1
|
Shi W, Hu Y, Leanza L, Shchukin Y, Hoffmann PA, Li MH, Ning C, Cao ZY, Xu YQ, Du P, von Delius M, Pavan GM, Xu Y. Ring-in-Ring Assembly Facilitates the Synthesis of a [12]Cycloparaphenylene ABC-Type [3]Catenane. Angew Chem Int Ed Engl 2025; 64:e202421459. [PMID: 39789989 DOI: 10.1002/anie.202421459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Cycloparaphenylenes (CPPs) represent a significant challenge for the synthesis of mechanically interlocked architectures, because they lack heteroatoms, which precludes traditional active and passive template methods. To circumvent this problem and explore the fundamental and functional properties of CPP rotaxanes and catenanes, researchers have resorted to unusual non-covalent and even to labor-intensive covalent template approaches. Herein, we report a ring-in-ring non-covalent template strategy that makes use of the surprisingly strong non-covalent inclusion of crown ethers into suitably sized CPPs. By threading a secondary ammonium salt through the crown ether and closing the third ring via CuAAC click reaction, we obtained a rare ABC-type hetero-[3]catenane comprising [12]CPP, 24-crown-8 and a dibenzylammonium macrocycle. X-ray crystallography shed light on the ring-in-ring pre-organization and the [3]catenane topology was confirmed by NMR and MS-MS studies. Molecular simulations provided insights into the intriguing ring-vs.-ring-vs.-ring dynamics of the [3]catenane, which are highly dependent on the protonation state of the dibenzylammonium site. This ring-in-ring assembly strategy opens new avenues for the synthesis of complex CPP architectures and their use in functional supramolecular systems.
Collapse
Affiliation(s)
- Wudi Shi
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yaning Hu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Luigi Leanza
- Department of Applied Science and Technology, Institution Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Yevhenii Shchukin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Patrick A Hoffmann
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Meng-Hua Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Chengbing Ning
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Province, 230026, China
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Institution Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
2
|
Li X, Liu L, Jia L, Lian Z, He J, Guo S, Wang Y, Chen X, Jiang H. Acceptor engineering of quinone-based cycloparaphenylenes via post-synthesis for achieving white-light emission in single-molecule. Nat Commun 2025; 16:467. [PMID: 39775102 PMCID: PMC11707345 DOI: 10.1038/s41467-025-55895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Developing donor-acceptor [n]cycloparaphenylenes (D-A [n]CPPs) with multiple emissions from different emissive states remains challenging yet crucial for achieving white-light emission in single-molecule. Here, we report our explorations into acceptor engineering of quinone-based D-A [10]CPPs (Nq/Aq/Tq[10]CPPs) via a post-lateral annulation using Diels-Alder reactions of oxTh[10]CPP. X-ray analysis reveals that Nq[10]CPP displays a side by side packing via naphthoquione stacking while Aq[10]CPP adopts an intercalated conformation through anthraquinone interaction. Fluorescence investigations reveal that the quinone-based [10]CPPs display distinctive acceptor-dependent dual-emission from both the locally excited state and charge transfer state after single-wavelength excitation in organic solvents, consequently leading to multicolor emissions, in particular, white-light emission in CHCl3 for Aq[10]CPP. In THF/water mixture, quinone-based [10]CPPs and oxTh[10]CPP display a wide range of fluorescence emissions including white-light emission as increasing the fraction of water, accompanying by the formation of nanoparticles as demonstrated by Tyndall effect and SEM. Interestingly, the fluorescence of Aq[10]CPP can be switched from white to blue in CHCl3 upon redox. Our investigations demonstrate that acceptor engineering not only endows quinone-based [10]CPPs with two distint emissive states for achieving white-light emission but also highlights an effective post-synthetic strategy for functionalizing CPP nanohoops with desirable properties.
Collapse
Affiliation(s)
- Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Luyang Jia
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| |
Collapse
|
3
|
Schwer F, Zank S, Freiberger M, Steudel FM, Geue N, Ye L, Barran PE, Drewello T, Guldi DM, von Delius M. Nanohoops Favour Light-Induced Energy Transfer over Charge Separation in Porphyrin/[10]CPP/Fullerene Rotaxanes. Angew Chem Int Ed Engl 2025; 64:e202413404. [PMID: 39313478 DOI: 10.1002/anie.202413404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
[2]Rotaxanes offer unique opportunities for studying and modulating charge separation and energy transfer, because the mechanical bond allows the robust, yet spatially dynamic tethering of photoactive groups. In this work, we synthesized [2]rotaxane triads comprising a central (aza)[10]CPP⊃C60 bis-adduct complex and two zinc porphyrin stoppers to address how the movable nanohoop affects light-induced charge separation and energy transfer between the rotaxane subcomponents. We found that neither the parent nanohoop [10]CPP nor its electron-deficient analogue aza[10]CPP actively participate in charge separation. In contrast, the nanohoops completely prevented through-space charge separation. This result is likely due to supramolecular "shielding", because charge separation was observed in the thread that acted as reference dyad. On the other hand, the suppression of electron transfer allowed the observation of energy transfer from the porphyrin triplet to the fullerene triplet state with a lifetime of ca. 25 μs. The presence of the interlocked nanohoops therefore leads to a dramatic switch between charge separation and energy transfer. We suggest that our results explain observations made by others in photovoltaic devices comprising nanohoops and may pave the way toward strategic uses of mechanically interlocked architectures in devices that feature (triplet) energy transfer.
Collapse
Affiliation(s)
- Fabian Schwer
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Simon Zank
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Markus Freiberger
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Fabian M Steudel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Niklas Geue
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lei Ye
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
4
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
5
|
Lingas R, Charistos ND, Muñoz-Castro A. Borospherene in the Nanohoop: Complexation and Aromaticity of Neutral and Dioxidized Cycloparaphenylene Supramolecules with B40 and C60 Fullerenes. Chemistry 2024; 30:e202402027. [PMID: 38923129 DOI: 10.1002/chem.202402027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular complexes of carbon nanohoops with fullerenes play a key role for the design of novel nanomaterials with technological applications. Herein we investigate with density functional theory (DFT) methods the capability of neutral and dioxidized cycloparaphenylenes (CPPs) to encapsulate all-boron fullerene B40. Our results show that [9]CPP and [10]CPP are feasible host candidates to encapsulate B40 displaying comparable complexation energies with the all-carbon analog [10]CPP⊃C60. Upon dioxidation the host-guest interactions are not affected, whereas the positive charge is delocalized on the CPPs leading to global aromatic character of the hosts. Consequently, the dicationic complexes [n]CPP2+⊃B40 and [10]CPP2+⊃C60 display augmented global shielding cones that strongly shield the guests, as manifested by large upfield shifts in 11B-NMR and 13C-NMR signals. Hence, CPP complexes with carbon fullerenes can be extended borospherene B40 host-guest complexes, as well as to doubly oxidized species stabilized by global host aromaticity, expanding our understanding of carbon nanohoop complexes to boron-based fullerenes.
