1
|
Gon M, Dekura S, Akutagawa T, Tanaka K. Geometry-Dependent Energy-Gap Modulation of π-Conjugated Systems Based on Hypervalent Silicon(IV)-Fused Azomethine Compounds. Chemistry 2025:e202500506. [PMID: 40192163 DOI: 10.1002/chem.202500506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025]
Abstract
The colors of substances and emissions are determined by the width of the energy gap between frontier molecular orbitals. In general, significant structural transformation or chemical modification is essential to tune the energy gap. Herein, we reveal a hypervalent silicon compound that can form both square pyramidal (SPY) and trigonal bipyramidal (TBPY) geometries and demonstrate a novel technique to modulate the energy gap of the π-conjugated system. The energy gap in the TBPY geometry is narrower than that in the SPY geometry owing to the stronger contribution of a polarized three-center four-electron (3c-4e) bond and a nitrogen-silicon (N-Si) coordination, and the geometries are changeable by external stimuli such as photoirradiation and temperature variations. Correspondingly, the emission bands in the orange (λPL = 640 nm) and yellow (λPL = 579 nm) regions were observed from the TBPY geometry at room temperature and the SPY geometry at -196 °C, respectively. Furthermore, the geometry can be fixed to the TBPY geometry by introducing bulky substituents at silicon. These mechanisms are experimentally and theoretically clarified in detail. Our findings described here are expected to be a novel molecular design for creating stimuli-responsive materials.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shun Dekura
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
2
|
Münster K, Kudo S, Kuwabara T, Shimamura E, Furukawa S, Yoshida Y, Ishida S, Iwamoto T, Tanifuji K, Ohki Y, Minoura M, Saito M. Synthesis of a dilithiobutadiene bearing extremely bulky silyl substituents and its reactivity toward functionalized silanes. Dalton Trans 2025; 54:4030-4038. [PMID: 39925336 DOI: 10.1039/d4dt03537b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The synthesis and full characterization of 1,4-dilithio-1,4-bis(triisopropylsilyl)-2,3-diphenylbuta-1,3-diene (1b) are reported. This molecule featuring extremely bulky silyl groups at the 1- and 4-positions serves as a precursor for the synthesis of 2,5-bis(triisopropylsilyl)-3,4-diphenyl-1-silacyclopenta-1,3-dienes (siloles) bearing various substituents at the silicon atom (SiR2 = SiH2 (4), SiH(OMe) (5), SiF2 (6), SiBr2 (7), SiBr(OMe) (8)). Importantly, compounds 6 and 7 reacted with lithium to afford 2,5-bis(triisopropylsilyl)-3,4-diphenyldilithiosilole (9). The solid-state molecular structure and solution NMR spectra reveal the formation of an aromatic ring system, as opposed to the precursors 6 and 7, with two Li cations coordinated by the silacycle in η5-fashions. The sterically bulky dilithiosilole 9 can be applied as an important starting material in the pursuit of low-valent silicon species without donor stabilization.
Collapse
Affiliation(s)
- Katharina Münster
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Shunsuke Kudo
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Takuya Kuwabara
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Eriko Shimamura
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Shunsuke Furukawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Yusuke Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Kazuki Tanifuji
- Institute of Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yasuhiro Ohki
- Institute of Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Masaichi Saito
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| |
Collapse
|
3
|
Naganawa Y, Sakamoto K, Fujita A, Morimoto K, Ratanasak M, Hasegawa JY, Yoshida M, Sato K, Nakajima Y. One-Step Esterification of Phosphoric, Phosphonic and Phosphinic Acids with Organosilicates: Phosphorus Chemical Recycling of Sewage Waste. Angew Chem Int Ed Engl 2025; 64:e202416487. [PMID: 39541227 DOI: 10.1002/anie.202416487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Global concerns regarding the depletion and strategic importance of phosphorus resources have increased demand for the recovery and recycling. However, waste-derived phosphorus compounds, primarily as chemically inert phosphoric acid or its salts, present a challenge to their direct conversion into high-value chemicals. We aimed to develop an innovative technology that utilizes the large quantities of sewage waste, bypasses the use of white phosphorus, and enables esterification of phosphoric acid to produce widely applicable phosphate triesters. Tetraalkyl orthosilicates emerged as highly effective reagents for the direct triple esterification of 85 % phosphoric acid, as well as the esterification of organophosphinic and phosphonic acids. Furthermore, we achieved esterification of recovered phosphoric acid with tetraalkyl orthosilicate, thus pioneering a recycling pathway from sewage waste to valuable phosphorus chemicals. Experimental and theoretical investigations revealed a novel mechanism, wherein tetraalkyl orthosilicates facilitate multimolecular aggregation to achieve alkyl transfer from tetraalkylorthosilicate to phosphoric acid via multiple proton shuttling.
