1
|
Ma C, Song W, Zhao X, Yu H, Lu J, Qu ZB, Wu W, Han Z, Mu Z, Yan J, Ren L. Bioinspired Soft Robots with Integrated Biological Motion Mechanisms and Rigid-Flexible Coupling Systems. SMALL METHODS 2025:e2402264. [PMID: 40326196 DOI: 10.1002/smtd.202402264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The inherent flexibility, safety, and biocompatibility of soft robots show significant potential for intelligent biomedical engineering applications. However, the unique operating environments of soft robots, including both in vivo and in vitro conditions, necessitate highly flexible movement capabilities. Optimizing the structural design to enable multi-degree-of-freedom motions is crucial to realize the expansion and deepening of soft robots in this field. Inspired by shape-morphing organisms in nature, researchers have recently developed a variety of bioinspired soft robots (BSR) with morphing capabilities that can realize motions such as bending, twisting, and stretching/contracting. The shape-morphing of organisms is determined by their unique motion mechanisms. This work comprehensively reviews the structure and morphology of typical biological prototypes with different shape-morphing behaviors, motion mechanisms, design strategies of the deformable BSR, and their vast applications in current biomedical engineering. Finally, this review also provides valuable insights into the current challenges and future opportunities for BSR.
Collapse
Affiliation(s)
- Chenxi Ma
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Wenda Song
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, China
| | - Xudong Zhao
- Peking University First Hospital, Peking University, Beijing, 100871, China
| | - Hexuan Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Jiaming Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Jiao Yan
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| |
Collapse
|
2
|
Dong X, Wang C, Song H, Shao J, Lan G, Zhang J, Li X, Li M. Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications. Biomimetics (Basel) 2024; 9:585. [PMID: 39451793 PMCID: PMC11505285 DOI: 10.3390/biomimetics9100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Soft hydrogel grippers have attracted considerable attention due to their flexible/elastic bodies, stimuli-responsive grasping and releasing capacity, and novel applications in specific task fields. To create soft hydrogel grippers with robust grasping of various types of objects, high load capability, fast grab response, and long-time service life, researchers delve deeper into hydrogel materials, fabrication strategies, and underlying actuation mechanisms. This article provides a systematic overview of hydrogel materials used in soft grippers, focusing on materials composition, chemical functional groups, and characteristics and the strategies for integrating these responsive hydrogel materials into soft grippers, including one-step polymerization, additive manufacturing, and structural modification are reviewed in detail. Moreover, ongoing research about actuating mechanisms (e.g., thermal/electrical/magnetic/chemical) and grasping applications of soft hydrogel grippers is summarized. Some remaining challenges and future perspectives in soft hydrogel grippers are also provided. This work highlights the recent advances of soft hydrogel grippers, which provides useful insights into the development of the new generation of functional soft hydrogel grippers.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Chen Wang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Haoxin Song
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jinqiang Shao
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Guiyao Lan
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jiaming Zhang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Xiangkun Li
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Ming Li
- Center for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Thoma A, Amstad E. Localized Ionic Reinforcement of Double Network Granular Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311092. [PMID: 38747011 DOI: 10.1002/smll.202311092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Indexed: 10/01/2024]
Abstract
Nature produces soft materials with fascinating combinations of mechanical properties. For example, the mussel byssus embodies a combination of stiffness and toughness, a feature that is unmatched by synthetic hydrogels. Key to enabling these excellent mechanical properties are the well-defined structures of natural materials and their compositions controlled on lengths scales down to tens of nanometers. The composition of synthetic materials can be controlled on a micrometer length scale if processed into densely packed microgels. However, these microgels are typically soft. Microgels can be stiffened by enhancing interactions between particles, for example through the formation of covalent bonds between their surfaces or a second interpenetrating hydrogel network. Nonetheless, changes in the composition of these synthetic materials occur on a micrometer length scale. Here, 3D printable load-bearing granular hydrogels are introduced whose composition changes on the tens of nanometer length scale. The hydrogels are composed of jammed microgels encompassing tens of nm-sized ionically reinforced domains that increase the stiffness of double network granular hydrogels up to 18-fold. The printability of the ink and the local reinforcement of the resulting granular hydrogels are leveraged to 3D print a butterfly with composition and structural changes on a tens of nanometer length scale.
Collapse
Affiliation(s)
- Alexandra Thoma
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
Zheng X, Watanabe I, Paik J, Li J, Guo X, Naito M. Text-to-Microstructure Generation Using Generative Deep Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402685. [PMID: 38770745 DOI: 10.1002/smll.202402685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 05/22/2024]
Abstract
Designing novel materials is greatly dependent on understanding the design principles, physical mechanisms, and modeling methods of material microstructures, requiring experienced designers with expertise and several rounds of trial and error. Although recent advances in deep generative networks have enabled the inverse design of material microstructures, most studies involve property-conditional generation and focus on a specific type of structure, resulting in limited generation diversity and poor human-computer interaction. In this study, a pioneering text-to-microstructure deep generative network (Txt2Microstruct-Net) is proposed that enables the generation of 3D material microstructures directly from text prompts without additional optimization procedures. The Txt2Microstruct-Net model is trained on a large microstructure-caption paired dataset that is extensible using the algorithms provided. Moreover, the model is sufficiently flexible to generate different geometric representations, such as voxels and point clouds. The model's performance is also demonstrated in the inverse design of material microstructures and metamaterials. It has promising potential for interactive microstructure design when associated with large language models and could be a user-friendly tool for material design and discovery.
Collapse
Affiliation(s)
- Xiaoyang Zheng
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan
- Reconfigurable Robotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Ikumu Watanabe
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan
| | - Jamie Paik
- Reconfigurable Robotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Jingjing Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
| | - Xiaofeng Guo
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Masanobu Naito
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan
| |
Collapse
|
5
|
Dong M, Liu W, Dai CF, Jiao D, Zhu QL, Hong W, Yin J, Zheng Q, Wu ZL. Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. MATERIALS HORIZONS 2024; 11:2143-2152. [PMID: 38376773 DOI: 10.1039/d3mh02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hydrogels are an ideal material to develop soft robots. However, it remains a grand challenge to develop miniaturized hydrogel robots with mechanical robustness, rapid actuation, and multi-gait motions. Reported here is a facile strategy to fabricate hydrogel-based soft robots by three-dimensional (3D) printing of responsive and nonresponsive tough gels for programmed morphing and locomotion upon stimulations. Highly viscoelastic poly(acrylic acid-co-acrylamide) and poly(acrylic acid-co-N-isopropyl acrylamide) aqueous solutions, as well as their mixtures, are printed with multiple nozzles into 3D constructs followed by incubation in a solution of zirconium ions to form robust carboxyl-Zr4+ coordination complexes, to produce tough metallo-supramolecular hydrogel fibers. Gold nanorods are incorporated into ink to afford printed gels with response to light. Owing to the mechanical excellence and small diameter of gel fibers, the printed hydrogel robots exhibit high robustness, fast response, and agile motions when remotely steered by dynamic light. The design of printed constructs and steering with spatiotemporal light allow for multimodal motions with programmable trajectories of the gel robots. The hydrogel robots can walk, turn, flip, and transport cargos upon light stimulations. Such printed hydrogels with good mechanical performances, fast response, and agile locomotion may open opportunities for soft robots in biomedical and engineering fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Yao DR, Kim I, Yin S, Gao W. Multimodal Soft Robotic Actuation and Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308829. [PMID: 38305065 DOI: 10.1002/adma.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free-moving, entirely soft-bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape-morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real-world applications for intricate and challenging tasks.