Collapse
Affiliation(s)
- Rafael Lingas
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Nickolas D Charistos
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
6
|
Jaiswal M, Dasgupta S. Tuning Stopper Size in Multiresponsive [2]Rotaxanes for Fluoride Anion Selective Metastability. Org Lett 2024; 26:6776-6781. [PMID: 39053506 DOI: 10.1021/acs.orglett.4c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
[23]Crown-7-ether incorporated [2]rotaxanes, comprising an anthracene blocker and 4-isopropylphenyl/cyclohexyl end groups, exhibited varying degrees of metastability with a range of chemical (base, halide anions) and physical (solvent, heat) stimuli. Among halides, fluoride, chloride, and bromide anions affected the deslippage of 23-crown-7-ether in 4-isopropylphenyl stoppered [2]rotaxane. Surprisingly, only fluoride anions could selectively induce deslippage in cyclohexyl stoppered [2]rotaxane, whose fluorescence quenching provided an additional tool to selectively detect the fluoride anions down to 2.49 × 10-7 M.
Collapse
Affiliation(s)
- Mukesh Jaiswal
- Department of Chemistry, National Institute of Technology Patna, Patna 800005, India
| | - Suvankar Dasgupta
- Department of Chemistry, National Institute of Technology Patna, Patna 800005, India
| |
Collapse
|
7
|
Yang Y, Guo S, Zhang Q, Guan ZJ, Wang QM. A Cages-on-Cluster Structure Constructed by Post-Clustering Covalent Modifications and Guest-Enabled Stimuli-Responsive Luminescence. Angew Chem Int Ed Engl 2024; 63:e202404798. [PMID: 38713516 DOI: 10.1002/anie.202404798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024]
Abstract
A gold(I)-cluster-based twin-cage has been constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure has double cavities and four binding sites, which show site-discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: the tetra-silver(I) host-guest complex is weakly red-emissive, while the bis-copper(I)-bis-silver(I) one is non-emissive but is a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enables the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues for finely tuning the properties of clusters.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shan Guo
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Qian Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
8
|
Chen Q, Zhu K. Advancements and strategic approaches in catenane synthesis. Chem Soc Rev 2024; 53:5677-5703. [PMID: 38659402 DOI: 10.1039/d3cs00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Catenanes, a distinctive category of mechanically interlocked molecules composed of intertwined macrocycles, have undergone significant advancements since their initial stages characterized by inefficient statistical synthesis methods. Through the aid of molecular recognition processes and principles of self-assembly, a diverse array of catenanes with intricate structures can now be readily accessed utilizing template-directed synthetic protocols. The rapid evolution and emergence of this field have catalyzed the design and construction of artificial molecular switches and machines, leading to the development of increasingly integrated functional systems and materials. This review endeavors to explore the pivotal advancements in catenane synthesis from its inception, offering a comprehensive discussion of the synthetic methodologies employed in recent years. By elucidating the progress made in synthetic approaches to catenanes, our aim is to provide a clearer understanding of the future challenges in further advancing catenane chemistry from a synthetic perspective.
Collapse
Affiliation(s)
- Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Elramadi E, Kundu S, Mondal D, Paululat T, Schmittel M. Stepwise Dissipative Control of Multimodal Motion in a Silver(I) Catenate. Angew Chem Int Ed Engl 2024; 63:e202404444. [PMID: 38530118 DOI: 10.1002/anie.202404444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Stepwise dissipative control of two distinct motions, i.e., shuttling and sliding, is demonstrated in a single multicomponent device. When [2]rotaxane 1, which acts as a biped, and deck 2 were treated with AgBF4/PhCH2Br+NEt3 as chemical fuel, the transient catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ was instantly generated showing multimodal motion and autonomous return to 1 and 2. In the dissipative process, catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ cleanly transformed into the follow-up transient device (1) ⋅ [Ag3(2)]3+ exhibiting only sliding motion. Two interference-free dissipative cycles proved the resilience and robustness of the process.
Collapse
Affiliation(s)
- Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie II, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
10
|
Xu Y, Leung MY, Yan L, Chen Z, Li P, Cheng YH, Chan MHY, Yam VWW. Synthesis, Characterization, and Resistive Memory Behaviors of Highly Strained Cyclometalated Platinum(II) Nanohoops. J Am Chem Soc 2024; 146:13226-13235. [PMID: 38700957 DOI: 10.1021/jacs.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Strained carbon nanohoops exhibit attractive photophysical properties due to their unique π-conjugated structure. However, incorporation of such nanohoops into the pincer ligand of metal complexes has rarely been explored. Herein, a new family of highly strained cyclometalated platinum(II) nanohoops has been synthesized and characterized. Strain-promoted C-H bond activation has been observed during the metal coordination process, and Hückel-Möbius topology and random-columnar packing in the solid state are found. Transient absorption spectroscopy revealed the size-dependent excited state properties of the nanohoops. Moreover, the nanohoops have been successfully employed as active materials in the fabrication of solution-processable resistive memory devices, including the use of the smallest platinum(II) nanohoop for the fabrication of a binary memory, with low switching threshold voltages of ca. 1.5 V, high ON/OFF current ratios, and good stability. These results demonstrate that strain incorporation into the structure can be an effective strategy to fundamentally fine-tune the reactivity, optoelectronic, and resistive memory properties.
Collapse
Affiliation(s)
- Youzhi Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ming-Yi Leung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Liangliang Yan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ziyong Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Panpan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Yat-Hin Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
11
|
May JH, Fehr JM, Lorenz JC, Zakharov LN, Jasti R. A High-Yielding Active Template Click Reaction (AT-CuAAC) for the Synthesis of Mechanically Interlocked Nanohoops. Angew Chem Int Ed Engl 2024; 63:e202401823. [PMID: 38386798 DOI: 10.1002/anie.202401823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments-[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles-may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal-ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu-catalyzed azide-alkyne cycloaddition (AT-CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2'-bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT-CuAAC reaction to provide [2]rotaxanes in near-quantitative yield, which can then be converted into the fully π-conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where Tz denotes a 1,2,3-triazole moiety replacing one phenylene ring in the [n]CPP backbone).