Collapse
Affiliation(s)
- Yuki Naganawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kei Sakamoto
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Akira Fujita
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuya Morimoto
- Research Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Manussada Ratanasak
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Jun-Ya Hasegawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
4
|
Heitmann M, Duvinage D, Golz C, Hupf E, Beckmann J, Fischer M. Structural Snapshots on Stepwise Anionic Oxoborane Formation: Access to an Acyclic BO Ketone Analogue and Its Metathesis Chemistry with CO 2 and CS 2. Inorg Chem 2025; 64:3028-3037. [PMID: 39905796 PMCID: PMC11836929 DOI: 10.1021/acs.inorgchem.4c05354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
In this work, we disclose the synthesis and characterization of non-acid/base-stabilized anionic oxoboranes [MesTer2BO][K(L)] (MesTer = -C6H3-2,6-(2,4,6-Me3-C6H2)2, L = [2.2.2]-cryptand or 18-crown-6), which are isoelectronic and isostructural with aryl-substituted ketones. The stepwise synthetic formation of these ion-separated oxoboranes is demonstrated on the one hand by the treatment of the parent borinic acid MesTer2BOH with N-heterocyclic carbenes (NHCs) to give [MesTer2BO][HNHC] derivatives, and on the other hand by a deprotonation-sequestration sequence. Bearing polarized boron-oxygen moieties, their inherent reactivity toward both carbon disulfide and carbon dioxide reveals a unique π-bond metathesis reactivity to yield [(MesTer)2B-μ-E2C=E][K(L)] (E = O, S) derivatives.
Collapse
Affiliation(s)
- Marius Heitmann
- Institut
für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Daniel Duvinage
- Institut
für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Street 7, D-28359 Bremen, Germany
| | - Christopher Golz
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, D-37077 Göttingen, Germany
| | - Emanuel Hupf
- Institut
für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Street 7, D-28359 Bremen, Germany
| | - Jens Beckmann
- Institut
für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Street 7, D-28359 Bremen, Germany
| | - Malte Fischer
- Institut
für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Ishida S, Toyooka T, Tamura T, Abe T, Akasaka N, Iwamoto T. Sulfur and Oxygen Transfer Reactions with Simultaneous NHC-Coordination from Cyclic Thioureas and Ureas to a Stable Silylene. Chemistry 2025; 31:e202403847. [PMID: 39676061 DOI: 10.1002/chem.202403847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Reactions of cyclic thioureas (1,3,4,5-tetramethylimidazol-2-thione and 1,3-dimethylimidazolidin-2-thione) and ureas (1,3,4,5-tetramethylimidazol-2-one and 1,3-dimethylimidazolidin-2-one) with an isolable dialkylsilylene were examined. In these reactions, cyclic thioureas served as sulfur and NHC (N-heterocyclic carbene) sources, and the corresponding silanethione and NHC-derived products formed via silanethione-NHC complexes. Reactions of cyclic ureas with the silylene afforded a new NHC and an isolable azomethine ylide. These reactions involved oxygen atom transfer and 1,3-silyl migrations, which were supported by computational studies.
Collapse
Affiliation(s)
- Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Takuto Toyooka
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Tomofumi Tamura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Tetsuro Abe
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Naohiko Akasaka
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
6
|
Ebeler F, Neumann B, Stammler HG, Fernández I, Ghadwal RS. Structural Snapshots of Reversible Carbon Dioxide Capture and (De)oxygenation at Group 14 Diradicaloids. J Am Chem Soc 2024; 146:34979-34989. [PMID: 39648518 DOI: 10.1021/jacs.4c15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Although diradicals should exhibit a rather small reaction barrier as compared to closed-shell species for activating kinetically inert molecules, the activation and functionalization of carbon dioxide with stable main-group diradicals remain virtually unexplored. In this work, we present a thorough study on CO2 activation, reversible capture, and (de)oxygenation mediated by stable Group 14 singlet diradicals (i.e., diradicaloids) [(ADC)E]2 (E = Si, Ge, Sn) based on an anionic dicarbene (ADC) framework (ADC = PhC{N(Dipp)C}2; Dipp = 2,6-iPr2C6H3). [(ADC)E]2 readily undergo [4 + 2]-cycloadditions with CO2 to result in barrelene-type bis-metallylenes [(ADC)E]2(OC═O). The CO2 addition is reversible for E = Ge; thus, CO2 detaches under vacuum or at an elevated temperature and regenerates [(ADC)Ge]2. [(ADC)Sn]2(OC═O) is isolable but deoxygenates additional CO2 to form [(ADC)Sn]2(O2CO) and CO. [(ADC)Si]2(OC═O) is extremely reactive and could not be isolated or detected as it spontaneously reacts further with CO2 to yield elusive monomeric Si(IV) oxides [(ADC)Si(O)]2(COn) or carbonates [(ADC)Si(CO3)]2(COn) (n = 1 or 2) via the (de)oxygenation of CO2. The molecular structures of all isolated compounds have been established by X-ray diffraction, and a mechanistic insight of their formation has been suggested by DFT calculations.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
7
|
Ding Y, Jin W, Liu CH, Zhang J, Cui C. Stable Strained Donor-Free Silanone and Its Derived NHC-Stabilized Disilacyclobutadiene and Cyclic Alkenyl Silylene. J Am Chem Soc 2024; 146:27312-27317. [PMID: 39325854 DOI: 10.1021/jacs.4c11194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The strained silanone 2 was obtained by the reaction of disilacyclobutene 1 with N2O. Silanone 2 exhibited unprecedented thermal stability in both the solid state and solution. DFT calculations on 2 revealed that the highly polarized Si═O double bond is effectively stabilized by its electron delocalization with the unsaturated Si2C2 ring. Treatment of 2 with 1,3,4,5-tetramethylimidazolin-2-ylidene yielded the first Lewis base-stabilized disilacyclobutadiene 3 via a 1,3-boryl migration. Reaction of 2 with HCCH and Me3SiN3 resulted in the addition of C-H and Si-N bonds to the Si═O double bond. Interestingly, irradiation of 2 at rt yielded oxosilanes 7A and 7B in C6D6 and n-hexane, respectively, via the 1,2-boryl migration and ring expansion, whereas photolysis at -60 °C led to the formation of cyclic alkenyl silylene 8.