Collapse
Affiliation(s)
- Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inho Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
7
|
Yao X, Chen H, Qin H, Cong HP. Nanocomposite Hydrogel Actuators with Ordered Structures: From Nanoscale Control to Macroscale Deformations. SMALL METHODS 2024; 8:e2300414. [PMID: 37365950 DOI: 10.1002/smtd.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Flexible intelligent actuators with the characteristics of flexibility, safety and scalability, are highly promising in industrial production, biomedical fields, environmental monitoring, and soft robots. Nanocomposite hydrogels are attractive candidates for soft actuators due to their high pliability, intelligent responsiveness, and capability to execute large-scale rapid reversible deformations under external stimuli. Here, the recent advances of nanocomposite hydrogels as soft actuators are reviewed and focus is on the construction of elaborate and programmable structures by the assembly of nano-objects in the hydrogel matrix. With the help of inducing the gradient or oriented distributions of the nanounits during the gelation process by the external forces or molecular interactions, nanocomposite hydrogels with ordered structures are achieved, which can perform bending, spiraling, patterned deformations, and biomimetic complex shape changes. Given great advantages of these intricate yet programmable shape-morphing, nanocomposite hydrogel actuators have presented high potentials in the fields of moving robots, energy collectors, and biomedicines. In the end, the challenges and future perspectives of this emerging field of nanocomposite hydrogel actuators are proposed.
Collapse
Affiliation(s)
- Xin Yao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haili Qin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huai-Ping Cong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
8
|
Senthil P, Vishanagra O, Sparkman J, Smith P, Manero A. Design and Assessment of Bird-Inspired 3D-Printed Models to Evaluate Grasp Mechanics. Biomimetics (Basel) 2024; 9:195. [PMID: 38667206 PMCID: PMC11048456 DOI: 10.3390/biomimetics9040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Adapting grasp-specialized biomechanical structures into current research with 3D-printed prostheses may improve robotic dexterity in grasping a wider variety of objects. Claw variations across various bird species lend biomechanical advantages for grasping motions related to perching, climbing, and hunting. Designs inspired by bird claws provide improvements beyond a human-inspired structure for specific grasping applications to offer a solution for mitigating a cause of the high rejection rate for upper-limb prostheses. This research focuses on the design and manufacturing of two robotic test devices with different toe arrangements. The first, anisodactyl (three toes at the front, one at the back), is commonly found in birds of prey such as falcons and hawks. The second, zygodactyl (two toes at the front, two at the back), is commonly found in climbing birds such as woodpeckers and parrots. The evaluation methods for these models included a qualitative variable-object grasp assessment. The results highlighted design features that suggest an improved grasp: a small and central palm, curved distal digit components, and a symmetrical digit arrangement. A quantitative grip force test demonstrated that the single digit, the anisodactyl claw, and the zygodactyl claw designs support loads up to 64.3 N, 86.1 N, and 74.1 N, respectively. These loads exceed the minimum mechanical load capabilities for prosthetic devices. The developed designs offer insights into how biomimicry can be harnessed to optimize the grasping functionality of upper-limb prostheses.
Collapse
Affiliation(s)
| | | | | | | | - Albert Manero
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA; (P.S.); (O.V.)
| |
Collapse
|
9
|
Mukherjee S, Reddy SMM, Shanmugam G. A bio-inspired silkworm 3D cocoon-like hierarchical self-assembled structure from π-conjugated natural aromatic amino acids. SOFT MATTER 2024; 20:1834-1845. [PMID: 38314911 DOI: 10.1039/d3sm01746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The formation of spontaneous 3D self-assembled hierarchical structures from 1D nanofibers is a significant breakthrough in materials science. Overcoming the major challenges associated with developing these 3D structures, such as uncontrolled self-assembly, complex procedures, and machinery, has been a formidable task. However, the current discovery reveals that simple π-system (fluorenyl)-functionalized natural aromatic amino acids, phenylalanine (Fmoc-F) and tyrosine (Fmoc-Y), can form bio-inspired 3D cocoon-like structures. These structures are composed of entangled 1D nanofibers created through supramolecular self-assembly using a straightforward one-step process of solvent casting. The self-assembly process relies on π-π stacking of the fluorenyl (π-system) moieties and intermolecular hydrogen bonding between urethane amide groups. The cocoon-like structures are versatile and independent of concentration, temperature, and humidity, making them suitable for various applications. This discovery has profound implications for materials science and the developed advanced biomaterials, such as Fmoc-F and Fmoc-Y, can serve as flexible foundational components for constructing 3D fiber-based structures.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Samala Murali Mohan Reddy
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
11
|
Suga K, Yamakado T, Saito S. Dual Ratiometric Fluorescence Monitoring of Mechanical Polymer Chain Stretching and Subsequent Strain-Induced Crystallization. J Am Chem Soc 2023. [PMID: 38051032 DOI: 10.1021/jacs.3c09175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Tracking the behavior of mechanochromic molecules provides valuable insights into force transmission and associated microstructural changes in soft materials under load. Herein, we report a dual ratiometric fluorescence (FL) analysis for monitoring both mechanical polymer chain stretching and strain-induced crystallization (SIC) of polymers. SIC has recently attracted renewed attention as an effective mechanism for improving the mechanical properties of polymers. A polyurethane (PU) film incorporating a trace of a dual-emissive flapping force probe (N-FLAP, 0.008 wt %) exhibited a blue-to-green FL spectral change in a low-stress region (<20 MPa), resulting from conformational planarization of the probe in mechanically stretched polymer chains. More importantly, at higher probe concentrations (∼0.65 wt %), the PU film showed a second spectral change from green to yellow during the SIC growth (20-65 MPa) due to self-absorption of scattered FL in a short wavelength region. The reversibility of these spectral changes was demonstrated by load-unload cycles. With these results in hand, the degrees of the polymer chain stretching and the SIC were quantitatively mapped and monitored by dual ratiometric imaging based on different FL ratios (I525/I470 and I525/I600). Simultaneous analysis of these two mappings revealed a spatiotemporal gap in the distribution of the polymer chain stretching and the SIC. The combinational use of the dual-emissive force probe and the ratiometric FL imaging is a universal approach for the development of soft matter physics.
Collapse
Affiliation(s)
- Kensuke Suga
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Srinivasaraghavan Govindarajan R, Sikulskyi S, Ren Z, Stark T, Kim D. Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing. Polymers (Basel) 2023; 15:4377. [PMID: 38006101 PMCID: PMC10675433 DOI: 10.3390/polym15224377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered the market of two-photon polymerization (2PP) AM. To facilitate the development of microdevices with soft components through the application of 2PP technique and IP-PDMS material, this research paper presents a comprehensive material characterization of IP-PDMS. The significance of this study lies in the scarcity of existing research on this material and the thorough investigation of its properties, many of which are reported here for the first time. Particularly, for uncured IP-PDMS resin, this work evaluates a surface tension of 26.7 ± 4.2 mN/m, a contact angle with glass of 11.5 ± 0.6°, spin-coating behavior, a transmittance of more than 90% above 440 nm wavelength, and FTIR with all the properties reported for the first time. For cured IP-PDMS, novel characterizations include a small mechanical creep, a velocity-dependent friction coefficient with glass, a typical dielectric permittivity value of 2.63 ± 0.02, a high dielectric/breakdown strength for 3D-printed elastomers of up to 73.3 ± 13.3 V/µm and typical values for a spin coated elastomer of 85.7 ± 12.4 V/µm, while the measured contact angle with water of 103.7 ± 0.5°, Young's modulus of 5.96 ± 0.2 MPa, and viscoelastic DMA mechanical characterization are compared with the previously reported values. Friction, permittivity, contact angle with water, and some of the breakdown strength measurements were performed with spin-coated cured IP-PDMS samples. Based on the performed characterization, IP-PDMS shows itself to be a promising material for micro-scale soft MEMS, including microfluidics, storage devices, and micro-scale smart material technologies.