Collapse
Affiliation(s)
- James H May
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Julia M Fehr
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Jacob C Lorenz
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Lev N Zakharov
- CAMCOR-Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon, 97403, United States
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| |
Collapse
|
12
|
Bu A, Gao JN, Chen Y, Xiao H, Li H, Tung CH, Wu LZ, Cong H. Modular Synthesis of Improbable Rotaxanes with All-Benzene Scaffolds. Angew Chem Int Ed Engl 2024; 63:e202401838. [PMID: 38404165 DOI: 10.1002/anie.202401838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
"Improbable" rotaxanes consisting of interlocked conjugated components represent non-trivial synthetic targets, not to mention those with all-benzene scaffolds. Herein, a modular synthetic strategy has been established using an isolable azo-linked pre-rotaxane as the core module, in which the azo group functions as a tracelessly removable template to direct mechanical bond formations. Through versatile connections of the pre-rotaxane and other customizable modules, [2]- and [3]rotaxanes derived from all-benzene scaffolds have been accomplished, demonstrating the utility and potential of the synthetic design for all-benzene interlocked supramolecules.
Collapse
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Nan Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiming Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongwei Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Bernt F, Leonhardt CM, Schatz D, Wegner HA. Synthesis and investigation of a meta[6]cycloparaphenylene gold(I) N-heterocyclic carbene complex. Chem Commun (Camb) 2024; 60:3055-3058. [PMID: 38381535 DOI: 10.1039/d3cc06225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Meta[n]cycloparaphenylenes (m[n]CPPs) as well as N-heterocyclic carbene (NHC) gold(I)-complexes are intriguing building blocks for material and life sciences due to their extraordinary structures resulting in unique photophysical properties. Herein, we report the combination of a m[6]CPP with a N-heterocyclic carbene serving as a ligand in a linear gold(I)-complex possessing the form [AuBr(NHC)]. Solid-state structures of both the precursor and the complex are presented and discussed. Moreover, we investigated the luminescence properties of both the imidazolium intermediate and the corresponding gold(I)-complex.
Collapse
Affiliation(s)
- Felix Bernt
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Christopher M Leonhardt
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| |
Collapse
|
14
|
Qi Y, Ayinla M, Clifford S, Ramström O. Spontaneous and Selective Macrocyclization in Nitroaldol Reaction Systems. J Org Chem 2023. [PMID: 38154053 DOI: 10.1021/acs.joc.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Through a dynamic polymerization and self-sorting process, a range of lowellane macrocycles have been efficiently generated in nitroaldol systems composed of aromatic dialdehydes and aliphatic or aromatic dinitroalkanes. All identified macrocycles show a composition of two repeating units, resulting in tetra-β-nitroalcohols of different structures. The effects of the building block structure on the macrocyclization process have been demonstrated, and the influence from the solvent has been explored. In general, the formation of the lowellanes was amplified in response to phase-change effects, although solution-phase structures were, in some cases, favored.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Stephen Clifford
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
15
|
Ari D, Dureau E, Jeannin O, Rault-Berthelot J, Poriel C, Quinton C. Modulation of [8]CPP properties by bridging two phenylene units. Chem Commun (Camb) 2023. [PMID: 38014495 DOI: 10.1039/d3cc04924h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report the synthesis and characterization of two new fluorophores, consisting of a [8]cyclo-para-phenylene core in which two phenylenes are bridged by either a nitrogen atom or a carbonyl group. The nitrogen bridge increases the HOMO-LUMO gap, whereas the carbonyl bridge decreases it. These results provide guidelines to control the electronic properties of nanohoops.
Collapse
Affiliation(s)
- Denis Ari
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| | - Elodie Dureau
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| | | | | | - Cyril Poriel
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| | | |
Collapse
|
16
|
Griwatz JH, Kessler ML, Wegner HA. Continuous-Flow Synthesis of Cycloparaphenylene Building Blocks on a Large Scale. Chemistry 2023; 29:e202302173. [PMID: 37534817 DOI: 10.1002/chem.202302173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
The synthesis of [n]cycloparaphenylenes ([n]CPPs) and similar nanohoops is usually based on combining building blocks to a macrocyclic precursor, which is then aromatized in the final step. Access to those building blocks in large amounts will simplify the synthesis and studies of CPPs as novel functional materials for applications. Herein, we report a continuous-flow synthesis of key CPP building blocks by using versatile synthesis techniques such as electrochemical oxidation, lithiations and Suzuki cross-couplings in self-built reactors on up-to kilogram scale.
Collapse
Affiliation(s)
- Jan H Griwatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| | - Mika L Kessler
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| |
Collapse
|
17
|
Tsai CY, Cheng HT, Chiu SH. Improbable Rotaxanes Constructed From Surrogate Malonate Rotaxanes as Encircled Methylene Synthons. Angew Chem Int Ed Engl 2023; 62:e202308974. [PMID: 37712453 DOI: 10.1002/anie.202308974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
We have developed a new approach for the synthesis of "improbable" rotaxanes by using malonate-centered rotaxanes as interlocked surrogate precursors. Here, the desired dumbbell-shaped structure can be assembled from two different, completely separate, portions, with the only residual structure introduced from the malonate surrogate being a methylene group. We have synthesized improbable [2]- and [3]rotaxanes with all-hydrocarbon dumbbell-shaped components to demonstrate the potential structural flexibility and scope of the guest species that can be interlocked when using this approach.
Collapse
Affiliation(s)
- Chi-You Tsai
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Hung-Te Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
18
|
Ishibashi H, Rondelli M, Shudo H, Maekawa T, Ito H, Mizukami K, Kimizuka N, Yagi A, Itami K. Noncovalent Modification of Cycloparaphenylene by Catenane Formation Using an Active Metal Template Strategy. Angew Chem Int Ed Engl 2023; 62:e202310613. [PMID: 37608514 DOI: 10.1002/anie.202310613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The active metal template (AMT) strategy is a powerful tool for the formation of mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes, allowing the synthesis of a variety of MIMs, including π-conjugated and multicomponent macrocycles. Cycloparaphenylene (CPP) is an emerging molecule characterized by its cyclic π-conjugated structure and unique properties. Therefore, diverse modifications of CPPs are necessary for its wide application. However, most CPP modifications require early stage functionalization and the direct modification of CPPs is very limited. Herein, we report the synthesis of a catenane consisting of [9]CPP and a 2,2'-bipyridine macrocycle as a new CPP analogue that contains a reliable synthetic scaffold enabling diverse and concise post-modification. Following the AMT strategy, the [9]CPP-bipyridine catenane was successfully synthesized through Ni-mediated aryl-aryl coupling. Catalytic C-H borylation/cross-coupling and metal complexation of the bipyridine macrocycle moiety, an effective post-functionalization method, were also demonstrated with the [9]CPP-bipyridine catenane. Single-crystal X-ray structural analysis revealed that the [9]CPP-bipyridine catenane forms a tridentated complex with an Ag ion inside the CPP ring. This interaction significantly enhances the phosphorescence lifetime through improved intermolecular interactions.