Collapse
Affiliation(s)
- Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Wen Jin
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Chen-Huan Liu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
8
|
Müller MP, Hinz A. Silylenes with a Small Chalcogenide Substituent: Tuning Frontier Orbital Energies from O to Te. Angew Chem Int Ed Engl 2024; 63:e202405319. [PMID: 38656624 DOI: 10.1002/anie.202405319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The general synthesis of heteroleptic acyclic silylenes with a bulky carbazolyl substituent (dtbpCbz) is detailed and a series of compounds with a chalcogenide substituent of the type [(dtbpCbz)SiE16R] (E16R=OtBu, SEt, SePh, TePh) is reported. With the bulky carbazolyl substituent present, the chalcogenide moiety can be very small, as is shown by incorporating groups as small as ethyl, phenyl or tert-butyl. For the first time, the electronic properties of the silylene can be tuned along a complete series of chalcogenide substituents. The effects are clearly visible in the NMR and UV/Vis spectra, and were rationalised by DFT computations. The reactivity of the heaviest chalcogenide-substituted silylenes was probed by reactions with trimethylphosphine selenide and the terphenyl azide TerN3 (Ter=2,6-dimesitylphenyl).
Collapse
Affiliation(s)
- Maximilian P Müller
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe
| |
Collapse
|
9
|
Jacob HL, Weyer N, Leibold M, Bruhn C, Siemeling U. Ferrocene-Based N-Heterocyclic Silylenes: Monomeric Silanechalcogenones, Silanimines, Silirenes, and Insertion Products with P 4. Chemistry 2024; 30:e202400850. [PMID: 38656583 DOI: 10.1002/chem.202400850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
The stable ferrocene-based N-heterocyclic silylenes fc[(N{B})2Si] (A; fc=1,1'-ferrocenylene, {B}=(HCNDipp)2B, Dipp=2,6-diisopropylphenyl) and fc[(NDipp)2Si] (B) are compared in a study focussing on their reactivity towards a range of small to moderately sized molecular substrates, viz. P4, S8, Se8, MesN3 (Mes=mesityl), RC≡CH, and RC≡CR (R=Ph, SiMe3). The Dipp-substituted congener B exhibits a more pronounced ambiphilicity and is sterically less congested than its 1,3,2-diazaborolyl-substituted relative A, in line with the higher reactivity of the former. The difference in reactivity is obviously due more to electronic than to steric reasons, as is illustrated by the fact that both A and B react with the comparatively bulky substrate MesN3 under mild conditions to afford the corresponding silanimine fc[(N{B})2Si=NMes] and fc[(NDipp)2Si=NMes], respectively. The heavier ketone analogues fc[(N{B})2Si=E] (E=S, Se, Te) are readily available from A and the corresponding chalcogen. In contrast, the reaction of the more reactive silylene B with elemental sulfur or selenium is unspecific, affording product mixtures. However, fc[(NDipp)2Si=Se] is selectively prepared from B and (Et2N)3PSe; the Te analogue is also accessible, but crystallises as head-to-tail dimer.
Collapse
Affiliation(s)
- Hannes L Jacob
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Nadine Weyer
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Michael Leibold
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Clemens Bruhn
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Ulrich Siemeling
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| |
Collapse
|
10
|
Wang Y, Crumpton AE, Ellwanger MA, McManus C, Aldridge S. Boryl Ancillary Ligands: Influencing Stability and Reactivity of Amidinato-Silanone and Germanone Systems in Ammonia Activation. Angew Chem Int Ed Engl 2024; 63:e202402795. [PMID: 38465783 DOI: 10.1002/anie.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
While the nucleophilic addition of ammonia to ketones is an archetypal reaction in classical organic chemistry, the reactivity of heavier group 14 carbonyl analogues (R2E=O; E=Si, Ge, Sn, or Pb) with NH3 remains sparsely investigated, primarily due to the synthetic difficulties in accessing heavier ketone congeners. Herein, we present a room-temperature stable boryl-substituted amidinato-silanone {(HCDippN)2B}{PhC(tBuN)2}Si=O (Dipp=2,6-iPr2C6H3) (together with its germanone analogue), formed from the corresponding silylene under a N2O atmosphere. This system reacts cleanly with ammonia in 1,2-fashion to give an isolable sila-hemiaminal complex {(HCDippN)2B}{PhC(tBuN)2}Si(OH)(NH2). Quantum chemical calculations reveal that the formation of this sila-hemiaminal is crucially dependent on the nature of the ancillary ligand scaffold. It is facilitated thermodynamically by the hemi-lability of the amidinate ligand (which allows for the formation of an energetically critical intramolecular N⋅⋅⋅HO hydrogen bond within the product) and is enabled mech-anistically by a process in which the silanone initially acts in umpolung fashion as a base (rather than an acid), due to the strongly electron-releasing and sterically bulky nature of the ancillary boryl ligand.
