1
|
Grewal U, Ricca JG, Zhang L, Khan MDH, West LM, Terentis AC, Wang R. Ionophore-Based SERS Sensing for Electrolyte Cations. Anal Chem 2024; 96:17672-17678. [PMID: 39450828 DOI: 10.1021/acs.analchem.4c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We present here a surface-enhanced Raman spectroscopy (SERS)-based platform for selectively detecting electrolyte cations. This platform facilitates the reorientation of the chromoionophore I (CHI) molecule positioned on the surface of silver nanoparticles, regulated by the targeted electrolyte cation within the ionophore-based ion-selective sensing framework. When exposed to the target ions, leading to deprotonation, the aromatic plane of the CHI molecule shifts from an endwise to an edgewise configuration on the SERS substrate surface. This reorientation improves the coupling of the induced dipole within the molecule and the induced electromagnetic field normal to the surface, leading to a heightened and more discernible SERS signal. Additionally, NMR data revealed a protonation-dependent conformational change in the CHI molecules. Upon protonation, the side chain of the CHI molecule extends away from its aromatic ring, whereas upon deprotonation, the carbon chain folds back and closely approaches the edge of the aromatic plane, further confirming this conclusion. Using Ca2+ and Na+ as examples, this method shows a detection limit of 0.1 μM for Ca2+ and 1 μM for Na+ with high selectivity. The successful application of the versatile and rapidly advancing SERS technique for electrolyte cation detection shows a promising pathway for enhancing current ion detection capabilities. As a preliminary demonstration, the total Ca2+ concentration in undiluted human serum was successfully determined, with common matrix interference effectively circumvented.
Collapse
Affiliation(s)
- Usha Grewal
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - John G Ricca
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Laiqi Zhang
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Md Dulal Hossain Khan
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Lyndon M West
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Andrew C Terentis
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Renjie Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
2
|
Huang SH, Parandhaman M, Jyothi Ravi M, Janda DC, Amemiya S. Nanoscale interactions of arginine-containing dipeptide repeats with nuclear pore complexes as measured by transient scanning electrochemical microscopy. Chem Sci 2024; 15:d4sc05063k. [PMID: 39246336 PMCID: PMC11375788 DOI: 10.1039/d4sc05063k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
The nuclear pore complex (NPC) plays imperative biological and biomedical roles as the sole gateway for molecular transport between the cytoplasm and nucleus of eukaryotic cells. The proteinous nanopore, however, can be blocked by arginine-containing polydipeptide repeats (DPRs) of proteins resulting from the disordered C9orf72 gene as a potential cause of serious neurological diseases. Herein, we report the new application of transient scanning electrochemical microscopy (SECM) to quantitatively characterize DPR-NPC interactions for the first time. Twenty repeats of neurotoxic glycine-arginine and proline-arginine in the NPC are quantified to match the number of phenylalanine-glycine (FG) units in hydrophobic transport barriers of the nanopore. The 1 : 1 stoichiometry supports the hypothesis that the guanidinium residue of a DPR molecule engages in cation-π interactions with the aromatic residue of an FG unit. Cation-π interactions, however, are too weak to account for the measured free energy of DPR transfer from water into the NPC. The DPR transfer is thermodynamically as favorable as the transfer of nuclear transport receptors, which is attributed to hydrophobic interactions as hypothesized generally for NPC-mediated macromolecular transport. Kinetically, the DPRs are trapped by FG units for much longer than the physiological receptors, thereby blocking the nanopore. Significantly, the novel mechanism of toxicity implies that the efficient and safe nuclear import of genetic therapeutics requires strong association with and fast dissociation from the NPC. Moreover, this work demonstrates the unexplored power of transient SECM to determine the thermodynamics and kinetics of biological membrane-molecule interactions.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Moghitha Parandhaman
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Manu Jyothi Ravi
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
3
|
Du X, Xie H, Qin T, Yuan Y, Wang N. Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity. Nat Commun 2024; 15:6530. [PMID: 39095434 PMCID: PMC11297212 DOI: 10.1038/s41467-024-50895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
The release and escape of radioactive materials has posed tremendous threats to the global environment. Among various radioactive elements, 90Sr has attracted growing attention due to its long half-life and its tendency to accumulate in bone tissue. Nonetheless, the concentration of 90Sr in radioactive waste is exceedingly low, far below the detection limits of currently available strontium-targeting chemical sensors. Herein, we propose an optical nanosensor (Sr2+-nanosensor) that exhibits an ultra-low detection limit of 0.5 nM, surpassing the 90Sr in the treated radioactive water from the Fukushima. The sensor offers wide sensing range of eight orders of magnitude, rapid response of less than 10 s, and high selectivity against 31 common ions. These excellent performances are attributed to a specific ligand (Sr2+-ligand) for Sr2+ recognition. The Sr2+ is found to be bound by six oxygen atoms from the Sr2+-ligand with a stability constant at least two orders higher than that of other traditional ligands. This study offers invaluable insights for the design of Sr2+-sensing methodologies as well as a technique for detecting trace amounts of environmental radioactive pollution.