Collapse
Affiliation(s)
- Hisayasu Ishibashi
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Manuel Rondelli
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Takehisa Maekawa
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Kiichi Mizukami
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
19
|
Steudel FM, Ubasart E, Leanza L, Pujals M, Parella T, Pavan GM, Ribas X, von Delius M. Synthesis of C 60 /[10]CPP-Catenanes by Regioselective, Nanocapsule-Templated Bingel Bis-Addition. Angew Chem Int Ed Engl 2023; 62:e202309393. [PMID: 37607866 DOI: 10.1002/anie.202309393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
The addition of two unsymmetric malonate esters to the Buckminster fullerene C60 can lead to 22 spectroscopically distinguishable isomeric products and therefore represents a formidable synthesis challenge. In this work, we achieve 87 % selectivity for the formation of a single (in,out-trans-3) isomer by combining three approaches: (i) we use a starting material, in which the two malonates are covalently connected (tether approach); (ii) we form the strong supramolecular complex of C60 with the shape-persistent [10]CPP macrocycle (template approach) and (iii) we embed this complex further within a self-assembled nanocapsule (shadow mask approach). Variation of the spacer chain shed light on the limitations of the approach and the ring dynamics in the unusual [2]catenanes were studied in silico with atomistic resolution. This work significantly widens the scope of mechanically interlocked architectures comprising cycloparaphenylenes (CPP).
Collapse
Affiliation(s)
- Fabian M Steudel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ernest Ubasart
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Luigi Leanza
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Míriam Pujals
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962, Lugano-Viganello, Switzerland
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
20
|
Sakata Y, Nakamura R, Hibi T, Akine S. Speed Tuning of the Formation/Dissociation of a Metallorotaxane. Angew Chem Int Ed Engl 2023; 62:e202217048. [PMID: 36628483 DOI: 10.1002/anie.202217048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Switching between the formation/dissociation of rotaxanes is important to control the function of various types of rotaxane-based materials. We have developed a convenient and simple strategy, the so-called "accelerator addition", to make a static rotaxane dynamic without apparently affecting the chemical structure. As an interlocked molecule that enables tuning of the formation/dissociation speed, a metallorotaxane was quantitatively generated by the complexation of a triptycene-based dumbbell-shaped mononuclear complex, [PdL2 ]2+ (L=2,3-diaminotriptycene), with 27C9. As a result of the inertness of the Pd2+ -based coordination structure, the metallorotaxane was slowly formed (the static state). This rotaxane formation was accelerated 27 times simply by adding Br- as an accelerator (the dynamic state). A similar drastic acceleration was also demonstrated during the dissociation process when Cs+ was added to the metallorotaxane to form the free axle [PdL2 ]2+ and the 27C9-Cs+ complex.
Collapse
Affiliation(s)
- Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ryosuke Nakamura
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshihiro Hibi
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
21
|
May JH, Van Raden JM, Maust RL, Zakharov LN, Jasti R. Active template strategy for the preparation of π-conjugated interlocked nanocarbons. Nat Chem 2023; 15:170-176. [PMID: 36635600 DOI: 10.1038/s41557-022-01106-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023]
Abstract
Mechanically interlocked carbon nanostructures represent a relatively unexplored frontier in carbon nanoscience due to the difficulty in preparing these unusual topological materials. Here we illustrate an active-template method in which a [n]cycloparaphenylene precursor macrocycle is decorated with two convergent pyridine donors that coordinate to a metal ion. The metal ion catalyses alkyne-alkyne cross-coupling reactions within the central cavity of the macrocycle, and the resultant interlocked products can be converted into fully π-conjugated structures in subsequent synthetic steps. Specifically, we report the synthesis of a family of catenanes that comprise two or three mutually interpenetrating [n]cycloparaphenylene-derived macrocycles of various sizes. Additionally, a fully π-conjugated [3]rotaxane was synthesized by the same method. The development of synthetic methods to access mechanically interlocked carbon nanostructures of varying topology can help elucidate the implications of mechanical bonding for this emerging class of nanomaterials and allow structure-property relationships to be established.
Collapse
Affiliation(s)
- James H May
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Oregon, USA
| | - Jeff M Van Raden
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Oregon, USA
| | - Ruth L Maust
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Oregon, USA
| | - Lev N Zakharov
- CAMCOR-Center for Advanced Materials Characterization in Oregon, University of Oregon, Oregon, USA
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Oregon, USA.
| |
Collapse
|
22
|
Interlocked structures on active duty. Nat Chem 2023; 15:160-162. [PMID: 36702884 DOI: 10.1038/s41557-022-01130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Ono K, Tanaka Y, Sugimoto K, Kinubari S, Kawai H. Endo-Functionalized Cyclic Oligophenylenes: Synthesis and Complexation with a Chiral Phosphoric Acid. ACS OMEGA 2022; 7:45347-45352. [PMID: 36530312 PMCID: PMC9753635 DOI: 10.1021/acsomega.2c05926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The synthesis of endo-functionalized cyclic oligophenylenes in which adjacent benzene rings are perpendicular to one another is described. Annulation precursors, OH- or NH2-functionalized quinquephenyl diboronic acids, and septiphenyl dibromo compounds were systematically prepared by using a diprotected biphenyl-3,4'-diyl diboronic acid as a key compound. Four endo-functionalized cyclic oligophenylenes were synthesized by annulation of the precursors in dilute conditions through Suzuki-Miyaura cross-coupling. X-ray analysis of the macrocycle revealed the unique 1D channel packing structure formed by connecting the nanometer-sized cavity of the macrocycle. Furthermore, NH2-functionalized macrocycles could bind a chiral phosphoric acid in the cavity in CDCl3 solution.