Collapse
Affiliation(s)
- Yuwen Wang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Agamemnon E Crumpton
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Caitilín McManus
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
11
|
Oshima K, Kobayashi R, Sakamoto K, Yoza K, Ishida S, Iwamoto T. An Isolable THF-Coordinated Dialkylgermanone. Chem Asian J 2024; 19:e202400111. [PMID: 38380801 DOI: 10.1002/asia.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
A stable dialkylgermanone was generated by mixing a solid of the corresponding dialkylgermylene and gaseous N2O. While the dialkylgermanone is marginally persistent in solution and gradually converts to its head-to-tail dimer at room temperature, the addition of THF to the dialkylgermanone provided an isolable THF-coordinated dialkylgermanone. The THF-coordinated dialkylgermanone reacts with H2O, THF, and B(C6F5)3 similar to the corresponding base-free two-coordinate dialkylsilanone. The dialkylgermanone undergoes deoxygenation in the presence of triphenylphosphine to provide the corresponding germylene and olefination upon treatment with phosphaylide Ph3PCHPh to afford the corresponding Ge=C bond compound (germa-Wittig reaction).
Collapse
Affiliation(s)
- Kazuma Oshima
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Kengo Sakamoto
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Kenji Yoza
- Bruker Japan K. K., 3-9 Moriya-cho, Kanagawa-Ku, Yokohama, 221-0022, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
12
|
Muraoka T, Ishita T, Kawachi K, Nishio T, Ishihara H, Ueno K. Reactions of (mesityl) n(methyl) 2-nsilylene complexes with pyridine- N-oxide ( n = 1 and 0): formation of silanone complexes and a disiloxanyloxy complex. Dalton Trans 2024; 53:7105-7114. [PMID: 38567984 DOI: 10.1039/d4dt00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Silanones (OSiR2), a heavier congener of ketones (R2CO), are highly reactive species that are readily converted to oligomeric siloxane (O-SiR2)n. Coordination of silanones to the transition-metal fragments to afford silanone-coordinated complexes is a reliable silanone stabilization method. Recently, our group reported the synthesis, structures, and reactivity of dimesityl-substituted silanone complexes Cp*(OC)2M{OSiMes2(L)}(SiMe3) (M = W, Mo, L: Lewis base, Cp*: η5-C5Me5, Mes: 2,4,6-Me3C6H2). Herein, to investigate the effect of substituents on the silicon atom during the formation of a silanone complex, we demonstrated the use of Mes and smaller Me groups. As a result, the formation of Mes(Me)-substituted silanone molybdenum complex Cp*(OC)2Mo{OSiMes(Me)(py)}(SiMe3) (5b, py: pyridine) was suggested, the silanone tungsten complex Cp*(OC)2W{OSiMes(Me)(DMAP)}(SiMe3) (4a, DMAP: 4-(dimethylamino)pyridine) was obtained, and a dimethyl-substituted disiloxanyloxy(dioxo) complex Cp*(O)2W(OSiMe2OSiMe3) (9) was formed. The reaction of 4a with PMe3 proceeded via the elimination of DMAP and migration of the SiMe3 group to the oxygen atom of the silanone ligand to afford Cp*(OC)2W(SiMes(Me)OSiMe3)(PMe3) (11a). The Mo complex Cp*(OC)2Mo(SiMes(Me)OSiMe3)(PMe3) (11b) was produced by the reaction of Cp*(OC)2Mo{SiMes(Me)}(SiMe3) (7b) with pyridine-N-oxide in the presence of PMe3.
Collapse
Affiliation(s)
- Takako Muraoka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan.
- Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Taichi Ishita
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan.
| | - Kosuke Kawachi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan.
| | - Takuya Nishio
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan.
| | - Hiroto Ishihara
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan.
| | - Keiji Ueno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan.
| |
Collapse
|
13
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
14
|
Kreßner L, Duvinage D, Puylaert P, Graw N, Herbst-Irmer R, Stalke D, Townrow OPE, Fischer M. En Route to a Molecular Terminal Tin Oxide. Inorg Chem 2024; 63:7455-7463. [PMID: 38598606 DOI: 10.1021/acs.inorgchem.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the pursuit of terminal tin chalcogenides, heteroleptic stannylenes bearing terphenyl- and hexamethyldisilazide ligands were reacted with carbodiimides to yield the respective guanidinato complexes. Further supported by quantum chemical calculations, this revealed that the iso-propyl-substituted derivative provides the maximum steric protection achievable. Oxidation with elemental selenium produced monomeric terminal tin selenides with four-coordinate tin centers. In reactions with N2O as oxygen transfer reagent, silyl migration toward putative terminal tin oxide intermediates gave rise to tin complexes with terminal ─OSiMe3 functionality. To prevent silyl migration, the silyl groups were substituted with cyclohexyl moieties. This analogue exhibited distinctively different reactivities toward selenium and N2O, yielding a 1,2,3,4,5-tetraselenastannolane and chalcogenide-bridged dimeric compounds, respectively.
