
- Institute of Chemical Biology and NanomedicineState Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral BiomedicineMinistry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Medical Research InstituteSchool of MedicineWuhan UniversityWuhan430071P. R. China
| |
Collapse
|
10
|
Chen Y, Kong D, Qiu L, Wu Y, Dai C, Luo S, Huang Z, Lin Q, Chen H, Xie S, Geng L, Zhao J, Tan W, Liu Y, Wei D. Artificial Nucleotide Aptamer-Based Field-Effect Transistor for Ultrasensitive Detection of Hepatoma Exosomes. Anal Chem 2023; 95:1446-1453. [PMID: 36577081 DOI: 10.1021/acs.analchem.2c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.
Collapse
Affiliation(s)
- Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhipeng Huang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Sitao Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Li Geng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Jun Zhao
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Snider DM, Pandit S, Coffin ML, Ebrahimi SB, Samanta D. DNA-Mediated Control of Protein Function in Semi-Synthetic Systems. Chembiochem 2022; 23:e202200464. [PMID: 36058885 DOI: 10.1002/cbic.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Indexed: 01/25/2023]
Abstract
The development of strategies for controlling protein function in a precise and predictable manner has the potential to revolutionize catalysis, diagnostics, and medicine. In this regard, the use of DNA has emerged as a powerful approach for modulating protein activity. The programmable nature of DNA allows for constructing sophisticated architectures wherein proteins can be placed with control over position, orientation, and stoichiometry. This ability is especially useful considering that the properties of proteins can be influenced by their local environment or their proximity to other functional molecules. Here, we chronicle the different strategies that have been developed to interface DNA with proteins in semi-synthetic systems. We further delineate the unique applications unlocked by the unprecedented level of structural control that DNA affords. We end by outlining outstanding challenges in the area and discuss future research directions towards potential solutions.
Collapse
Affiliation(s)
- Dylan M Snider
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Mackenzie L Coffin
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| |
Collapse
|
12
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Zhang L, Chu M, Ji C, Tan J, Yuan Q. Preparation, applications, and challenges of functional DNA nanomaterials. NANO RESEARCH 2022; 16:3895-3912. [PMID: 36065175 PMCID: PMC9430014 DOI: 10.1007/s12274-022-4793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| |
Collapse
|
14
|
Hu L, Liu K, Ren G, Liang J, Wu Y. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Chen S, Zhang L, Yuan Q, Tan J. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation. Chem Res Chin Univ 2022; 38:847-855. [PMID: 35573821 PMCID: PMC9077342 DOI: 10.1007/s40242-022-2087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 12/01/2022]
Abstract
The interaction between biomolecules with their target ligands plays a great role in regulating biological functions. Aptamers are short oligonucleotide sequences that can specifically recognize target biomolecules via structural complementarity and thus regulate related biological functions. In the past ten years, aptamers have made great progress in target biomolecule recognition, becoming a powerful tool to regulate biological functions. At present, there are many reviews on aptamers applied in biomolecular recognition, but few reviews pay attention to aptamer-based regulation of biological functions. Here, we summarize the approaches to enhancing aptamer affinity and the advancements of aptamers in regulating enzymatic activity, cellular immunity and cellular behaviors. Furthermore, this review discusses the challenges and future perspectives of aptamers in target recognition and biological functions regulation, aiming to provide some promising ideas for future regulation of biomolecular functions in a complex biological environment.