Collapse
Affiliation(s)
- Xinfeng Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Hua Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570228, PR China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China.
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China.
| |
Collapse
|
4
|
Zhu Y, Niu H, Wang Y, Li G, Qiu B, Zhang M, Yan F, Xu Y, Guo C, Xuan S. Janus Flexible Device with Microcone Channels for Sampling and Analysis of Biological Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13648-13656. [PMID: 38952282 DOI: 10.1021/acs.langmuir.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Controlling the spontaneous directional transport of droplets plays an important role in the application of microchemical reactions and microdroplet detection. Although the relevant technologies have been widely studied, the existing spontaneous droplet transport strategies still face problems of complex structure, single function, and poor flexibility. Inspired by the spontaneous droplet transport strategy in nature, an asymmetric wettability surface with microcone channels (AWS-MC) is prepared on a flexible fabric by combining surface modification and femtosecond laser manufacturing technology. On this surface, the capillary force and Laplace pressure induced by the wettability gradient and the geometric structure gradient drive the droplet transport from the hydrophobic surface to the hydrophilic surface. Notably, droplets in adjacent hydrophilic regions do not exchange substances even if the gap in the hydrophilic region is only 1 mm, which provides an ideal platform for numerous detections by a single drop. The droplet transport strategy does not require external energy and can adapt to the manipulation of various droplet types. Application of this surface in the blood of organisms is demonstrated. This work provides an effective method for microdroplet-directed self-transport and microdroplet detection.
Collapse
Affiliation(s)
- Yuying Zhu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Hanhan Niu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuan Wang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Guoqiang Li
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Miaoqi Zhang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Fei Yan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuanchong Xu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Chenghong Guo
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Sensen Xuan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
5
|
Liu Y, Zhang X, Wang Q, Song Y, Xu T. Colorimetric detection of electrolyte ions in blood based on biphasic microdroplet extraction. Anal Chim Acta 2024; 1308:342661. [PMID: 38740461 DOI: 10.1016/j.aca.2024.342661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Timely diagnosis and prevention of diseases require rapid and sensitive detection of biomarkers from blood samples without external interference. Abnormal electrolyte ion levels in the blood are closely linked to various physiological disorders, including hypertension. Therefore, accurate, interference-free, and precise measurement of electrolyte ion concentrations in the blood is particularly important. RESULTS In this work, a colorimetric sensor based on a biphasic microdroplet extraction is proposed for the detection of electrolyte ions in the blood. This sensor employs mini-pillar arrays to facilitate contact between adjacent blood microdroplets and organic microdroplets serving as sensing phases, with any color changes being monitored through a smartphone's colorimetric software. The sensor is highly resistant to interference and does not require pre-treatment of the blood samples. Remarkably, the sensor exhibits exceptional reliability and stability, allowing for rapid enrichment and detection of K+, Na+, and Cl- in the blood within 10 s (Cl-), 15 s (K+) and 40 s (Na+) respectively. SIGNIFICANCE The colorimetric sensor based on biphasic microdroplet extraction offers portability due to its compact size and ease of operation without the need for large instruments. Additionally, it is location-independent, making it a promising tool for real-time biomarker detection in body fluids such as blood.