Collapse
Affiliation(s)
| | | | | | | | - Daewon Kim
- Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA; (R.S.G.); (S.S.); (Z.R.); (T.S.)
| |
Collapse
|
13
|
Richter M, Sikorski J, Makushko P, Zabila Y, Venkiteswaran VK, Makarov D, Misra S. Locally Addressable Energy Efficient Actuation of Magnetic Soft Actuator Array Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302077. [PMID: 37330643 PMCID: PMC10460866 DOI: 10.1002/advs.202302077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Indexed: 06/19/2023]
Abstract
Advances in magnetoresponsive composites and (electro-)magnetic actuators have led to development of magnetic soft machines (MSMs) as building blocks for small-scale robotic devices. Near-field MSMs offer energy efficiency and compactness by bringing the field source and effectors in close proximity. Current challenges of near-field MSM are limited programmability of effector motion, dimensionality, ability to perform collaborative tasks, and structural flexibility. Herein, a new class of near-field MSMs is demonstrated that combines microscale thickness flexible planar coils with magnetoresponsive polymer effectors. Ultrathin manufacturing and magnetic programming of effectors is used to tailor their response to the nonhomogeneous near-field distribution on the coil surface. The MSMs are demonstrated to lift, tilt, pull, or grasp in close proximity to each other. These ultrathin (80 µm) and lightweight (100 gm-2 ) MSMs can operate at high frequency (25 Hz) and low energy consumption (0.5 W), required for the use of MSMs in portable electronics.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
| | - Jakub Sikorski
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| | - Pavlo Makushko
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Yevhen Zabila
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
- The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of SciencesKrakow31‐342Poland
| | | | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|
14
|
Wei J, Pan F, Ping H, Yang K, Wang Y, Wang Q, Fu Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0164. [PMID: 37303599 PMCID: PMC10254471 DOI: 10.34133/research.0164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Throughout billions of years, biological systems have evolved sophisticated, multiscale hierarchical structures to adapt to changing environments. Biomaterials are synthesized under mild conditions through a bottom-up self-assembly process, utilizing substances from the surrounding environment, and meanwhile are regulated by genes and proteins. Additive manufacturing, which mimics this natural process, provides a promising approach to developing new materials with advantageous properties similar to natural biological materials. This review presents an overview of natural biomaterials, emphasizing their chemical and structural compositions at various scales, from the nanoscale to the macroscale, and the key mechanisms underlying their properties. Additionally, this review describes the designs, preparations, and applications of bioinspired multifunctional materials produced through additive manufacturing at different scales, including nano, micro, micro-macro, and macro levels. The review highlights the potential of bioinspired additive manufacturing to develop new functional materials and insights into future directions and prospects in this field. By summarizing the characteristics of natural biomaterials and their synthetic counterparts, this review inspires the development of new materials that can be utilized in various applications.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Kun Yang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering,
Sichuan University, Chengdu 610065, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
15
|
Cazin I, Rossegger E, Roppolo I, Sangermano M, Granitzer P, Rumpf K, Schlögl S. Digital light processing 3D printing of dynamic magneto-responsive thiol-acrylate composites. RSC Adv 2023; 13:17536-17544. [PMID: 37304810 PMCID: PMC10253501 DOI: 10.1039/d3ra02504g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
Additive manufacturing is one of the most promising processing techniques for fabricating customized 3D objects. For the 3D printing of functional and stimuli-triggered devices, interest is steadily growing in processing materials with magnetic properties. Synthesis routes for magneto-responsive soft materials typically involve the dispersion of (nano)particles into a non-magnetic polymer matrix. Above their glass transition temperature, the shape of such composites can be conveniently adjusted by applying an external magnetic field. With their rapid response time, facile controllability, and reversible actuation, magnetically responsive soft materials can be used in the biomedical field (e.g. drug delivery, minimally invasive surgery), soft robotics or in electronic applications. Herein, we combine the magnetic response with thermo-activated healability by introducing magnetic Fe3O4 nanoparticles into a dynamic photopolymer network, which undergoes thermo-activated bond exchange reactions. The resin is based on a radically curable thiol-acrylate system, whose composition is optimized towards processability via digital light processing 3D printing. A mono-functional methacrylate phosphate is applied as a stabilizer to increase the resins' shelf life by preventing thiol-Michael reactions. Once photocured, the organic phosphate further acts as a transesterification catalyst and activates bond exchange reactions at elevated temperature, which render the magneto-active composites mendable and malleable. The healing performance is demonstrated by recovering magnetic and mechanical properties after the thermally triggered mending of 3D-printed structures. We further demonstrate the magnetically driven movement of 3D-printed samples, which gives rise to the potential use of these materials in healable soft devices activated by external magnetic fields.
Collapse
Affiliation(s)
- Ines Cazin
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24 10124 Torino Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24 10124 Torino Italy
| | - Petra Granitzer
- Institute of Physics, University of Graz Universitätsplatz 3 8010 Graz Austria
| | - Klemens Rumpf
- Institute of Physics, University of Graz Universitätsplatz 3 8010 Graz Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| |
Collapse
|
16
|
A Generalised Time-Dependent Mathematical Formulation for Magnetoelectrically Coupled Soft Solids at Finite Strains. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
To date, the mechanical models of magnetoelectric couplings at finite strains have mainly been limited to time-independent constitutive equations. This paper enhances the literature by developing a time-dependent electromagnetic constitutive equation to characterise the mechanical behaviour of soft solids at finite strains and take into account the full form of the Maxwell equations. Our formulation introduces a symmetrical total stress and uses recently developed spectral invariants in the amended energy function; as a result, the proposed constitutive equation is relatively simple and is amenable to a finite-element formulation.
Collapse
|
17
|
Tauber FJ, Slesarenko V. Early career scientists converse on the future of soft robotics. Front Robot AI 2023; 10:1129827. [PMID: 36909362 PMCID: PMC9994530 DOI: 10.3389/frobt.2023.1129827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
During the recent decade, we have witnessed an extraordinary flourishing of soft robotics. Rekindled interest in soft robots is partially associated with the advances in manufacturing techniques that enable the fabrication of sophisticated multi-material robotic bodies with dimensions ranging across multiple length scales. In recent manuscripts, a reader might find peculiar-looking soft robots capable of grasping, walking, or swimming. However, the growth in publication numbers does not always reflect the real progress in the field since many manuscripts employ very similar ideas and just tweak soft body geometries. Therefore, we unreservedly agree with the sentiment that future research must move beyond "soft for soft's sake." Soft robotics is an undoubtedly fascinating field, but it requires a critical assessment of the limitations and challenges, enabling us to spotlight the areas and directions where soft robots will have the best leverage over their traditional counterparts. In this perspective paper, we discuss the current state of robotic research related to such important aspects as energy autonomy, electronic-free logic, and sustainability. The goal is to critically look at perspectives of soft robotics from two opposite points of view provided by early career researchers and highlight the most promising future direction, that is, in our opinion, the employment of soft robotic technologies for soft bio-inspired artificial organs.