Collapse
Affiliation(s)
- Sisi Chen
- Molecular Science and Biomedicine Laboratory(MBL), Institute of Chemical Biology and Nanomedicine(ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory(MBL), Institute of Chemical Biology and Nanomedicine(ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory(MBL), Institute of Chemical Biology and Nanomedicine(ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory(MBL), Institute of Chemical Biology and Nanomedicine(ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
16
|
Qian S, Chang D, He S, Li Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal Chim Acta 2022; 1196:339511. [DOI: 10.1016/j.aca.2022.339511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
17
|
Tan J, Li H, Ji C, Zhang L, Zhao C, Tang L, Zhang C, Sun Z, Tan W, Yuan Q. Electron transfer-triggered imaging of EGFR signaling activity. Nat Commun 2022; 13:594. [PMID: 35105871 PMCID: PMC8807759 DOI: 10.1038/s41467-022-28213-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
In vivo electron transfer processes are closely related to the activation of signaling pathways, and, thus, affect various life processes. Indeed, the signaling pathway activation of key molecules may be associated with certain diseases. For example, epidermal growth factor receptor (EGFR) activation is related to the occurrence and development of tumors. Hence, monitoring the activation of EGFR-related signaling pathways can help reveal the progression of tumor development. However, it is challenging for current detection methods to monitor the activation of specific signaling pathways in complex biochemical reactions. Here we designed a highly sensitive and specific nanoprobe that enables in vivo imaging of electronic transfer over a broad range of spatial and temporal scales. By using the ferrocene-DNA polymer “wire”, the electrons transferred in a biochemical reaction can flow to persistent luminescent nanoparticles and change their electron distribution, thereby altering the optical signal of the particles. This electron transfer-triggered imaging probe enables mapping the activation of EGFR-related signaling pathways in a temporally and spatially precise manner. By offering precise visualization of signaling activity, this approach may offer a general platform not only for understanding molecular mechanisms in various biological processes but also for promoting disease therapies and drug evaluation. Here, the authors design a nanoprobe for in vivo imaging of electronic transfer, consisting of a ferrocene-DNA polymer to transfer electrons to luminescent nanoparticles, changing their optical signal. Using this probe, they map activation of EGFR signalling during tumour treatment.
Collapse
Affiliation(s)
- Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Bio-medicine Ministry of Education, School & Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chenxuan Zhao
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liming Tang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Caixin Zhang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Bio-medicine Ministry of Education, School & Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China. .,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Bio-medicine Ministry of Education, School & Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
Dillen A, Lammertyn J. Paving the way towards continuous biosensing by implementing affinity-based nanoswitches on state-dependent readout platforms. Analyst 2022; 147:1006-1023. [DOI: 10.1039/d1an02308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining affinity-based nanoswitches with state-dependent readout platforms allows for continuous biosensing and acquisition of real-time information about biochemical processes occurring in the environment of interest.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
19
|
He Q, Liu Y, Li K, Wu Y, Wang T, Tan Y, Jiang T, Liu X, Liu Z. Deoxyribonucleic acid anchored on cell membranes for biomedical application. Biomater Sci 2021; 9:6691-6717. [PMID: 34494042 DOI: 10.1039/d1bm01057c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineering cellular membranes with functional molecules provides an attractive strategy to manipulate cellular behaviors and functionalities. Currently, synthetic deoxyribonucleic acid (DNA) has emerged as a promising molecular tool to engineer cellular membranes for biomedical applications due to its molecular recognition and programmable properties. In this review, we summarized the recent advances in anchoring DNA on the cellular membranes and their applications. The strategies for anchoring DNA on cell membranes were summarized. Then their applications, such as immune response activation, receptor oligomerization regulation, membrane structure mimicking, cell-surface biosensing, and construction of cell clusters, were listed. The DNA-enabled intelligent systems which were able to sense stimuli such as DNA strands, light, and metal ions were highlighted. Finally, insights regarding the remaining challenges and possible future directions were provided.