Collapse
Affiliation(s)
- Kosuke Ono
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusei Tanaka
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Sugimoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shigemi Kinubari
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidetoshi Kawai
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
24
|
Lan B, Zhang R, Yan J, Yuan Y, Li Y. When nanocarbon science meets with molecular machine: a new type of mechanically interlocked molecules (MIMs). CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2022. [DOI: 10.1016/j.cjsc.2022.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Bu A, Zhao Y, Xiao H, Tung C, Wu L, Cong H. A Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209449. [DOI: 10.1002/anie.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yongye Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
26
|
Yoshigoe Y, Tanji Y, Hata Y, Osakada K, Saito S, Kayahara E, Yamago S, Tsuchido Y, Kawai H. Dynamic Au-C σ-Bonds Leading to an Efficient Synthesis of [ n]Cycloparaphenylenes ( n = 9-15) by Self-Assembly. JACS AU 2022; 2:1857-1868. [PMID: 36032535 PMCID: PMC9400051 DOI: 10.1021/jacsau.2c00194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmetalation of the digold(I) complex [Au2Cl2(dcpm)] (1) (dcpm = bis(dicyclohexylphosphino)methane) with oligophenylene diboronic acids gave the triangular macrocyclic complexes [Au2(C6H4) x (dcpm)]3 (x = 3, 4, 5) with yields of over 70%. On the other hand, when the other digold(I) complex [Au2Cl2(dppm)] (1') (dppm = bis(diphenylphosphino)methane) was used, only a negligible amount of the triangular complex was obtained. The control experiments revealed that the dcpm ligand accelerated an intermolecular Au(I)-C σ-bond-exchange reaction and that this high reversibility is the origin of the selective formation of the triangular complexes. Structural analyses and theoretical calculations indicate that the dcpm ligand increases the electrophilicity of the Au atom in the complex, thus facilitating the exchange reaction, although the cyclohexyl group is an electron-donating group. Furthermore, the oxidative chlorination of the macrocyclic gold complexes afforded a series of [n]cycloparaphenylenes (n = 9, 12, 15) in 78-88% isolated yields. The reorganization of two different macrocyclic Au complexes gave a mixture of macrocyclic complexes incorporating different oligophenylene linkers, from which a mixture of [n]cycloparaphenylenes with various numbers of phenylene units was obtained in good yields.
Collapse
Affiliation(s)
- Yusuke Yoshigoe
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yohei Tanji
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusei Hata
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohtaro Osakada
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichi Saito
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Eiichi Kayahara
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shigeru Yamago
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshitaka Tsuchido
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidetoshi Kawai
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
27
|
Bu A, Zhao Y, Xiao H, Tung CH, Wu LZ, Cong H. Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Yongye Zhao
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Hongyan Xiao
- Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Huan Cong
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials No.29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
28
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
29
|
Wang L, Nagashima Y, Abekura M, Uekusa H, Konishi G, Tanaka K. Rhodium‐Catalyzed Intermolecular Cycloaromatization Route to Cycloparaphenylenes that Exhibit Aggregation‐Induced Emission. Chemistry 2022; 28:e202200064. [DOI: 10.1002/chem.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masato Abekura
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
30
|
Peterson E, Maust RL, Jasti R, Kertesz M, Tovar JD. Splitting the Ring: Impact of Ortho and Meta Pi Conjugation Pathways through Disjointed [8]Cycloparaphenylene Electronic Materials. J Am Chem Soc 2022; 144:4611-4622. [PMID: 35245032 DOI: 10.1021/jacs.2c00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we describe the synthesis and electronic properties of small-molecule and polymeric [8]cycloparaphenylenes ([8]CPPs) with disjointed pi-conjugated substituents. Arylene-ethynylene linkers were installed on opposite sides of the [8]CPP nanohoop as separated by three phenyl units on either side such that the monomer systems have syn (C2 symmetry) and anti (C1 symmetry) conformers with a small energy gap (0.1-0.6 kcal/mol). This disjoined substitution pattern necessarily forces delocalization through and around the CPP radial structure. We demonstrate new electronic states from this radial/linear mixing in both the small molecules and the pi extended polymers. Quantum chemical calculations reveal that these electronic processes arise from multiple operative radial/linear conjugation pathways, as the disjoint pattern results in both ortho and meta connections to the CPP ring. These results affirm the unique nature of hybrid radial and linear pi electron delocalization operative in these new conjugation pathways.
Collapse
Affiliation(s)
- Eric Peterson
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ruth L Maust
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Miklos Kertesz
- Chemistry Department and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
31
|
Patrick CW, Woods JF, Gawel P, Otteson CE, Thompson AL, Claridge TDW, Jasti R, Anderson HL. Polyyne [3]Rotaxanes: Synthesis via Dicobalt Carbonyl Complexes and Enhanced Stability. Angew Chem Int Ed Engl 2022; 61:e202116897. [PMID: 34995402 PMCID: PMC9302669 DOI: 10.1002/anie.202116897] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 01/08/2023]
Abstract
New strategies for synthesizing polyyne polyrotaxanes are being developed as an approach to stable carbyne “insulated molecular wires”. Here we report an active metal template route to polyyne [3]rotaxanes, using dicobalt carbonyl masked alkyne equivalents. We synthesized two [3]rotaxanes, both with the same C28 polyyne dumbbell component, one with a phenanthroline‐based macrocycle and one using a 2,6‐pyridyl cycloparaphenylene nanohoop. The thermal stabilities of the two rotaxanes were compared with that of the naked polyyne dumbbell in decalin at 80 °C, and the nanohoop rotaxane was found to be 4.5 times more stable.
Collapse
Affiliation(s)
- Connor W Patrick
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Joseph F Woods
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Przemyslaw Gawel
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Claire E Otteson
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Amber L Thompson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| |
Collapse
|
32
|
Patrick CW, Woods JF, Gawel P, Otteson CE, Thompson AL, Claridge TDW, Jasti R, Anderson HL. Polyyne [3]rotaxanes: Synthesis via dicobalt carbonyl complexes and enhanced stability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Harry Laurence Anderson
- University of Oxford Department of Chemistry 12 Mansfield RoadChemistry Research Laboratory OX1 3TA Oxford UNITED KINGDOM
| |
Collapse
|
33
|
Huijun Z, Jianbin L. Syntheses and Properties of Heteroatom-Doped Conjugated Nanohoops. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Cheong Tse Y, Hein R, Mitchell EJ, Zhang Z, Beer PD. Halogen-Bonding Strapped Porphyrin BODIPY Rotaxanes for Dual Optical and Electrochemical Anion Sensing. Chemistry 2021; 27:14550-14559. [PMID: 34319624 PMCID: PMC8596797 DOI: 10.1002/chem.202102493] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/13/2022]
Abstract
Anion receptors employing two distinct sensory mechanisms are rare. Herein, we report the first examples of halogen-bonding porphyrin BODIPY [2]rotaxanes capable of both fluorescent and redox electrochemical sensing of anions. 1 H NMR, UV/visible and electrochemical studies revealed rotaxane axle triazole group coordination to the zinc(II) metalloporphyrin-containing macrocycle component, serves to preorganise the rotaxane binding cavity and dramatically enhances anion binding affinities. Mechanically bonded, integrated-axle BODIPY and macrocycle strapped metalloporphyrin motifs enable the anion recognition event to be sensed by the significant quenching of the BODIPY fluorophore and cathodic perturbations of the metalloporphyrin P/P+. redox couple.