Collapse
Affiliation(s)
- Falk J. Tauber
- Cluster of Excellence livMatS, FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
- Plant Biomechanics Group (PBG) Freiburg, Botanic Garden of the University of Freiburg, Freiburg im Breisgau, Germany
| | - Viacheslav Slesarenko
- Cluster of Excellence livMatS, FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
18
|
Shimada K. Estimation of Fast and Slow Adaptions in the Tactile Sensation of Mechanoreceptors Mimicked by Hybrid Fluid (HF) Rubber with Equivalent Electric Circuits and Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:1327. [PMID: 36772367 PMCID: PMC9920702 DOI: 10.3390/s23031327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In order to advance engineering applications of robotics such as wearable health-monitoring devices, humanoid robots, etc., it is essential to investigate the tactile sensations of artificial haptic sensors mimicking bioinspired human cutaneous mechanoreceptors such as free nerve endings, Merkel's cells, Krause end bulbs, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles. The generated receptor's potential response to extraneous stimuli, categorized as slow adaption (SA) or fast adaption (FA), is particularly significant as a typical property. The present study addressed the estimation of SA and FA by utilizing morphologically fabricated mechanoreceptors made of our proposed magnetically responsive intelligent fluid, hybrid fluid (HF), and by applying our proposed electrolytic polymerization. Electric circuit models of the mechanoreceptors were generated using experimental data on capacitance and inductance on the basis of the electric characteristics of impedance. The present results regarding equivalent firing rates based on FA and SA are consistent with the FA and SA findings of vital mechanoreceptors by biomedical analysis. The present investigative process is useful to clarify the time of response to a force on the fabricated artificial mechanoreceptor.
Collapse
Affiliation(s)
- Kunio Shimada
- Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
19
|
Mazzocchi T, Guarnera D, Trucco D, Restaino FR, Vannozzi L, Siliberto A, Lisignoli G, Zaffagnini S, Russo A, Ricotti L. A Novel Approach for Multiple Material Extrusion in Arthroscopic Knee Surgery. Ann Biomed Eng 2023; 51:550-565. [PMID: 36057760 PMCID: PMC9928818 DOI: 10.1007/s10439-022-03061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Articular cartilage defects and degenerative diseases are pathological conditions that cause pain and the progressive loss of joint functionalities. The most severe cases are treated through partial or complete joint replacement with prostheses, even if the interest in cartilage regeneration and re-growth methods is steadily increasing. These methods consist of the targeted deposition of biomaterials. Only a few tools have been developed so far for performing these procedures in a minimally invasive way. This work presents an innovative device for the direct deposition of multiple biomaterials in an arthroscopic scenario. The tool is easily handleable and allows the extrusion of three different materials simultaneously. It is also equipped with a flexible tip to reach remote areas of the damaged cartilage. Three channels are arranged coaxially and a spring-based dip-coating approach allows the fabrication and assembly of a bendable polymeric tip. Experimental tests were performed to characterize the tip, showing the ability to bend it up to 90° (using a force of ~ 1.5 N) and to extrude three coaxial biomaterials at the same time with both tip straight and tip fully bent. Rheometric analysis and fluid-dynamic computational simulations were performed to analyze the fluids' behavior; the maximum shear stresses were observed in correspondence to the distal tip and the channel convergence chamber, but with values up to ~ 1.2 kPa, compatible with a safe extrusion of biomaterials, even laden with cells. The cells viability was assessed after the extrusion with Live/Dead assay, confirming the safety of the extrusion procedures. Finally, the tool was tested arthroscopically in a cadaveric knee, demonstrating its ability to deliver the biomaterial in different areas, even ones that are typically hard-to-reach with traditional tools.
Collapse
Affiliation(s)
- Tommaso Mazzocchi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy ,Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy.
| | - Diego Trucco
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy ,Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy ,IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Francesco Rocco Restaino
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy ,Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy ,Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy
| | - Alessio Siliberto
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy ,Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Stefano Zaffagnini
- IRCCS Istituto Ortopedico Rizzoli, Orthopaedic and Traumatologic Clinic, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Alessandro Russo
- IRCCS Istituto Ortopedico Rizzoli, Orthopaedic and Traumatologic Clinic, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy ,Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127 Pisa, Italy
| |
Collapse
|
20
|
Raw Materials, Technology, Healthcare Applications, Patent Repository and Clinical Trials on 4D Printing Technology: An Updated Review. Pharmaceutics 2022; 15:pharmaceutics15010116. [PMID: 36678745 PMCID: PMC9865937 DOI: 10.3390/pharmaceutics15010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 01/01/2023] Open
Abstract
After the successful commercial exploitation of 3D printing technology, the advanced version of additive manufacturing, i.e., 4D printing, has been a new buzz in the technology-driven industries since 2013. It is a judicious combination of 3D printing technologies and smart materials (stimuli responsive), where time is the fourth dimension. Materials such as liquid crystal elastomer (LCE), shape memory polymers, alloys and composites exhibiting properties such as self-assembling and self-healing are used in the development/manufacturing of these products, which respond to external stimuli such as solvent, temperature, light, etc. The technologies being used are direct ink writing (DIW), fused filament fabrication (FFF), etc. It offers several advantages over 3D printing and has been exploited in different sectors such as healthcare, textiles, etc. Some remarkable applications of 4D printing technology in healthcare are self-adjusting stents, artificial muscle and drug delivery applications. Potential of applications call for further research into more responsive materials and technologies in this field. The given review is an attempt to collate all the information pertaining to techniques employed, raw materials, applications, clinical trials, recent patents and publications specific to healthcare products. The technology has also been evaluated in terms of regulatory perspectives. The data garnered is expected to make a strong contribution to the field of technology for human welfare and healthcare.
Collapse
|
21
|
Bai H, Kim YS, Shepherd RF. Autonomous self-healing optical sensors for damage intelligent soft-bodied systems. SCIENCE ADVANCES 2022; 8:eabq2104. [PMID: 36475793 PMCID: PMC9728961 DOI: 10.1126/sciadv.abq2104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/01/2022] [Indexed: 06/02/2023]
Abstract
We introduce damage intelligent soft-bodied systems via a network of self-healing light guides for dynamic sensing (SHeaLDS). Exploiting the intrinsic damage resilience of light propagation in an optical waveguide, in combination with a tough, transparent, and autonomously self-healing polyurethane urea elastomer, SHeaLDS enables damage resilient and intelligent robots by self-healing cuts as well as detecting this damage and controlling the robot's actions accordingly. With optimized material and structural design for hyperelastic deformation of the robot and autonomous self-healing capacity, SHeaLDS provides reliable dynamic sensing at large strains (ε = 140%) with no drift or hysteresis, is resistant to punctures, and self-heals from cuts at room temperature with no external intervention. As a demonstration of utility, a soft quadruped protected by SHeaLDS detects and self-heals from extreme damage (e.g., six cuts on one leg) in 1 min and monitors and adapts its gait based on the damage condition autonomously through feedback control.