Collapse
Affiliation(s)
- Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China. .,Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
20
|
Zhang C, Shao H, Zhang J, Guo X, Liu Y, Song Z, Liu F, Ling P, Tang L, Wang KN, Chen Q. Long-term live-cell lipid droplet-targeted biosensor development for nanoscopic tracking of lipid droplet-mitochondria contact sites. Theranostics 2021; 11:7767-7778. [PMID: 34335963 PMCID: PMC8315056 DOI: 10.7150/thno.59848] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Lipid droplets (LDs) establish a considerable number of contact sites with mitochondria to enable energy transfer and communication. In this study, we developed a fluorescent biosensor to image LD-mitochondria interactions at the nanoscale and further explored the function of LD-mediated matrix transmission in processes involving multi-organelle interactions. Methods: A fluorescent probe called C-Py (C21H19N3O2, 7-(diethylamino) coumarin-3-vinyl-4-pyridine acetonitrile) was designed and synthesized. Colocalization of C-Py and the commercial LD stain Nile Red was analyzed in HeLa cells. The fluorescence stability and signal to background ratio of C-Py under structured illumination microscopy (SIM) were compared to those of the commercial probe BODIPY493/503. The cytotoxicity of C-Py was assessed using CCK-8 assays. The uptake pattern of C-Py in HeLa cells was then observed under various temperatures, metabolic levels, and endocytosis levels. Contact sites between LDs and various organelles, such as mitochondria, nuclei, and cell membrane, were imaged and quantitated using SIM. Physical changes to the contact sites between LDs and mitochondria were monitored after lipopolysaccharide induction. Results: A LD-targeted fluorescent biosensor, C-Py, with good specificity, low background signal, excellent photostability, low cytotoxicity, and high cellular permeability was developed for tracking LD contact sites with multiple organelles using SIM. Using C-Py, the subcellular distribution and dynamic processes of LDs in living cells were observed under SIM. The formation of contact sites between LDs and multiple organelles was visualized at a resolution below ~200 nm. The number of LD-mitochondria contact sites formed was decreased by lipopolysaccharide treatment inducing an inflammatory environment. Conclusions: C-Py provides strategies for the design of ultra-highly selective biosensors and a new tool for investigating the role and regulation of LDs in living cells at the nanoscale.
Collapse
Affiliation(s)
- Chengying Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, PR China
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, PR China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Huarong Shao
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Jie Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University. Jinan 250101, PR China
| | - Xinyan Guo
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Yue Liu
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Zhigang Song
- College of Basic Medicine, Jining Medical University, Jining 272067, PR China
| | - Fei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, PR China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Peixue Ling
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, PR China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Longguang Tang
- International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Kang-Nan Wang
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, PR China
| | - Qixin Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, PR China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| |
Collapse
|
21
|
Song J, Shen Y, Mou HZ, Li W, Brouchon J, Xu BY, Xia XH, Xu JJ, Chen HY. Living-DNA Nanogel Appendant Enables In Situ Modulation and Quantification of Regulation Effects on Membrane Proteins. ACS APPLIED BIO MATERIALS 2021; 4:4565-4574. [PMID: 35006793 DOI: 10.1021/acsabm.1c00302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Screening appendants on membrane proteins to understand their varied regulation effects is desirable for finding the potential candidates of the membrane-protein-targeted drugs. However, most artificial appendants can hardly support in situ condition screening because they cannot evolve in situ, neither can they send out signals to reflect the modulation. Here, we designed living-DNA appendants to enable such screening. First, the living-cell rolling-circle amplification (LCRCA) strategy was developed to elongate the DNA appendants for self-tangled physical nanogels. The nanogels unify both the functions of membrane-protein modulation and quantification: their sizes increase with the increased time length of LCRCA, which change the regulation effect on the membrane proteins; their large number of repeating short sequences allow quantification of their sizes in the presence of the complementary fluorophore-tagged short DNA. Then, the performance of the living-DNA appendants was examined taking α6β4 integrins as the target, where effective regulation over the distribution of actin filaments, cell viability, and chances of anoikis are all validated. The screening also clearly elucidates the interesting nonlinear relationships between the regulations and the effects. We hope this screening strategy based on living-DNA appendants can stand for a prototype for deeper understanding of natural behaviors of membrane proteins and help in the accurate designing of the membrane-protein-targeted drugs.