Collapse
Affiliation(s)
- Leon Kreßner
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Daniel Duvinage
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Pim Puylaert
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Nico Graw
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver P E Townrow
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Malte Fischer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| |
Collapse
|
15
|
Mochihara K, Morimoto T, Ota K, Marumoto S, Hashizume D, Matsuo T. Approach to the "Missing" Diarylsilylene: Formation, Characterization, and Intramolecular C-H Bond Activation of Blue Diarylsilylenes with Bulky Rind Groups. Int J Mol Sci 2024; 25:3761. [PMID: 38612569 PMCID: PMC11011690 DOI: 10.3390/ijms25073761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The treatment of the bulky Rind-based dibromosilanes, (Rind)2SiBr2 (2) [Rind = 1,1,7,7-tetra-R1-3,3,5,5-tetra-R2-s-hydrindacen-4-yl: EMind (a: R1 = Et, R2 = Me) and Eind (b: R1 = R2 = Et)], with two equivalents of tBuLi in Et2O at low temperatures resulted in the formation of blue solutions derived from the diarylsilylenes, (Rind)2Si: (3). Upon warming the solutions above -20 °C, the blue color gradually faded, accompanying the decomposition of 3 and yielding cyclic hydrosilanes (4) via intramolecular C-H bond insertion at the Si(II) center. The molecular structures of the bulky Eind-based 3b and 4b were confirmed by X-ray crystallography. Thus, at -20 °C, blue crystals were formed (Crystal-A), which were identified as mixed crystals of 3b and 4b. Additionally, colorless crystals of 4b as a singular component were isolated (Crystal-B), whose structure was also determined by an X-ray diffraction analysis. Although the isolation of 3 was difficult due to their thermally labile nature, their structural characteristics and electronic properties were discussed based on the experimental findings complemented by computational results. We also examined the hydrolysis of 3b to afford the silanol, (Eind)2SiH(OH) (5b).
Collapse
Grants
- JP20109003, JP15H00964, JP15H03788, 18K05160, 21K05091, 22K20561 Japan Society for the Promotion of Science
- #2016-94, #2017-99, #2018-110, #2019-120, #2020-126, #2021-130, #2022-134 Collaborative Research Program of The Institute for Chemical Research, Kyoto University
Collapse
Affiliation(s)
- Kazuki Mochihara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (K.M.); (T.M.); (K.O.)
| | - Tatsuto Morimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (K.M.); (T.M.); (K.O.)
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (K.M.); (T.M.); (K.O.)
| | - Shinsuke Marumoto
- Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan;
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (K.M.); (T.M.); (K.O.)
| |
Collapse
|
16
|
Jiang Y, Yuvaraj K, Rajeshkumar T, Feng Lim L, Cox N, Maron L, Jones C. Stabilization and One Electron Reduction of a Silicon Analogue of a Carboxylic Acid Anhydride. Chemistry 2023:e202303949. [PMID: 38116910 DOI: 10.1002/chem.202303949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reaction of the 1,2-disilylenes {(DipAr Am)Si}2 (DipAr Am=[(NDip)2 CAr]- , Dip=2,6-diisopropylphenyl, Ar=4-C6 H4 But (Ar') 1 a or Ph 1 b) and two abnormal N-heterocyclic silylenes, (DipAr Am)SiOCSi{(NDip)2 CAr} (Ar=Ar' 3 a or Ph 3 b) with N2 O led to formation of unprecedented examples of uncoordinated silicon analogues of carboxylic acid anhydrides, (DipAr Am)(O=)SiOSi(=O)(DipAr Am) (Ar=Ar' 2 a or Ph 2 b). Both compounds have been fully characterized, and the mechanism of formation of one explored using DFT calculations. Reduction of sila-acid anhydride 2 a with a dimagnesium(I) compound, [{(Mes Nacnac)Mg}2 ] (Mes Nacnac=[(MesNCMe)2 CH]- , Mes=mesityl), led to the one-electron reduction of the anhydride and formation of a magnesium complex of a sila-acid anhydride radical anion [(Mes Nacnac)Mg{(OSi(DipAr' Am)}2 O] 5. A combination of EPR spectroscopic studies and DFT calculations reveal the unpaired electron to largely reside on one of the amidinate ligands of the complex.