Collapse
Affiliation(s)
- Hedan Bai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Young Seong Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Robert F. Shepherd
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
22
|
Wang HX, Zhao XY, Jiang JQ, Liu ZT, Liu ZW, Li G. Thermal-Responsive Hydrogel Actuators with Photo-Programmable Shapes and Actuating Trajectories. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51244-51252. [PMID: 36397310 DOI: 10.1021/acsami.2c11514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thermal-responsive hydrogel actuators have aroused a wide scope of research interest and have been extensively studied. However, their actuating behaviors are usually monotonous due to their unchangeable shapes and structures. Here, we report thermal-responsive poly(isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate)/alginate hydrogels with programmable external shapes and internal actuating trajectories. The volume phase transition temperatures of the resulting hydrogels can be tuned in a wide temperature range from 32 to above 50 °C by adjusting the monomer composition. While the formation and photo-dissociation of Fe3+-carboxylate tri-coordinates within the entire hydrogel network enable photo-responsive shape memory property, the insufficient dissociation of the tri-coordinates along the irradiation path gives rise to gradient crosslinking for realizing thermal-responsive actuation. Controlling the evolution of the gradient structure facilitates the regulation of the actuating amplitude. Furthermore, we show that the combination of these two types of shape-changing functionalities leads to more flexible and intricate shape-changing behaviors. One interesting application, a programmable hook with changeable actuating behaviors for lifting different objects with specific shapes, is also demonstrated. The proposed strategy can be extended to other types of actuating hydrogels with more advanced actuating behaviors.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Xin-Yu Zhao
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Jin-Qiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| |
Collapse
|
23
|
Truby RL, Chin L, Zhang A, Rus D. Fluidic innervation sensorizes structures from a single build material. SCIENCE ADVANCES 2022; 8:eabq4385. [PMID: 35947669 PMCID: PMC9365281 DOI: 10.1126/sciadv.abq4385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Multifunctional materials with distributed sensing and programmed mechanical properties are required for myriad emerging technologies. However, current fabrication techniques constrain these materials' design and sensing capabilities. We address these needs with a method for sensorizing architected materials through fluidic innervation, where distributed networks of empty, air-filled channels are directly embedded within an architected material's sparse geometry. By measuring pressure changes within these channels, we receive feedback regarding material deformation. Thus, this technique allows for three-dimensional printing of sensorized structures from a single material. With this strategy, we fabricate sensorized soft robotic actuators on the basis of handed shearing auxetics and accurately predict their kinematics from the sensors' proprioceptive feedback using supervised learning. Our strategy for facilitating structural, sensing, and actuation capabilities through control of form alone simplifies sensorized material design for applications spanning wearables, smart structures, and robotics.
Collapse
Affiliation(s)
- Ryan L. Truby
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Departments of Materials Science and Engineering and Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Corresponding author.
| | - Lillian Chin
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Annan Zhang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniela Rus
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Ji D, Guo M, Wu Y, Liu W, Luo S, Wang X, Kang H, Chen Y, Dai C, Kong D, Ma H, Liu Y, Wei D. Electrochemical Detection of a Few Copies of Unamplified SARS-CoV-2 Nucleic Acids by a Self-Actuated Molecular System. J Am Chem Soc 2022; 144:13526-13537. [PMID: 35858825 PMCID: PMC9344789 DOI: 10.1021/jacs.2c02884] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/14/2022]
Abstract
The existing electrochemical biosensors lack controllable and intelligent merit to modulate the sensing process upon external stimulus, leading to challenges in analyzing a few copies of biomarkers in unamplified samples. Here, we present a self-actuated molecular-electrochemical system that consists of a tentacle and a trunk modification on a graphene microelectrode. The tentacle that contains a probe and an electrochemical label keeps an upright orientation, which increases recognition efficiency while decreasing the pseudosignal. Once the nucleic acids are recognized, the tentacles nearby along with the labels are spontaneously actuated downward, generating electrochemical responses under square wave voltammetry. Thus, it detects unamplified SARS-CoV-2 RNAs within 1 min down to 4 copies in 80 μL, 2-6 orders of magnitude lower than those of other electrochemical assays. Double-blind testing and 10-in-1 pooled testing of nasopharyngeal samples yield high overall agreement with reverse transcription-polymerase chain reaction results. We fabricate a portable prototype based on this system, showing great potential for future applications.
Collapse
Affiliation(s)
- Daizong Ji
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Mingquan Guo
- Shanghai
Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yungen Wu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Wentao Liu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Shi Luo
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Xuejun Wang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Hua Kang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Yiheng Chen
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Changhao Dai
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Derong Kong
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Hongwenjie Ma
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
- Institute
of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Dacheng Wei
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| |
Collapse
|
25
|
Lugger SJD, Verbroekken RMC, Mulder DJ, Schenning APHJ. Direct Ink Writing of Recyclable Supramolecular Soft Actuators. ACS Macro Lett 2022; 11:935-940. [PMID: 35802869 PMCID: PMC9301911 DOI: 10.1021/acsmacrolett.2c00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Direct ink writing (DIW) of liquid crystal elastomers
(LCEs) has
rapidly paved its way into the field of soft actuators and other stimuli-responsive
devices. However, currently used LCE systems for DIW require postprinting
(photo)polymerization, thereby forming a covalent network, making
the process time-consuming and the material nonrecyclable. In this
work, a DIW approach is developed for printing a supramolecular poly(thio)urethane
LCE to overcome these drawbacks of permanent cross-linking. The thermo-reversible
nature of the supramolecular cross-links enables the interplay between
melt-processable behavior required for extrusion and formation of
the network to fix the alignment. After printing, the actuators demonstrated
a reversible contraction of 12.7% or bending and curling motions when
printed on a passive substrate. The thermoplastic ink enables recyclability,
as shown by cutting and printing the actuators five times. However,
the actuation performance diminishes. This work highlights the potential
of supramolecular LCE inks for DIW soft circular actuators and other
devices.
Collapse
Affiliation(s)
- Sean J D Lugger
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruth M C Verbroekken
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dirk J Mulder
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
26
|
Alborzi S, Clark BG, Hashmi SM. Soft particles facilitate flow of rigid particles in a 2D hopper. SOFT MATTER 2022; 18:4127-4135. [PMID: 35582943 DOI: 10.1039/d2sm00318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The flow of granular materials through narrow openings governs flow and process efficiency in a variety of industrial settings. As the use of soft particles and other soft micro-materials becomes more widespread in consumer products, we seek to understand characteristics of granular flows beyond powder flows. We study clogging through a 2D hopper in systems consisting of a combination of soft and rigid particles of different sizes and mixing fractions. Our experimental results show that soft particles play a lubricating role in the flow of rigid spheres due to their deformability and slick surface, but the size of rigid particles influences clogging more than the size of soft ones. We simulate our results using a modification of the Durian bubble model to accommodate mixtures of particles of different softness. Without any adjustable parameters, the simulation results capture the clogging probability of soft-rigid particle mixtures through a 2D hopper.