Collapse
Affiliation(s)
- Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinan Shen
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Han-Zhang Mou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Li
- Laboratory of Polymer Chemistry, Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Julie Brouchon
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bi-Yi Xu
- Laboratory of Polymer Chemistry, Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Li H, Cai Q, Yan X, Jie G. Target-switchable DNA hydrogels coupled with a Bi 2Sn 2O 7/Bi 2S 3 heterojunction based on in situ anion exchange for the "signal-on" photoelectrochemical detection of DNA. NANOSCALE 2021; 13:7678-7684. [PMID: 33928980 DOI: 10.1039/d1nr00573a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, a novel photoelectrochemical (PEC) "signal-on" biosensor based on a Bi2Sn2O7/Bi2S3 heterojunctioncoupled with target-switchable DNA hydrogels is reported for the ultrasensitive detection of P53 gene DNA. For the first time, sulfide ions are discovered to display an excellent PEC sensitization effect on Bi2Sn2O7 material by forming the Bi2Sn2O7/Bi2S3 heterojunction. The sensitization amplitude increased by 63 times, and the photocurrent polarity switched from cathodic to anodic. When the target DNA-induced-cycling amplification process produced a mass of product chains (PD), PD was introduced into the target-switchable DNA hydrogels to quantitatively release sulfide ions, which were further introduced to the Bi2Sn2O7-modified PEC platform and resulted in an enormous enhancement of the PEC signal due to the significant sensitization effect of sulfide ions on Bi2Sn2O7via an anion-exchange reaction. The corresponding PEC signal change of the Bi2Sn2O7/Bi2S3 platform was used for the detection of target DNA. This biosensing strategy opens up a novel sulfide ion-sensitized PEC platform and exhibits excellent analytical performance with a wide linear range (100 fM-10 nM), which has broad application prospects in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xiaoshi Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
23
|
Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, Zhang L, Yang Z, Zhang BT, Lu A, Zhang G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9500-9519. [PMID: 32603135 DOI: 10.1021/acsami.0c05750] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aptamers are oligonucleotide sequences with a length of about 25-80 bases which have abilities to bind to specific target molecules that rival those of monoclonal antibodies. They are attracting great attention in diverse clinical translations on account of their various advantages, including prolonged storage life, little batch-to-batch differences, very low immunogenicity, and feasibility of chemical modifications for enhancing stability, prolonging the half-life in serum, and targeted delivery. In this Review, we demonstrate the emerging aptamer discovery technologies in developing advanced techniques for producing aptamers with high performance consistently and efficiently as well as requiring less cost and resources but offering a great chance of success. Further, the diverse modifications of aptamers for therapeutic applications including therapeutic agents, aptamer-drug conjugates, and targeted delivery materials are comprehensively summarized.
Collapse
Affiliation(s)
- Shuaijian Ni
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Yu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Fangfei Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Jin Liu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Luyao Wang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Xiaoqiu Wu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Dijie Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Youyang Wan
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Aiping Lu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| |
Collapse
|
24
|
Ochoa S, Milam VT. Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules 2020; 25:E4659. [PMID: 33066073 PMCID: PMC7587394 DOI: 10.3390/molecules25204659] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
In the last three decades, oligonucleotides have been extensively investigated as probes, molecular ligands and even catalysts within therapeutic and diagnostic applications. The narrow chemical repertoire of natural nucleic acids, however, imposes restrictions on the functional scope of oligonucleotides. Initial efforts to overcome this deficiency in chemical diversity included conservative modifications to the sugar-phosphate backbone or the pendant base groups and resulted in enhanced in vivo performance. More importantly, later work involving other modifications led to the realization of new functional characteristics beyond initial intended therapeutic and diagnostic prospects. These results have inspired the exploration of increasingly exotic chemistries highly divergent from the canonical nucleic acid chemical structure that possess unnatural physiochemical properties. In this review, the authors highlight recent developments in modified oligonucleotides and the thrust towards designing novel nucleic acid-based ligands and catalysts with specifically engineered functions inaccessible to natural oligonucleotides.
Collapse
Affiliation(s)
- Steven Ochoa
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Valeria T. Milam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
25
|
Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Shujuan Xu
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - He Yan
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Xiaowei Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Hoda Safari Yazd
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Xiang Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Tong Huang
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
- Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Weihong Tan
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
- Institute of Molecular Medicine (IMM) Renji Hospital State Key Laboratory of Oncogenes and Related Genes Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
26
|
Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angew Chem Int Ed Engl 2020; 60:2221-2231. [PMID: 32282107 DOI: 10.1002/anie.202003563] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/11/2022]
Abstract
The advent of SELEX (systematic evolution of ligands by exponential enrichment) technology has shown the ability to evolve artificial ligands with affinity and specificity able to meet growing clinical demand for probes that can, for example, distinguish between the target leukemia cells and other cancer cells within the matrix of heterogeneity, which characterizes cancer cells. Though antibodies are the conventional and ideal choice as a molecular recognition tool for many applications, aptamers complement the use of antibodies due to many unique advantages, such as small size, low cost, and facile chemical modification. This Minireview will focus on the novel applications of aptamers and SELEX, as well as opportunities to develop molecular tools able to meet future clinical needs in biomedicine.