Collapse
Affiliation(s)
- Yibiao Liu
- Longgang Central Hospital of Shenzhen, Shenzhen, 518116, PR China
| | - Xiaonan Zhang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Qinliang Wang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yongchao Song
- College of Textile & Clothing, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Tailin Xu
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
6
|
Wang R, Ghanbari Ghalehjoughi N, Wang X. Ion-modulated interfacial fluorescence in droplet microfluidics using an ionophore-doped oil. Chem Commun (Camb) 2023; 59:11867-11870. [PMID: 37721472 DOI: 10.1039/d3cc02945j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Fluorescence at the oil-water interface is used for chemical sensing in droplet microfluidics. Potassium ions in aqueous droplets are extracted into oil segments doped with an ionophore, a cation exchanger, and a cationic dye to expel the dye. When a low concentration of dye with a balanced solubility is used, it actively accumulates at the thin interface between oil and water instead of getting dissolved in the aqueous phase. The interfacial fluorescence is monitored distinct from the fluorescence in the oil sensor and the aqueous sample, allowing for highly sensitive and selective turn-on fluorescence sensing of ions.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, VA 23284, USA.
| | | | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
7
|
Ghanbari Ghalehjoughi N, Wang R, Kelley S, Wang X. Ultrasensitive Ionophore-Based Liquid Sensors for Colorimetric Ion Measurements in Blood. Anal Chem 2023; 95:12557-12564. [PMID: 37567148 DOI: 10.1021/acs.analchem.3c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The self-monitoring of electrolytes using a small volume of capillary blood is needed for the management of many chronic diseases. Herein, we report an ionophore-based colorimetric sensor for electrolyte measurements in a few microliters of blood. The sensor is a pipet microtip preloaded with a segment of oil (plasticizer) containing a pH-sensitive chromoionophore, a cation exchanger, and an ionophore. The analyte is extracted from the sample into the oil via a mixing protocol controlled by a stepper motor. The oil with an optimized ratio of sensing chemicals shows an unprecedentedly large color response for electrolytes in a very narrow concentration range that is clinically relevant. This ultrahigh sensitivity is based on an exhaustive response mode with a novel mechanism for defining the lower and higher limits of detection. Compared to previous optodes and molecular probes for ions, the proposed platform is especially suitable for at-home blood electrolyte measurements because (1) the oil sensor is interrogated independent of the sample and therefore works for whole blood without requiring plasma separation; (2) the sensor does not need individual calibration as the consistency between liquid sensors is high compared to solid sensors, such as ion-selective electrodes and optodes; and (3) the sensing system consisting of a disposable oil sensor, a programmed stepper motor, and a smartphone is portable, cost-effective, and user-friendly. The accuracy and precision of Ca2+ sensors are validated in 51 blood samples with varying concentrations of total plasma Ca2+. Oil sensors with an ultrasensitive response can also be obtained for other ions, such as K+.
Collapse
Affiliation(s)
- Nasrin Ghanbari Ghalehjoughi
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Renjie Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Savannah Kelley
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
8
|
Feng S, Pan C, Ye H, Liu W, Yang W, Lv Y, Tao S. Magnetic Non-Spherical Particles Inducing Vortices in Microchannel for Effective Mixing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207383. [PMID: 36775909 DOI: 10.1002/smll.202207383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Indexed: 05/11/2023]
Abstract
Mixing in microfluidic channels is dominated by diffusion owing to the absence of chaotic flow. However, high-efficiency microscale mixing over short distances is desired for the development of lab-on-chip systems. Here, enhanced mixing in microchannels achieved using magnetic nonspherical particles (MNSPs), is reported. Benefiting from the nonspherical shape of the MNSPs, secondary vortices exhibiting cyclical characteristics appear in microchannels when the MNSPs rotate under an external magnetic field. Increasing the rotation rate enlarges the secondary vortices, expanding the mixing zone and enhancing the mixing, resulting in a mixing efficiency exceeding 0.9 at Re of 0.069-0.69. Complementary micro-particle image velocimetry (µPIV) for flow field analysis clarifies the mixing mechanism. In addition, a chaotic vortex area is generated in the presence of two MNSPs, which shortens the distance required for achieving an appropriate mixing efficiency. This study demonstrates the potential of employing MNSPs as efficient mixers in lab-on-chip devices.