Collapse
Affiliation(s)
- Yuen Cheong Tse
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Robert Hein
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Edward J. Mitchell
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Zongyao Zhang
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
35
|
Sun Z, Li K. Recent Advances in Dimeric Cycloparaphenylenes as Nanotube Fragments. Synlett 2021. [DOI: 10.1055/a-1534-3103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSince the discovery of cycloparaphenylenes in 2008, the chemical synthesis of more-complicated molecular systems with curved π-surfaces has been vigorously sought, giving rise to a plethora of new exciting molecules with various topologies and functions. This Synpacts article briefly summarizes recent examples of carbon nanohoop dimers, highlighting three examples as nanotube fragments. Their synthesis, isomerization, photophysical properties, and host–guest chemistry are discussed.1 Introduction2 Synthetic Strategy toward Nanotube Dimers3 Isomerization Dynamics of Nanotube Dimers4 Photophysical Properties of Nanotube Dimers5 Host–Guest Chemistry of Nanotube Dimers6 Conclusions
Collapse
|
36
|
Lovell TC, Bolton SG, Kenison JP, Shangguan J, Otteson CE, Civitci F, Nan X, Pluth MD, Jasti R. Subcellular Targeted Nanohoop for One- and Two-Photon Live Cell Imaging. ACS NANO 2021; 15:15285-15293. [PMID: 34472331 PMCID: PMC8764753 DOI: 10.1021/acsnano.1c06070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fluorophores are powerful tools for interrogating biological systems. Carbon nanotubes (CNTs) have long been attractive materials for biological imaging due to their near-infrared excitation and bright, tunable optical properties. The difficulty in synthesizing and functionalizing these materials with precision, however, has hampered progress in this area. Carbon nanohoops, which are macrocyclic CNT substructures, are carbon nanostructures that possess ideal photophysical characteristics of nanomaterials, while maintaining the precise synthesis of small molecules. However, much work remains to advance the nanohoop class of fluorophores as biological imaging agents. Herein, we report an intracellular targeted nanohoop. This fluorescent nanostructure is noncytotoxic at concentrations up to 50 μM, and cellular uptake investigations indicate internalization through endocytic pathways. Additionally, we employ this nanohoop for two-photon fluorescence imaging, demonstrating a high two-photon absorption cross-section (65 GM) and photostability comparable to a commercial probe. This work further motivates continued investigations into carbon nanohoop photophysics and their biological imaging applications.
Collapse
Affiliation(s)
- Terri C Lovell
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Sarah G Bolton
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - John P Kenison
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 S. Moody Avenue, Portland, Oregon 97201, United States
| | - Julia Shangguan
- Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Avenue, Portland, Oregon 97201, United States
| | - Claire E Otteson
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Fehmi Civitci
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 S. Moody Avenue, Portland, Oregon 97201, United States
| | - Xiaolin Nan
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 S. Moody Avenue, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Avenue, Portland, Oregon 97201, United States
| | - Michael D Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
37
|
Schwarz PS, Tebcharani L, Heger JE, Müller-Buschbaum P, Boekhoven J. Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response. Chem Sci 2021; 12:9969-9976. [PMID: 34349967 PMCID: PMC8317627 DOI: 10.1039/d1sc02561a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022] Open
Abstract
There is an increasing demand for transient materials with a predefined lifetime like self-erasing temporary electronic circuits or transient biomedical implants. Chemically fueled materials are an example of such materials; they emerge in response to chemical fuel, and autonomously decay as they deplete it. However, these materials suffer from a slow, typically first order decay profile. That means that over the course of the material's lifetime, its properties continuously change until it is fully decayed. Materials that have a sharp on-off response are self-immolative ones. These degrade rapidly after an external trigger through a self-amplifying decay mechanism. However, self-immolative materials are not autonomous; they require a trigger. We introduce here materials with the best of both, i.e., materials based on chemically fueled emulsions that are also self-immolative. The material has a lifetime that can be predefined, after which it autonomously and rapidly degrades. We showcase the new material class with self-expiring labels and drug-delivery platforms with a controllable burst-release.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Laura Tebcharani
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Julian E Heger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstr. 1 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Study, Technical University of Munich Lichtenbergstraße 2a 85748 Garching Germany
| |
Collapse
|
38
|
Fakhrutdinov AN, Karlinskii BY, Minyaev ME, Ananikov VP. Unusual Effect of Impurities on the Spectral Characterization of 1,2,3-Triazoles Synthesized by the Cu-Catalyzed Azide-Alkyne Click Reaction. J Org Chem 2021; 86:11456-11463. [PMID: 34310134 DOI: 10.1021/acs.joc.1c00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The analysis of products synthesized by Cu-catalyzed click reactions can be complicated due to the presence of metal impurities in isolated substances, which may "selectively" distort some signals in NMR spectra. Such a pronounced impurity effect was found in both 1H and 13C NMR spectra for a number of 1,4-substituted 1,2,3-triazoles. Recording of the full undistorted spectra is possible with additional product treatment, with more thorough purification, or by recording the spectra at low temperatures. The reasons for the distortion and disappearance of signals have been thoroughly studied; it was shown that impurities of paramagnetic metal ions in small amounts lead to this effect. Here, we want to deliver a warning message to the community: when all NMR signals in a spectrum are distorted, this situation is easy to detect. However, if only a few signals are "selectively" removed by impurities and the rest of the spectrum appears normal, this situation is much harder to notice. Therefore, incorrect conclusions about chemical structure may be obtained. Here, we demonstrated the example of Cu2+ ions, but one may anticipate a similar effect for other paramagnetic metal contaminants if the organic molecule has a functional group capable of coordination (heteroatom or a multiple bond).