Collapse
Affiliation(s)
- Long Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Shujuan Xu
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - He Yan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaowei Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Hoda Safari Yazd
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Xiang Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Tong Huang
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Mao X, Liu M, Yan L, Deng M, Li F, Li M, Wang F, Li J, Wang L, Tian Y, Fan C, Zuo X. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS NANO 2020; 14:8776-8783. [PMID: 32484652 DOI: 10.1021/acsnano.0c03362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers via facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lei Yan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengying Deng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| |
Collapse
|
28
|
Shen R, Tan J, Yuan Q. Chemically Modified Aptamers in Biological Analysis. ACS APPLIED BIO MATERIALS 2020; 3:2816-2826. [DOI: 10.1021/acsabm.0c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ruichen Shen
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Xiong M, Liu Q, Tang D, Liu L, Kong G, Fu X, Yang C, Lyu Y, Meng HM, Ke G, Zhang XB. “Apollo Program” in Nanoscale: Landing and Exploring Cell-Surface with DNA Nanotechnology. ACS APPLIED BIO MATERIALS 2020; 3:2723-2742. [DOI: 10.1021/acsabm.9b01193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Lu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiaoyi Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Chan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Hong-Min Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
30
|
|
31
|
McConnell EM, Cozma I, Morrison D, Li Y. Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Anal Chem 2019; 92:327-344. [PMID: 31656066 DOI: 10.1021/acs.analchem.9b04868] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Ioana Cozma
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1.,Department of Surgery, Division of General Surgery , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| |
Collapse
|
32
|
Wang J, Song Q, Guo X, Cui X, Tan L, Dong L. Precise Cross-Dimensional Regulation of the Structure of a Photoreversible DNA Nanoswitch. Anal Chem 2019; 91:14530-14537. [PMID: 31617350 DOI: 10.1021/acs.analchem.9b03547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, an accurately and digitally regulated allosteric nanoswitch based on the conformational control of two DNA hairpins was developed. By switching between UV irradiation and blue light conditions, the second molecular beacon (H#2) would bind/separate with a repression sequence (RES) via the introduced PTG molecules (a photosensitive azobenzene derivative), resulting in the target aptamer sequence in the first molecular beacon (H#1) not being able/being able to hold the stem-loop configuration, hence losing/regaining the ability to bind with the target. Importantly, we successfully monitor conformation changes of the nanoswitch by an elegant mathematical model for connecting Ki (the dissociation constant between RES and H#2) with Kd (the overall equilibrium constant of the nanoswitch binding the target), hence realizing "observing" DNA structure across dimensions from "structural visualization" to digitization and, accurately, digitally regulating DNA structure from digitization to "structural visualization".