Collapse
Affiliation(s)
- Shi Feng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cunliang Pan
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongfei Ye
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wendong Liu
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wenbo Yang
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yingdi Lv
- Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Shengyang Tao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
9
|
Facile microfabrication of three dimensional-patterned micromixers using additive manufacturing technology. Sci Rep 2022; 12:6346. [PMID: 35428793 PMCID: PMC9012767 DOI: 10.1038/s41598-022-10356-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
This study investigates the manufacturing method of oblique patterns in microchannels and the effect of these patterns on mixing performance in microchannels. To fabricate three-dimensional (3D) and oblique patterns in microchannels, 3D printing and replica methods were utilized to mold patterns and microchannels, respectively. The angle and size of the patterns were controlled by the printing angle and resolution, respectively. The mixing efficiency was experimentally characterized, and the mixing principle was analyzed using computational fluid dynamics simulation. The analysis showed that the mixing channel cast from the mold printed with a printing angle of 30° and resolution of 300 μm exhibited the best mixing efficiency with a segregation index of approximately 0.05 at a Reynolds number of 5.4. This was because, as the patterns inside the microchannel were more oblique, “split” and “recombine” behaviors between two fluids were enhanced owing to the geometrical effect. This study supports the use of the 3D printing method to create unique patterns inside microchannels and improve the mixing performance of two laminar flows for various applications such as point-of-care diagnostics, lab-on-a-chip, and chemical synthesis.
Collapse
|
10
|
Wang R, Zhou Y, Ghanbari Ghalehjoughi N, Mawaldi Y, Wang X. Ion-Induced Phase Transfer of Cationic Dyes for Fluorescence-Based Electrolyte Sensing in Droplet Microfluidics. Anal Chem 2021; 93:13694-13702. [PMID: 34590485 DOI: 10.1021/acs.analchem.1c03394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence-based sensing in droplet microfluidics requires small sample volumes, allows for high-throughput assays, and does not suffer from photobleaching as each flowing sensor is only scanned one time. In this paper, we report a selective and sensitive fluorescence-based ion-sensing methodology in droplet microfluidics using a T-junction PDMS chip. The oil stream is doped with sensor ingredients including an ionophore, a cation exchanger, and a permanently cationic fluorophore as the optical reporter. Electrolyte cations from the aqueous sample are extracted into oil segments and displace the cationic dyes into aqueous droplets. Laser-induced fluorescence of the two immiscible phases is collected alternately, which is in clear contrast to most other ion-selective optode configurations such as nanoparticle suspensions that rely on mixed optical signals of two phases. The cation exchanger, tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, is found to dramatically enhance the dye emission in the nonpolar sensing oil by preventing ion-pairing interactions and aggregations of the dye molecules, providing new insights into the mechanism of cationic dye-based ion sensors. The high dye brightness allows us to use low concentrations of sensing chemicals (e.g., 10 μM) in the oil and attain high sensitivity for detection of ions in an equal volume of sample. Using valinomycin as the ionophore and methylene blue as the dye, K+ is detected with a response time of ∼11 s, a logarithmic linear range of 10-5 to 10-2 M, a 20-fold total fluorescence response, >1000-fold selectivity against other electrolyte cations, and negligible cross-sensitivity toward the sample pH. The K+ concentration in untreated and undiluted whole blood and sweat samples is successfully determined by this microfluidic sensing method without optical interference from the droplet sample to the sensing oil. Detection of other ionic analytes can be achieved using the corresponding ionophores.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Yang Zhou
- School of Chemical Engineering and Technology, Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China
| | | | - Yazan Mawaldi
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
11
|
Wetzler-Quevedo SP, Meyerhoff ME, Bailey RC. Characterization of the impact of mixing and droplet volumes on the behavior of microfluidic ion-selective droptodes. Analyst 2021; 146:5095-5101. [PMID: 34259243 DOI: 10.1039/d1an00733e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet microfluidic optodes, or "droptodes", have emerged as a powerful technology for rapid detection of small ions in complex matrices. While using segmented aqueous phases provides the benefits of sample isolation, the influence of the liquid nature of the oil carrier phase has not yet been explored. In this paper, we examine the influence of microfluidic parameters on droptode efficiency, using potassium-sensitive droptodes as a model system. We found that while changing flow rates on device does not change droptode performance, both channel geometry and droplet size significantly impact droptode efficiency. Specifically, enhanced mixing of the droplets leads to faster equilibration on device and lowers limits of detection by about one order of magnitude. We also found that increasing the size of the sample droplet, at the expense of the size of the oil carrier/sensing phase, leads to higher sensitivity in the linear region of the droptode. These easily manipulated properties will allow one device to potentially be adapted for several different applications, based upon the type and concentration range of measurement required.