Collapse
Affiliation(s)
- Yixiao Jiang
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| | - K Yuvaraj
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| | - Thayalan Rajeshkumar
- Université de Toulouse et, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Li Feng Lim
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia. Web
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia. Web
| | - Laurent Maron
- Université de Toulouse et, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Cameron Jones
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| |
Collapse
|
17
|
Zhang X, Liu LL. Crystalline Neutral Aluminum Selenide/Telluride: Isoelectronic Aluminum Analogues of Carbonyls. J Am Chem Soc 2023; 145:15729-15734. [PMID: 37459288 DOI: 10.1021/jacs.3c05954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Neutral aluminum chalcogenides (R-Al(L)═Ch; L = ligand, Ch = chalcogen), stabilized by a Lewis base ligand, represent isoelectronic counterparts to carbonyl compounds and have long been pursued for isolation. Herein, we present the synthesis of an aluminum selenide, [N]-Al(iPr2-bimy)═Se, and an aluminum telluride, [N]-Al(iPr2-bimy)═Te, under ambient conditions ([N] = 1,8-bis(3,5-di-tert-butylphenyl)-3,6-di-tert-butylcarbazolyl; iPr2-bimy = 1,3-diisoproplylbenzimidazole-2-ylidene). These compounds arise from the oxidation reaction of [N]-Al(iPr2-bimy) with Se and (nBu)3P═Te, respectively. One notable characteristic of the Al and Ch interaction is the presence of an Al-Ch σ bond, strengthened by the electrostatic attraction between the Al+ and Ch- centers as well as the donation of lone pairs from Ch into vacant orbitals at Al. This results in an Al-Ch multiple bond with an ambiphilic nature. Preliminary investigations into their reactivity unveil their remarkable propensity for facile (cyclo)addition reactions with diverse substrates, including PhCCH, PhCN, AdN3, MeI, PhSiH3, and C6F6, leading to the formation of unprecedented main group heterocycles and alumachalcogenides.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Majumdar M. A discrete antimony(V) oxide. Nat Chem 2023; 15:593-594. [PMID: 37095403 DOI: 10.1038/s41557-023-01191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Affiliation(s)
- Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, India.
| |
Collapse
|
19
|
Wenger JS, Weng M, George GN, Johnstone TC. Isolation, bonding and reactivity of a monomeric stibine oxide. Nat Chem 2023; 15:633-640. [PMID: 36959510 PMCID: PMC10159848 DOI: 10.1038/s41557-023-01160-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023]
Abstract
In contrast to phosphine oxides and arsine oxides, which are common and exist as stable monomeric species featuring the corresponding pnictoryl functional group (Pn=O/Pn+-O-; Pn = P, As), stibine oxides are generally polymeric, and the properties of the unperturbed stiboryl group (Sb=O/Sb+-O-) remain unexplored. We now report the isolation of the monomeric stibine oxide, Dipp3SbO (where Dipp = 2,6-diisopropylphenyl). Spectroscopic, crystallographic and computational studies provide insight into the nature of the Sb=O/Sb+-O- bond. Moreover, isolation of Dipp3SbO allows the chemistry of the stiboryl group to be explored. Here we show that Dipp3SbO can act as a Brønsted base, a hydrogen-bond acceptor and a transition-metal ligand, in addition engaging in 1,2-addition, O-for-F2 exchange and O-atom transfer. In all cases, the reactivity of Dipp3SbO differed from that of the lighter congeners Dipp3AsO and Dipp3PO.
Collapse
Affiliation(s)
- John S Wenger
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Monica Weng
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
20
|
Zhu H, Hanusch F, Inoue S. Facile Bond Activation of Small Molecules by an Acyclic Imino(silyl)silylene. Isr J Chem 2023. [DOI: 10.1002/ijch.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Huaiyuan Zhu
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Franziska Hanusch
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Shigeyoshi Inoue
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
21
|
Nakano R, Yamanashi R, Yamashita M. Base-Stabilized Neutral Oxoborane and Thioxoborane Supported by a Bis(oxazolinyl)(phenyl)methanide Ligand. Chemistry 2023; 29:e202203280. [PMID: 36507866 DOI: 10.1002/chem.202203280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Base-stabilized neutral oxoborane and thioxoborane supported by a bis(oxazolinyl)(phenyl)methanide ligand have been synthesized and structurally characterized. While previous synthetic attempts of oxoborane ligated by β-diketiminate (NacNac) did not allow for its isolation in acid-free form, oxoborane supported by a bis(oxazolinyl)(phenyl)methanide ligand is isolable, due to the absence of imine ɑ-protons and steric protection of enamine carbon. Crystallographic analysis revealed the presence of a B-O double bond close to the shortest end of the reported lengths. Its reactivity has also been examined, and it was majorly governed by the nucleophilicity and basicity of the oxygen atom. The chemical inertness and synthetic convenience of the bis(oxazolinyl)(phenyl)methanide scaffold presented in this work suggest its utility as an innocent alternative to the NacNac scaffold.
Collapse
Affiliation(s)
- Ryo Nakano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Ryotaro Yamanashi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Japan
| |
Collapse
|
22
|
Omaña AA, Frenette BL, Dornsiepen E, Kobayashi R, Ferguson MJ, Iwamoto T, Rivard E. Frustrated Lewis pair-ligated tetrelenes. Dalton Trans 2023; 52:774-786. [PMID: 36594250 DOI: 10.1039/d2dt03807b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reactivity of [PB{SiX2}] (X = Cl, Br; PB = 1,2-iPr2(C6H4)BCy2; E = Si, Ge) adducts is described, with an initial focus on reduction attempts to access [PB{E}]x species; however, in all cases only free PB ligand was formed as the soluble product. Moreover, computations were performed to evaluate the energy penalty associated with EX2 dissociation from the PB chelates. Moving up the periodic table, the formal methylene adduct [PB{CH2}] was isolated and its reactivity was compared with its heavier element congeners of [PB{EH2}]. We also introduce new phosphine-borane frustrated Lewis pair (FLP) chelates and explore preliminary coordination chemistry with these ligands.