Collapse
Affiliation(s)
- Artem N Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Bogdan Ya Karlinskii
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Mikhail E Minyaev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| |
Collapse
|
39
|
Maust RL, Li P, Shao B, Zeitler SM, Sun PB, Reid HW, Zakharov LN, Golder MR, Jasti R. Controlled Polymerization of Norbornene Cycloparaphenylenes Expands Carbon Nanomaterials Design Space. ACS CENTRAL SCIENCE 2021; 7:1056-1065. [PMID: 34235266 PMCID: PMC8228593 DOI: 10.1021/acscentsci.1c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 06/13/2023]
Abstract
Carbon-based materials-such as graphene nanoribbons, fullerenes, and carbon nanotubes-elicit significant excitement due to their wide-ranging properties and many possible applications. However, the lack of methods for precise synthesis, functionalization, and assembly of complex carbon materials has hindered efforts to define structure-property relationships and develop new carbon materials with unique properties. To overcome this challenge, we employed a combination of bottom-up organic synthesis and controlled polymer synthesis. We designed norbornene-functionalized cycloparaphenylenes (CPPs), a family of macrocycles that map onto armchair carbon nanotubes of varying diameters. Through ring-opening metathesis polymerization, we accessed homopolymers as well as block and statistical copolymers constructed from "carbon nanohoops" with a high degree of structural control. These soluble, sp2-carbon-dense polymers exhibit tunable fluorescence emission and supramolecular responses based on composition and sequence. This work represents an important advance toward bridging the gap between small molecules and functional carbon-based materials.
Collapse
Affiliation(s)
- Ruth L. Maust
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Penghao Li
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Baihao Shao
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Sarah M. Zeitler
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Peiguan B. Sun
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Harrison W. Reid
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- CAMCOR
− Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon 97403, United States
| | - Matthew R. Golder
- Department
of Chemistry, Molecular Engineering and Science Institute, University of Washington, Seattle, Washington 98195, United States
| | - Ramesh Jasti
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
40
|
Otteson CE, Levinn CM, Van Raden JM, Pluth MD, Jasti R. Nanohoop Rotaxane Design to Enhance the Selectivity of Reaction-Based Probes: A Proof-of-Principle Study. Org Lett 2021; 23:4608-4612. [PMID: 34061551 DOI: 10.1021/acs.orglett.1c01348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mechanical interlocking of a nanohoop fluorophore and a reactive thread couples the benefits of a reaction-based probe with a sterically congested active site for enhanced selectivity. Advantageously, the thread design uses dual function stoppers that act as both a quencher and a trigger for sensing. In progress toward expanding this approach to biologically relevant analytes, this system is used to demonstrate steric differentiation and provide a selective turn-on fluorescent response with size selectivity for HS- rather than larger thiolates.
Collapse
Affiliation(s)
- Claire E Otteson
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Carolyn M Levinn
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Jeff M Van Raden
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael D Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
41
|
Thawarkar S, Rondiya SR, Dzade NY, Khupse N, Jadkar S. Experimental and Theoretical Investigation of the Structural and Opto-electronic Properties of Fe-Doped Lead-Free Cs 2 AgBiCl 6 Double Perovskite. Chemistry 2021; 27:7408-7417. [PMID: 33502782 PMCID: PMC8252727 DOI: 10.1002/chem.202004902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/04/2022]
Abstract
Lead-free double perovskites have emerged as stable and non-toxic alternatives to Pb-halide perovskites. Herein, the synthesis of Fe-doped Cs2 AgBiCl6 lead-free double perovskites are reported that display blue emission using an antisolvent method. The crystal structure, morphology, optical properties, band structure, and stability of the Fe-doped double perovskites were investigated systematically. Formation of the Fe-doped Cs2 AgBiCl6 double perovskite is confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. XRD and thermo-gravimetric analysis (TGA) shows that the Cs2 AgBiCl6 double perovskite has high structural and thermal stability, respectively. Field emission scanning electron microscopy (FE-SEM) analysis revealed the formation of dipyramidal shape Cs2 AgBiCl6 crystals. Furthermore, energy-dispersive X-ray spectroscopy (EDS) mapping shows the overlapping of Cs, Bi, Ag, Fe, and Cl elements and homogenous incorporation of Fe in Cs2 AgBiCl6 double perovskite. The Fe-doped Cs2 AgBiCl6 double perovskite shows a strong absorption at 380 nm. It extends up to 700 nm, suggesting that sub-band gap states transition may originate from the surface defect of the doped perovskite material. The radiative kinetics of the crystals was studied using the time-correlated single-photon counting (TCSPC) technique. Lattice parameters and band gap value of the Fe-doped Cs2 AgBiCl6 double perovskites predicted by the density functional theory (DFT) calculations are confirmed by XRD and UV/Visible spectroscopy analysis. Time-dependent photo-response characteristics of the Fe-doped Cs2 AgBiCl6 double perovskite show fast response and recovery time of charge carriers. We believe that the successful incorporation of Fe in lead-free, environmentally friendly Cs2 AgBiCl6 double perovskite can open a new class of doped double perovskites with significant potential optoelectronics devices fabrication and photocatalytic applications.
Collapse
Affiliation(s)
- Sachin Thawarkar
- Department of PhysicsSavitribai Phule Pune UniversityPune411007India
| | - Sachin R. Rondiya
- School of ChemistryCardiff UniversityCardiffCF10 3ATWalesUnited Kingdom
| | - Nelson Y. Dzade
- School of ChemistryCardiff UniversityCardiffCF10 3ATWalesUnited Kingdom
| | - Nageshwar Khupse
- Centre for Materials for Electronic TechnologyDr. Homi Bhabha RoadPune411008India
| | - Sandesh Jadkar
- Department of PhysicsSavitribai Phule Pune UniversityPune411007India
| |
Collapse
|
42
|
Luger P, Dittrich B. Electron density of a nanohoop [2]rotaxane based on invariom refinement. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2020-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rotaxanes as well as catenanes are known as potential building blocks of molecular machines. The nanohoop [2]rotaxane investigated is composed of a macrocycle derived from a [6]cycloparaphenylene (CCP, designated as a carbon nanohoop), where one of the six para-linked phenyl rings is replaced by a 2,6-substituted pyridyl ring. This macrocycle is mechanically interlocked with a thread, a linear rod-shaped diyne fragment sitting in the cavity of the macrocycle. Two bulky 3,5-di-t-butyl-phenyl rests as end groups keep the thread fixed. The interplay between macrocycle and thread was examined by means of the electron density distribution (EDD) obtained by application of the invariom formalism, relying on X-ray diffraction data collected earlier. The so-obtained EDD was subjected to topological analysis using the QTAIM formalism. Moreover, molecular Hirshfeld and electrostatic potential (ESP) surfaces were calculated. The 73 C–C bonds were analysed in terms of bond topological properties. For the 46 single and the 22 aromatic bonds, the analysis gave average bond orders of 1.03 and 1.61. The five C–C bonds in the diyne fragment can clearly be distinguished into three types: formal triple bonds with bond orders above 3.0, arene bonds with bond orders of 1.6 and finally bond orders of 1.3 in the adjacent C–C bonds, which indicate a considerable electron delocalization in this fragment. Mapping the ED onto the Hirshfeld surfaces of the macrocycle and the thread does not show strong signals. This shows that in between the molecules only weak non-covalent interactions are present. The electrostatic potentials (ESPs) were mapped onto molecular EDD isosurfaces. For all phenyl rings, small regions of negative ESP are visible on the delocalized π systems. A potential gradient between the mostly positive ESP of the macrocycle and the diyne region of the thread exist, which can be considered the dominant force to hold this rotaxane together.