Collapse
Affiliation(s)
- Saeed Alborzi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Benjamin G Clark
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sara M Hashmi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Wang Y, Willenbacher N. Phase-Change-Enabled, Rapid, High-Resolution Direct Ink Writing of Soft Silicone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109240. [PMID: 35174913 DOI: 10.1002/adma.202109240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Soft silicone is an ideal flexible material for application, e.g., in soft robotics, flexible electronics, bionics, or implantable biomedical devices. However, gravity-driven sagging, filament stretching, and deformation can cause inevitable defects during rapid manufacturing, making it hard to obtain complex, high-resolution 3D silicone structures with direct ink writing (DIW) technology. Here, rapid DIW of soft silicone enabled by a phase-change-induced, reversible change of the ink's hierarchical microstructure is presented. During printing, the silicone-based ink, containing silica nanoparticles and wax microparticles, is extruded from a heated nozzle into a cold environment under controlled stress. The wax phase change (solid-liquid-solid) during printing rapidly destroys and rebuilds the particle networks, realizing fast control of the ink flow behavior and printability. This high-operating-temperature DIW method is fast (maximum speed ≈3100 mm min-1 ) and extends the DIW scale range of soft silicone. The extruded filaments have small diameters (50 ± 5 µm), and allow for large spans (≈13-fold filament diameter) and high aspect ratios (≈1), setting a new benchmark in the DIW of soft silicone. Printed silicone structures exhibit excellent performance as flexible sensors, superhydrophobic surfaces, and shape-memory bionic devices, illustrating the potential of the new 3D printing strategy.
Collapse
Affiliation(s)
- Yiliang Wang
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| |
Collapse
|
28
|
Yan X, Chen Q, Huo Z, Zhang N, Ma M. Programmable Multistimuli-Responsive and Multimodal Polymer Actuator Based on a Designed Energy Transduction Network. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13768-13777. [PMID: 35262326 DOI: 10.1021/acsami.2c01549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A polymer actuator typically responds to only one or two types of stimuli, where sensing and actuation are simultaneously exerted by the same responsive polymer. In cells, sensing and actuation are exerted separately by different biomolecules, which are integrated into nanoscale assemblies to construct the signaling network, making cells a multistimuli responsive and multimodal system. Inspired by the structure-function relationship of the signaling network in cells, we have developed a strategy to select and assemble proper functional polymers into assemblies, where sensing and actuation are exerted by different polymers, and the assemblies can present novel functions beyond that of each polymer component. Three polymers [polyaniline, PANi; poly(N-isopropylacrylamide), PNIPAm; and polydimethylsiloxane, PDMS] are integrated as nodes into a simple energy transduction network, which can be regulated by three molecular factors (pH, kosmotropic anions, and polyethylene glycol). PANi converts the light or electric stimulus into heat, which triggers the actuation of PNIPAm and PDMS. Relying on this energy transduction network, the polymer assembly can respond to six types of stimuli (light, electricity, temperature, water, ions, and organic solvents) and perform different actuation modes, serving as a powerful actuator. Programmable complex deformation upon multiple simultaneous or sequential stimuli has also been achieved by this actuator. An adaptive gripper to catch thin objects and a self-regulating switch to maintain environmental humidity illustrate the wide potential of this actuator for next-generation smart materials and soft robots.
Collapse
Affiliation(s)
- Xiunan Yan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qing Chen
- Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany
| | - Ziyu Huo
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, Anhui 230601, China
| | - Mingming Ma
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
29
|
Zhang X, Xue P, Yang X, Valenzuela C, Chen Y, Lv P, Wang Z, Wang L, Xu X. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11834-11841. [PMID: 35192332 DOI: 10.1021/acsami.1c24702] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Shape-programmable hydrogel-based soft actuators that can adaptively respond to external stimuli are of paramount significance for the development of bioinspired aquatic smart soft robots. Herein, we report the design and synthesis of near-infrared (NIR) light-driven hydrogel actuators through in situ photopolymerization of poly(N-isopropylacrylamide) (PNIPAM) hydrogels loaded with metal-organic frameworks (MOFs) onto the surface of the poly(dimethylsiloxane) (PDMS) thin film. The MOFs can not only function as an excellent photothermal nanotransducer but also accelerate the adsorption/desorption of water due to their porous nanostructure, which speeds up the response rate of the actuators. Shape-programmable hydrogel actuators are fabricated by tailoring the patterning of PDMS thin film, and thus different shape-morphing modes such as directional bending and chiral twisting are observed under the NIR light irradiations. As the proof-of-concept demonstrations, an artificial hand, biomimetic mimosa, and flower are conceptualized with light-driven MOF-containing hydrogel actuators. Interestingly, we are able to achieve an octopus-inspired light-driven soft swimmer upon cyclic NIR illumination due to the fast photoresponsiveness of as-prepared hydrogel actuators. This work can offer insights for fabricating programmable and reconfigurable smart aquatic soft actuators, thus shining a light into their potential applications in emerging fields including soft robots, biomedical devices, and beyond.
Collapse
Affiliation(s)
- Xinmu Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pengfei Lv
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhaokai Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
30
|
Fang J, Zhuang Y, Liu K, Chen Z, Liu Z, Kong T, Xu J, Qi C. A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104347. [PMID: 35072360 PMCID: PMC8922102 DOI: 10.1002/advs.202104347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Indexed: 05/07/2023]
Abstract
Research field of soft robotics develops exponentially since it opens up many imaginations, such as human-interactive robot, wearable robots, and transformable robots in unpredictable environments. Wet environments such as sea and in vivo represent dynamic and unstructured environments that adaptive soft robots can reach their potentials. Recent progresses in soft hybridized robotics performing tasks underwater herald a diversity of interactive soft robotics in wet environments. Here, the development of soft robots in wet environments is reviewed. The authors recapitulate biomimetic inspirations, recent advances in soft matter materials, representative fabrication techniques, system integration, and exemplary functions for underwater soft robots. The authors consider the key challenges the field faces in engineering material, software, and hardware that can bring highly intelligent soft robots into real world.
Collapse
Affiliation(s)
- Jielun Fang
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Yanfeng Zhuang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Kailang Liu
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Zhuo Chen
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jianhong Xu
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Qi
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| |
Collapse
|
31
|
Roels E, Terryn S, Iida F, Bosman AW, Norvez S, Clemens F, Van Assche G, Vanderborght B, Brancart J. Processing of Self-Healing Polymers for Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104798. [PMID: 34610181 DOI: 10.1002/adma.202104798] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.
Collapse
Affiliation(s)
- Ellen Roels
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Fumiya Iida
- Machine Intelligence Lab, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Anton W Bosman
- SupraPolix B. V., Horsten 1.29, Eindhoven, 5612 AX, The Netherlands
| | - Sophie Norvez
- Chimie Moléculaire, Macromoléculaire, Matériaux, École Supérieure de Physique et de Chimie (ESPCI), 10 Rue Vauquelin, Paris, 75005, France
| | - Frank Clemens
- Laboratory for High Performance Ceramics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
32
|
Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel-Like Actuation and Reconfigurable Function. Angew Chem Int Ed Engl 2021; 61:e202116689. [PMID: 34970834 DOI: 10.1002/anie.202116689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
A porous liquid crystalline network (LCN), prepared using a template method, was found to exhibit peculiar actuation functions. The creation of porosity makes the initially hydrophobic LCN behave like a hydrogel, capable of absorbing a large volume of water (up to ten times the sample size of LCN). When the amount of absorbed water is relatively small (about 100% swelling ratio), the porous LCN displays anisotropic swelling in water and, in the same time, the retained uniaxial alignment of mesogens ensures thermally induced shape change associated with LC-isotropic phase transition. Combining the characteristic actuation mechanisms of LCN (order-disorder transition of mesogens) and hydrogel (water absorption), such porous LCN can be explored for versatile stimuli-triggered shape transformations. Moreover, the porosity enables loading/removal/reloading of functional fillers such as ionic liquid, photothermal dye and fluorophore, which imparts a same porous LCN actuator with reconfigurable functions such as ionic conductivity, light-driven locomotion, and emissive color.