Collapse
Affiliation(s)
- Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Eike Dornsiepen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
23
|
Sun T, Li J, Wang H. Recent advances in the chemistry of heavier group 14 analogues of carbonyls. Chem Asian J 2022; 17:e202200611. [PMID: 35883252 DOI: 10.1002/asia.202200611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Indexed: 11/08/2022]
Abstract
Heavier analogues of carbonyls, in the form of "R2E=O" (E = Si, Ge, Sn, Pb), feature a high polar E=O double bond. In contrast to carbonyl compounds, heavier analogues are extremely unstable and prone to proceed head-to-tail oligomerization. Thus, the isolation of such species under ambient conditions is a challenging synthetic target in main group chemistry. In recent years, much progress has been achieved in the synthesis and isolation of a variety of Lewis base/acid, Lewis base-stabilized and even Lewis acid/base free heavier analogues. These compounds exhibit interesting reactivities, such as small molecule activation and metathesis reactions, indicating the potential of heavier analogues in synthetic chemistry. This review summarizes the recent achievements in the chemistry of Lewis base and/or acid stabilized heavier analogues of carbonyls, including synthetic approaches, structural parameters and reactivity of these isolable compounds.
Collapse
Affiliation(s)
| | | | - Hao Wang
- Southeast University, Chemistry, Southeast University Road, 211189, Nanjing, CHINA
| |
Collapse
|
24
|
Kuroda A, Fujita N, Horita T, Ota K, Rosas-Sánchez A, Hoshino M, Hashizume D, Matsuo T. Formation and Reactions of Ge=O Double-Bonded Species Bearing EMind Groups. CHEM LETT 2022. [DOI: 10.1246/cl.220222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Airi Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naoko Fujita
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tomomi Horita
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Alfredo Rosas-Sánchez
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, C.P. 44430 Guadalajara, Jalisco, México
| | - Manabu Hoshino
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
25
|
|
26
|
Grams S, Maurer J, Patel N, Langer J, Harder S. Formation and Reactivity of Non‐Stabilized Monomeric Alumoxane Intermediates. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samuel Grams
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany GERMANY
| | - Johannes Maurer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany GERMANY
| | - Neha Patel
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany GERMANY
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany GERMANY
| | - Sjoerd Harder
- University Erlangen-Nürnberg Chemistry Egerlandstrasse 1 91058 Erlangen GERMANY
| |
Collapse
|
27
|
Muraoka T, Suzuki Y, Tsuchimoto M, Trigagema G, Ueno K, Koyama S. Synthesis and structure of a pyridine-stabilized silanone molybdenum complex and its reactions with PMe 3 and acetone. Dalton Trans 2022; 51:18203-18212. [DOI: 10.1039/d2dt02560d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synthesis, structure and reactivity of a pyridine-stabilized silanone molybdenum complex are described.
Collapse
Affiliation(s)
- Takako Muraoka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Yuzuki Suzuki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masato Tsuchimoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Gama Trigagema
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Keiji Ueno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Shinji Koyama
- Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
28
|
Abe T, Ishida S, Iwamoto T. A Thermally Robust Cyclic Dialkylsilylene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Abe
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578
| |
Collapse
|
29
|
Feige F, Malaspina LA, Rychagova E, Ketkov S, Grabowsky S, Hupf E, Beckmann J. Perfluorinated Trialkoxysilanol with Dramatically Increased Brønsted Acidity. Chemistry 2021; 27:15898-15902. [PMID: 34550614 PMCID: PMC9292728 DOI: 10.1002/chem.202103177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/17/2022]
Abstract
The Brønsted acidity of the perfluorinated trialkoxysilanol {(F3C)3CO}3SiOH is more than 13 orders of magnitude higher than that of orthosilicic acid, Si(OH)4, and even more for most previously known silanols. It is easily deprotonated by simple amines and pyridines to give the conjugate silanolates [OSi{OC(CF3)3}3]−, which possess extremely short Si−O bonds, comparable to those of silanones.
Collapse
Affiliation(s)
- Felix Feige
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Lorraine A Malaspina
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Schweiz
| | - Elena Rychagova
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, 49 Tropinin St., 603950, Nizhny Novgorod, Russian Federation
| | - Sergey Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, 49 Tropinin St., 603950, Nizhny Novgorod, Russian Federation
| | - Simon Grabowsky
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Schweiz
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| |
Collapse
|
30
|
Zhao X, Szilvási T, Hanusch F, Inoue S. An Isolable Three-Coordinate Germanone and Its Reactivity. Chemistry 2021; 27:15914-15917. [PMID: 34529306 PMCID: PMC9292218 DOI: 10.1002/chem.202102972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Indexed: 11/22/2022]
Abstract
A rare three-coordinate germanone [IPrN]2 Ge=O (IPrN=bis(2,6-diisopropylphenyl)imidazolin-2-imino) was successfully isolated. The germanone has a rather high thermal stability in arene solvent, and no detectable change was observed at 80 °C for at least one week. However, high thermal stability of [IPrN]2 Ge=O does not prevent its reactivity toward small molecules. Structural analysis and initial reactivity studies revealed the highly polarized nature of the terminal Ge=O bond. Besides, the addition of phenylacetylene, as well as O-atom transfer with 2,6-dimethylphenyl isocyanide make it a mimic of nucleophilic transition-metal oxides. Mechanism for O-atom transfer reaction was investigated via DFT calculations, which revealed that the reaction proceeds via a [2+2] cycloaddition intermediate.