Collapse
Affiliation(s)
- Peter Luger
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin , Fabeckstraße 36a , D-14195 Berlin , Germany
| | - Birger Dittrich
- Mathematisch-Naturwissenschaftliche Fakultät, Universität Zürich , Winterthurerstrasse 190 , CH-8057 Zürich , Switzerland
| |
Collapse
|
43
|
Tay HM, Beer P. Optical sensing of anions by macrocyclic and interlocked hosts. Org Biomol Chem 2021; 19:4652-4677. [DOI: 10.1039/d1ob00601k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarises recent developments in the use of macrocyclic and mechanically-interlocked host molecules as optical sensors for anions.
Collapse
Affiliation(s)
- Hui Min Tay
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Paul Beer
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
44
|
Pérez‐Jiménez ÁJ, Sancho‐García JC. Theoretical Insights for Materials Properties of Cyclic Organic Nanorings. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Frydrych R, Lis T, Bury W, Cybińska J, Stępień M. Feeding a Molecular Squid: A Pliable Nanocarbon Receptor for Electron-Poor Aromatics. J Am Chem Soc 2020; 142:15604-15613. [PMID: 32815367 PMCID: PMC7498155 DOI: 10.1021/jacs.0c07956] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A hybrid nanocarbon receptor consisting of a calix[4]arene and a bent oligophenylene loop ("molecular squid"), was obtained in an efficient, scalable synthesis. The system contains an electron-rich cavity with an adaptable shape, which can serve as a host for electron deficient guests, such as diquat, 10-methylacridinium, and anthraquinone. The new receptor forms inclusion complexes in the solid state and in solution, showing a dependence of the observed binding strength on the shape of the guest species and its charge. The interaction with the methylacridinium cation in solution was interpreted in terms of a 2:1 binding model, with K11 = 5.92(7) × 103 M-1. The solid receptor is porous to gases and vapors, yielding an uptake of ca. 4 mmol/g for methanol at 293 K. In solution, the receptor shows cyan fluorescence (λmaxem = 485 nm, ΦF = 33%), which is partly quenched upon binding of guests. Methylacridinium and anthraquinone adducts show red-shifted emission in the solid state, attributable to the charge-transfer character of these inclusion complexes.
Collapse
Affiliation(s)
- Rafał Frydrych
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Wojciech Bury
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Cybińska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.,PORT-Polski Ośrodek Rozwoju Technologii, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
46
|
Guo QH, Qiu Y, Kuang X, Liang J, Feng Y, Zhang L, Jiao Y, Shen D, Astumian RD, Stoddart JF. Artificial Molecular Pump Operating in Response to Electricity and Light. J Am Chem Soc 2020; 142:14443-14449. [DOI: 10.1021/jacs.0c06663] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xinyi Kuang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jiaqi Liang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - R. Dean Astumian
- Department of Physics, University of Maine, 5709 Bennet Hall, Orono, Maine 04469, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Van Raden JM, Jarenwattananon NN, Zakharov LN, Jasti R. Active Metal Template Synthesis and Characterization of a Nanohoop [
c
2]Daisy Chain Rotaxane. Chemistry 2020; 26:10205-10209. [DOI: 10.1002/chem.202001389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 11/10/2022]
|
48
|
Lovell TC, Garrison ZR, Jasti R. Synthesis, Characterization, and Computational Investigation of Bright Orange‐Emitting Benzothiadiazole [10]Cycloparaphenylene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Terri C. Lovell
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| | - Zachary R. Garrison
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| |
Collapse
|
49
|
Lovell TC, Garrison ZR, Jasti R. Synthesis, Characterization, and Computational Investigation of Bright Orange‐Emitting Benzothiadiazole [10]Cycloparaphenylene. Angew Chem Int Ed Engl 2020; 59:14363-14367. [DOI: 10.1002/anie.202006350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Terri C. Lovell
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| | - Zachary R. Garrison
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| |
Collapse
|
50
|
Rodríguez-Hernández B, Oldani N, Martínez-Mesa A, Uranga-Piña L, Tretiak S, Fernandez-Alberti S. Photoexcited energy relaxation and vibronic couplings in π-conjugated carbon nanorings. Phys Chem Chem Phys 2020; 22:15321-15332. [PMID: 32628225 DOI: 10.1039/d0cp01452d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Conjugated carbon nanorings exhibit unique photophysical properties that, combined with their tunable sizes and conformations, make them suitable for a variety of practical applications. These properties are intimately associated to their strained, bent and sterically hindered cyclic structures. Herein we perform a comparative analysis of the photoinduced dynamics in carbon nanorings composed of nine phenyl units([9]CPP) and nine naphthyl units ([9]CN) respectively. The sterically demanding naphthyl units lead to large dihedral angles between neighboring units. Nevertheless, the ultrafast electronic and vibrational energy relaxation and redistribution is found to be similar for both systems. We observe that vibronic couplings, introduced by nonadiabatic energy transfer between electronic excited states, ensure the intramolecular vibrational energy redistribution through specific vibrational modes. The comparative impact of the internal conversion process on the exciton spatial localization and intra-ring migration indicates that naphthyl units in [9]CN achieve more efficient but less dynamical self-trapping compared to that of phenyl units in [9]CPP. That is, during the photoinduced process, the exciton in [9]CN is more static and localized than the exciton in [9]CPP. The internal conversion processes take place through a specific set of middle- to high-frequency normal modes, which directly influence the spatial exciton redistribution during the internal conversion, self-trapping and intra-ring migration.
Collapse
Affiliation(s)
- B Rodríguez-Hernández
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | | | | | | | | | | |
Collapse
|