Collapse
Affiliation(s)
- Jie Jiang
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, Department of Chemistry, University of Sherbrooke, J1K2R1, Sherbrooke, CANADA
| | - Li Han
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Feijie Ge
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Yaoyu Xiao
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Ruidong Cheng
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Xia Tong
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Yue Zhao
- University of Sherbrooke, Department of Chemistry, Blvd. Universite, J1K 2R1, Sherbrooke, CANADA
| |
Collapse
|
33
|
Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel‐Like Actuation and Reconfigurable Function. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Jiang
- Université de Sherbrooke: Universite de Sherbrooke Chemistry Department of ChemistryUniversity of Sherbrooke J1K2R1 Sherbrooke CANADA
| | - Li Han
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Feijie Ge
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Yaoyu Xiao
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Ruidong Cheng
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Xia Tong
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Yue Zhao
- University of Sherbrooke Department of Chemistry Blvd. Universite J1K 2R1 Sherbrooke CANADA
| |
Collapse
|
34
|
Zhao S, Lei Y, Wang Z, Zhang J, Liu J, Zheng P, Gong Z, Sun Y. Biomimetic Artificial Joints Based on Multi-Material Pneumatic Actuators Developed for Soft Robotic Finger Application. MICROMACHINES 2021; 12:1593. [PMID: 34945443 PMCID: PMC8706791 DOI: 10.3390/mi12121593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022]
Abstract
To precisely achieve a series of daily finger bending motions, a soft robotic finger corresponding to the anatomical range of each joint was designed in this study with multi-material pneumatic actuators. The actuator as a biomimetic artificial joint was developed on the basis of two composite materials of different shear modules, and the pneumatic bellows as expansion parts was restricted by frame that made from polydimethylsiloxane (PDMS). A simplified mathematical model was used for the bending mechanism description and provides guidance for the multi-material pneumatic actuator fabrication (e.g., stiffness and thickness) and structural design (e.g., cross length and chamber radius), as well as the control parameter optimization (e.g., the air pressure supply). An actuation pressure of over 70 kPa is required by the developed soft robotic finger to provide a full motion range (MCP = 36°, PIP = 114°, and DIP = 75°) for finger action mimicking. In conclusion, a multi-material pneumatic actuator was designed and developed for soft robotic finger application and theoretically and experimentally demonstrated its feasibility in finger action mimicking. This study explored the mechanical properties of the actuator and could provide evidence-based technical parameters for pneumatic robotic finger design and precise control of its dynamic air pressure dosages in mimicking actions. Thereby, the conclusion was supported by the results theoretically and experimentally, which also aligns with our aim to design and develop a multi-material pneumatic actuator as a biomimetic artificial joint for soft robotic finger application.
Collapse
Affiliation(s)
- Shumi Zhao
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei 230026, China;
| | - Yisong Lei
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China; (Y.L.); (Z.W.); (J.Z.); (J.L.); (P.Z.)
| | - Ziwen Wang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China; (Y.L.); (Z.W.); (J.Z.); (J.L.); (P.Z.)
| | - Jie Zhang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China; (Y.L.); (Z.W.); (J.Z.); (J.L.); (P.Z.)
| | - Jianxun Liu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China; (Y.L.); (Z.W.); (J.Z.); (J.L.); (P.Z.)
| | - Pengfei Zheng
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China; (Y.L.); (Z.W.); (J.Z.); (J.L.); (P.Z.)
| | - Zidan Gong
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China; (Y.L.); (Z.W.); (J.Z.); (J.L.); (P.Z.)
| | - Yue Sun
- School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
35
|
Yoon J, Hou Y, Knoepfel AM, Yang D, Ye T, Zheng L, Yennawar N, Sanghadasa M, Priya S, Wang K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem Soc Rev 2021; 50:12915-12984. [PMID: 34622260 DOI: 10.1039/d0cs01493a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.
Collapse
Affiliation(s)
- Jungjin Yoon
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Yuchen Hou
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Abbey Marie Knoepfel
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Dong Yang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Tao Ye
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Luyao Zheng
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Neela Yennawar
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Mohan Sanghadasa
- U.S. Army Combat Capabilities Development Command Aviation & Missile Center, Redstone Arsenal, Alabama, 35898, USA
| | - Shashank Priya
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Kai Wang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
36
|
Zhai Y, Wang Z, Kwon KS, Cai S, Lipomi DJ, Ng TN. Printing Multi-Material Organic Haptic Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002541. [PMID: 33135205 DOI: 10.1002/adma.202002541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Haptic actuators generate touch sensations and provide realism and depth in human-machine interactions. A new generation of soft haptic interfaces is desired to produce the distributed signals over large areas that are required to mimic natural touch interactions. One promising approach is to combine the advantages of organic actuator materials and additive printing technologies. This powerful combination can lead to devices that are ergonomic, readily customizable, and economical for researchers to explore potential benefits and create new haptic applications. Here, an overview of emerging organic actuator materials and digital printing technologies for fabricating haptic actuators is provided. In particular, the focus is on the challenges and potential solutions associated with integration of multi-material actuators, with an eye toward improving the fidelity and robustness of the printing process. Then the progress in achieving compact, lightweight haptic actuators by using an open-source extrusion printer to integrate different polymers and composites in freeform designs is reported. Two haptic interfaces-a tactile surface and a kinesthetic glove-are demonstrated to show that printing with organic materials is a versatile approach for rapid prototyping of various types of haptic devices.
Collapse
Affiliation(s)
- Yichen Zhai
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Kye-Si Kwon
- Department of Mechanical Engineering, Soonchunhyang University, Asan City, Chungnam, 31538, South Korea
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Darren J Lipomi
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Tse Nga Ng
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
37
|
Abbasi B, Harper J, Ahmadvand S. A short critique on biomining technology for critical materials. World J Microbiol Biotechnol 2021; 37:87. [PMID: 33881629 DOI: 10.1007/s11274-021-03048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Being around for several decades, there is a vast amount of academic research on biomining, and yet it contributes less to the mining industry compared to other conventional technologies. This critique briefly comments on the current status of biomining research, enumerates a number of primary challenges, and elaborates on some kinetically-oriented strategies and bottom-up policies to sustain biomining with focus on critical material extraction and rare earth elements (REEs). Finally, we present some edge cutting developments which may promote new potentials in biomining.