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| | - Qitao Song
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , 100871 Beijing , China
| | - Xiaogang Guo
- College of Chemistry and Chemical Engineering , Yangtze Normal. University , Chongqing 408100 , China
| | - Xun Cui
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Luxi Tan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| |
Collapse
|
33
|
Levi-Acobas F, Röthlisberger P, Sarac I, Marlière P, Herdewijn P, Hollenstein M. On the Enzymatic Formation of Metal Base Pairs with Thiolated and pK a -Perturbed Nucleotides. Chembiochem 2019; 20:3032-3040. [PMID: 31216100 DOI: 10.1002/cbic.201900399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 12/15/2022]
Abstract
The formation of artificial metal base pairs is an alluring and versatile method for the functionalization of nucleic acids. Access to DNA functionalized with metal base pairs is granted mainly by solid-phase synthesis. An alternative, yet underexplored method, envisions the installation of metal base pairs through the polymerization of modified nucleoside triphosphates. Herein, we have explored the possibility of using thiolated and pKa -perturbed nucleotides for the enzymatic construction of artificial metal base pairs. The thiolated nucleotides S2C, S6G, and S4T as well as the fluorinated analogue 5FU are readily incorporated opposite a templating S4T nucleotide through the guidance of metal cations. Multiple incorporation of the modified nucleotides along with polymerase bypass of the unnatural base pairs are also possible under certain conditions. The thiolated nucleotides S4T, S4T, S2C, and S6G were also shown to be compatible with the synthesis of modified, high molecular weight single-stranded (ss)DNA products through TdT-mediated tailing reactions. Thus, sulfur-substitution and pKa perturbation represent alternative strategies for the design of modified nucleotides compatible with the enzymatic construction of metal base pairs.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbruères, 91030, Evry, France
| | - Piet Herdewijn
- Department of Medicinal Chemistry, Institute for Medical Research, KU Leuven, Herestraat, 49, Leuven, 3000, Belgium
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
34
|
Quan W, Xudong W, Min X, Lou X, Fan X. One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Fan J, Wang HH, Xie S, Wang M, Nie Z. Engineering Cell-Surface Receptors with DNA Nanotechnology for Cell Manipulation. Chembiochem 2019; 21:282-293. [PMID: 31364788 DOI: 10.1002/cbic.201900315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/19/2019] [Indexed: 12/11/2022]
Abstract
Cell-surface receptors play pivotal roles in the regulation of cell fate. Molecular engineering of cell-surface receptors enables control of cell signaling and manipulation of cell behavior in a user-defined way. Currently, the development of chemical-biological approaches for non-genetic engineering and regulation of membrane receptors is attracting significant interest. Recent research advances in functional nucleic acids and DNA nanotechnology have made it possible to use DNA as a new and promising molecular toolkit for controlling receptor-mediated signaling and cell fates. In this minireview we summarize the advances in the use of DNA nanotechnology for the spatiotemporal regulation of cell receptors and highlight practical applications in manipulating cell functions including cell adhesion, cell-cell contact, cell migration, and cellular immunity. We also provide a perspective on the potential of and challenges facing DNA-based receptor engineering in future applications of cell manipulation and cell-based therapy.
Collapse
Affiliation(s)
- Jiahui Fan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, China
| | - Miao Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
36
|
Huang M, Song J, Huang P, Chen X, Wang W, Zhu Z, Song Y, Yang C. Molecular Crowding Evolution for Enabling Discovery of Enthalpy-Driven Aptamers for Robust Biomedical Applications. Anal Chem 2019; 91:10879-10886. [PMID: 31347355 DOI: 10.1021/acs.analchem.9b02697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An enthalpy-driven ligand is an ideal probe for practical applications because of the formation of abundant specific bonds between the ligand and target, compared to an entropy-driven ligand with a similar Gibbs free energy change. However, there has been a lack of direct discovery strategy for identifying enthalpy-driven ligands. In this work, a molecular crowding SELEX (systematic evolution of ligands by exponential enrichment) strategy for discovering enthalpy-driven aptamers was developed to improve the affinity and selectivity of aptamers in complex samples. Three aptamer sequences were successfully evolved against a tumor biomarker protein, and all proved to be enthalpy-driven by thermodynamics analysis, establishing the feasibility of molecular crowding SELEX for effective discovery of enthalpy-driven aptamers. Further comparison of aptamers evolved from conventional SELEX in buffer and molecular crowding SELEX (SYL-H2C) revealed much higher affinity of SYL-H2C. With its improved thermodynamic properties, the enthalpy-driven SYL-H2C aptamer was able to detect circulating tumor cells in real cancer patient blood samples with excellent detection accuracy (10/10). The proposed molecular crowding screening strategy offers a promising direction for discovering robust binding probes for a great variety of biomedical applications.
Collapse
Affiliation(s)
- Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , 200127 , China
| | - Peifeng Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China
| | - Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , 200127 , China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China.,Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , 200127 , China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China.,Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , 200127 , China
| |
Collapse
|