Collapse
|
12
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
13
|
Li L, Li Y, Qin W, Qian Y. Potentiometric detection of glucose based on oligomerization with a diboronic acid using polycation as an indicator. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4422-4428. [PMID: 32924037 DOI: 10.1039/d0ay01399d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel potentiometric sensor for d-glucose (Glu) using 4,4'-biphenyldiboronic acid as a receptor and polyion (poly-N-(3-aminopropyl)methacrylamide, PAPMA) as an indicator is described. The diboronic acid condenses with Glu via its two cis-diol units to form cyclic or linear oligomeric polyanions which can interact electrostatically with PAPMA, thus efficiently decreasing its potentiometric response on a polycation-sensitive membrane electrode. Although d-fructose (Fru), d-galactose (Gal) and d-mannose (Man) show even higher binding affinities to the diboronic acid as compared to Glu, these monosaccharides with only one cis-diol unit cannot oligomerize with the receptor, which efficiently excludes the interferences from the Glu's stereoisomers. The results obtained from blood sample analysis indicate that the proposed sensor is promising for detection of Glu in real-world applications.
Collapse
Affiliation(s)
- Long Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | |
Collapse
|
14
|
Payne EM, Holland-Moritz DA, Sun S, Kennedy RT. High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. LAB ON A CHIP 2020; 20:2247-2262. [PMID: 32500896 DOI: 10.1039/d0lc00347f] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In two decades of development, impressive strides have been made for automating basic laboratory operations in droplet-based microfluidics, allowing the emergence of a new form of high-throughput screening and experimentation in nanoliter to femtoliter volumes. Despite advancements in droplet storage, manipulation, and analysis, the field has not yet been widely adapted for many high-throughput screening (HTS) applications. Broad adoption and commercial development of these techniques require robust implementation of strategies for the stable storage, chemical containment, generation of libraries, sample tracking, and chemical analysis of these small samples. We discuss these challenges for implementing droplet HTS and highlight key strategies that have begun to address these concerns. Recent advances in the field leave us optimistic about the future prospects of this rapidly developing technology.
Collapse
Affiliation(s)
- Emory M Payne
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
15
|
Li H, Fang W, Zhao Z, Li A, Li Z, Li M, Li Q, Feng X, Song Y. Droplet Precise Self‐Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huizeng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Wei Fang
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - An Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Qunyang Li
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Xiqiao Feng
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
16
|
Li H, Fang W, Zhao Z, Li A, Li Z, Li M, Li Q, Feng X, Song Y. Droplet Precise Self‐Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angew Chem Int Ed Engl 2020; 59:10535-10539. [DOI: 10.1002/anie.202003839] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Huizeng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Wei Fang
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - An Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Qunyang Li
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Xiqiao Feng
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Kisiel A, Kałuża D, Paterczyk B, Maksymiuk K, Michalska A. Quantifying plasticizer leakage from ion-selective membranes – a nanosponge approach. Analyst 2020; 145:2966-2974. [DOI: 10.1039/c9an02621e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The spontaneous process of release of plasticizers from membranes typically used in ion-selective sensors is an effect which limits the lifetime of sensors and comes with a risk of safety hazards.
Collapse
Affiliation(s)
- Anna Kisiel
- Faculty of Chemistry
- University of Warsaw
- 02-093 Warsaw
- Poland
| | - Dawid Kałuża
- Faculty of Chemistry
- University of Warsaw
- 02-093 Warsaw
- Poland
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy
- Faculty of Biology
- University of Warsaw
- 02-096 Warsaw
- Poland
| | | | | |
Collapse
|