Collapse
Affiliation(s)
- Behrooz Abbasi
- Department of Mining and Metallurgical Engineering, University of Nevada, Reno, 89557, USA.
| | - Jeffrey Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA.
| | | |
Collapse
|
38
|
Zhang P, Rešetič A, Behl M, Lendlein A. Multifunctionality in Polymer Networks by Dynamic of Coordination Bonds. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pengfei Zhang
- Institute of Biomaterial Science Helmholtz‐Zentrum Geesthacht Kantstr. 55 Teltow 14513 Germany
- Institute of Chemistry University of Potsdam Potsdam 14476 Germany
| | - Andraž Rešetič
- Institute of Biomaterial Science Helmholtz‐Zentrum Geesthacht Kantstr. 55 Teltow 14513 Germany
| | - Marc Behl
- Institute of Biomaterial Science Helmholtz‐Zentrum Geesthacht Kantstr. 55 Teltow 14513 Germany
- Joint Laboratory for Biomaterials and Regenerative Medicine Weijin Road 92 Tianjin 300072 China
- Joint Laboratory for Biomaterials and Regenerative Medicine Kantstr. 55 Teltow 14513 Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science Helmholtz‐Zentrum Geesthacht Kantstr. 55 Teltow 14513 Germany
- Institute of Chemistry University of Potsdam Potsdam 14476 Germany
- Joint Laboratory for Biomaterials and Regenerative Medicine Weijin Road 92 Tianjin 300072 China
- Joint Laboratory for Biomaterials and Regenerative Medicine Kantstr. 55 Teltow 14513 Germany
| |
Collapse
|
39
|
Zhao Q, Li C, Shum HC, Du X. Shape-adaptable biodevices for wearable and implantable applications. LAB ON A CHIP 2020; 20:4321-4341. [PMID: 33232418 DOI: 10.1039/d0lc00569j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emerging wearable and implantable biodevices have been significantly revolutionizing the diagnosis and treatment of disease. However, the geometrical mismatch between tissues and biodevices remains a great challenge for achieving optimal performances and functionalities for biodevices. Shape-adaptable biodevices enabling active compliance with human body tissues offer promising opportunities for addressing the challenge through programming their geometries on demand. This article reviews the design principles and control strategies for shape-adaptable biodevices with programmable shapes and actively compliant capabilities, which have offered innovative diagnostic/therapeutic tools and facilitated a variety of wearable and implantable applications. The state-of-the-art progress in applications of shape-adaptable biodevices in the fields of smart textiles, wound care, healthcare monitoring, drug and cell delivery, tissue repair and regeneration, nerve stimulation and recording, and biopsy and surgery, is highlighted. Despite the remarkable advances already made, shape-adaptable biodevices still confront many challenges on the road toward the clinic, such as enhanced intelligence for actively sensing and operating in response to physiological environments. Next-generation paradigms will shed light on future directions for extending the breadth and performance of shape-adaptable biodevices for wearable and implantable applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035 China.
| | | | | | | |
Collapse
|
40
|
Bai H, Li S, Barreiros J, Tu Y, Pollock CR, Shepherd RF. Stretchable distributed fiber-optic sensors. Science 2020; 370:848-852. [DOI: 10.1126/science.aba5504] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hedan Bai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Shuo Li
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jose Barreiros
- Program of Systems Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yaqi Tu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Clifford R. Pollock
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Robert F. Shepherd
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Program of Systems Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
41
|
Yan J, Tuhin MO, Sadler JD, Smith SD, Pasquinelli MA, Spontak RJ. Network topology and stability of homologous multiblock copolymer physical gels. J Chem Phys 2020; 153:124904. [PMID: 33003715 DOI: 10.1063/5.0028136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mechanical properties of physical gels generated by selectively swelling a homologous series of linear multiblock copolymers are investigated by quasistatic uniaxial tensile tests. We use the slip-tube network model to extract the contributions arising from network crosslinks and chain entanglements. The composition dependence of these contributions is established and considered in terms of simulations that identify the probabilities associated with chain conformations. Dynamic rheology provides additional insight into the characteristics and thermal stability of the molecular networks.
Collapse
Affiliation(s)
- Jiaqi Yan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Mohammad O Tuhin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J David Sadler
- Corporate Research and Development, The Procter & Gamble Company, Cincinnati, Ohio 45224, USA
| | - Steven D Smith
- Corporate Research and Development, The Procter & Gamble Company, Cincinnati, Ohio 45224, USA
| | - Melissa A Pasquinelli
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Richard J Spontak
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
42
|
Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. ACTUATORS 2020. [DOI: 10.3390/act9010010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Shape memory polymers (SMPs) are smart materials capable of changing their shapes in a predefined manner under a proper applied stimulus and have gained considerable interest in several application fields. Particularly, two-way and multiple-way SMPs offer unique opportunities to realize untethered soft robots with programmable morphology and/or properties, repeatable actuation, and advanced multi-functionalities. This review presents the recent progress of soft robots based on two-way and multiple-way thermo-responsive SMPs. All the building blocks important for the design of such robots, i.e., the base materials, manufacturing processes, working mechanisms, and modeling and simulation tools, are covered. Moreover, examples of real-world applications of soft robots and related actuators, challenges, and future directions are discussed.
Collapse
|
43
|
Altuna FI, Casado U, dell'Erba IE, Luna L, Hoppe CE, Williams RJJ. Epoxy vitrimers incorporating physical crosslinks produced by self-association of alkyl chains. Polym Chem 2020. [DOI: 10.1039/c9py01787a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitrimers synthesized from epoxy-carboxylic acid-alkylamine (Cn) formulations exhibit tunable mechanical properties and stress relaxation without using external catalysts.
Collapse
Affiliation(s)
- F. I. Altuna
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - U. Casado
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - I. E. dell'Erba
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - L. Luna
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - C. E. Hoppe
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - R. J. J. Williams
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| |
Collapse
|
44
|
Tong R, Cai L, Chen G, Tian J, He M. Rapid preparation of highly transparent piezoresistive balls for optoelectronic devices. Chem Commun (Camb) 2020; 56:2771-2774. [DOI: 10.1039/c9cc08840g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly transparent piezoresistive balls are rapidly prepared for optoelectronic devices by photopolymerization of polymerizable deep eutectic solvents.
Collapse
Affiliation(s)
- Ruiping Tong
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Ling Cai
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Engineering Research Center for Filtration and Wet Non-Woven Composites
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Engineering Research Center for Green Fine Chemicals
| |
Collapse
|
45
|
Zhang C, Lu X, Fei G, Wang Z, Xia H, Zhao Y. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44774-44782. [PMID: 31692319 DOI: 10.1021/acsami.9b18037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid crystal elastomers (LCEs), a class of soft materials capable of a large and reversible change in the shape under the trigger of external stimuli, can be fabricated into diverse architectures with complicated deformation modes through four-dimensional (4D) printing. However, the printable LCE ink is only in the form of monomeric precursors and the deformation mode is limited to contraction/extension deformation. Herein, we report a novel approach to break through these limitations. We achieved 4D printing of a single-component liquid crystal polymer ink in its isotropy state through direct ink writing (DIW) technology. The drawing force imposed by the movement of nozzle in the extruded printing process was able to align the mesogen units along the specific printing path. An orientation gradient perpendicular to the printing direction was obtained due to the existence of a temperature gradient between the two sides of printed samples and could be further fixed by post-photo-cross-linking treatment through the dimerizable groups in the LCE, realizing a new actuation mode in the field of extrusion-based printing of LCE actuators. The printed film was able to change reversibly from a strip to a tightly hollow cylinder and could reversibly lift up an object with roughly 600 times its own weight. The orientation gradient can be patterned through liquid-assistant printing or programmed structure design to integrate both bending and contraction actuation modes on the same printed sample, leading to complex deformation and two-dimensional (2D) planar porous structure to three-dimensional (3D) porous cylinder transition. This study opens up a new prospect to directly print a wide variety of LCE actuators with versatile actuation modes.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Guoxia Fei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Yue Zhao
- Département de chimie Université de Sherbrooke Sherbrooke , Québec J1K 2R1 , Canada
| |
Collapse
|