Collapse
Affiliation(s)
- Xuan‐Xuan Zhao
- Department of ChemistryWACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching beiMünchenGermany
| | - Tibor Szilvási
- Department of Chemical and Biological EngineeringUniversity of AlabamaTuscaloosaAL35487USA
| | - Franziska Hanusch
- Department of ChemistryWACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching beiMünchenGermany
| | - Shigeyoshi Inoue
- Department of ChemistryWACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching beiMünchenGermany
| |
Collapse
|
31
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
32
|
Löwe P, Feldt M, Röthel MB, Wilm LFB, Dielmann F. Thiophosphonium-Alkyne Cycloaddition Reactions: A Heavy Congener of the Carbonyl-Alkyne Metathesis. Inorg Chem 2021; 60:14509-14514. [PMID: 34524817 PMCID: PMC8493552 DOI: 10.1021/acs.inorgchem.1c02076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
While the metathesis
reaction between alkynes and thiocarbonyl
compounds has been thoroughly studied, the reactivity of alkynes with
isoelectronic main group R2E=S compounds is rarely reported
and unknown for [R2P=S]+ analogues. We show
that thiophosphonium ions, which are the isoelectronic phosphorus
congeners to thiocarbonyl compounds, undergo [2 + 2]-cycloaddition
reactions with different alkynes to generate 1,2-thiaphosphete ions.
The four-membered ring species are in an equilibrium state with the
corresponding P=C–C=S heterodiene structure and thus undergo
hetero-Diels–Alder reactions with acetonitrile. Heteroatom
and substituent effects on the energy profile of the 1,2-thiaphosphete
formation were elucidated by means of quantum chemical methods. We show that thiophosphonium ions, which
are the isoelectronic
phosphorus congeners to thiocarbonyl compounds, undergo [2 + 2]-cycloaddition
reactions with different alkynes to generate 1,2-thiaphosphete ions.
The four-membered ring species are in an equilibrium state with the
corresponding P=C−C=S heterodiene structure and thus undergo
hetero-Diels−Alder reactions with acetonitrile. Heteroatom
and substituent effects on the energy profile of the 1,2-thiaphosphete
formation were elucidated by means of quantum chemical methods.
Collapse
Affiliation(s)
- Pawel Löwe
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28-30, 48149 Münster, Germany
| | - Milica Feldt
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Maike B Röthel
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28-30, 48149 Münster, Germany
| | - Lukas F B Wilm
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28-30, 48149 Münster, Germany
| | - Fabian Dielmann
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28-30, 48149 Münster, Germany.,Department of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Takahashi S, Ramos‐Enríquez MA, Bellan E, Baceiredo A, Saffon‐Merceron N, Nakata N, Hashizume D, Branchadell V, Kato T. Strained and Reactive Donor/Acceptor‐Supported Metallasilanone. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shintaro Takahashi
- Department of Chemistry Graduate School of Science and Engineering Saitama University, Shimo-okubo Sakura-ku Saitama 338-8570 Japan
| | - Manuel A. Ramos‐Enríquez
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| | - Ekaterina Bellan
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse (FR 2599) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| | - Norio Nakata
- Department of Chemistry Graduate School of Science and Engineering Saitama University, Shimo-okubo Sakura-ku Saitama 338-8570 Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Vicenç Branchadell
- Departament de Química Universitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse CNRS 118 route de Narbonne 31062 Toulouse France
| |
Collapse
|
34
|
Takahashi S, Ramos-Enríquez MA, Bellan E, Baceiredo A, Saffon-Merceron N, Nakata N, Hashizume D, Branchadell V, Kato T. Strained and Reactive Donor/Acceptor-Supported Metallasilanone. Angew Chem Int Ed Engl 2021; 60:18489-18493. [PMID: 34159706 DOI: 10.1002/anie.202105526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 01/13/2023]
Abstract
A novel stable donor/acceptor-supported MnI -metallasilanone 3 was synthesized. The intramolecular silanone-MnI interaction induces a highly strained three-membered cyclic structure, leading to an exceptionally high reactivity of 3 as a donor/acceptor complex of silanone. Indeed, metallasilanone 3 readily reacts with various small molecules such as H2 or ethylene gas in mild conditions.
Collapse
Affiliation(s)
- Shintaro Takahashi
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Manuel A Ramos-Enríquez
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Ekaterina Bellan
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Norio Nakata
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
35
|
Xiong Y, Yao S, Ruzicka A, Driess M. Distinctly different reactivity of bis(silylenyl)- versus phosphanyl-silylenyl-substituted o-dicarborane towards O 2, N 2O and CO 2. Chem Commun (Camb) 2021; 57:5965-5968. [PMID: 34027530 DOI: 10.1039/d1cc01939b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In stark contrast to the reactivity of the bis-silylenyl dicarborane CB-Si2 (1) [CB = ortho-C,C'-C2B10H10, Si = PhC(tBuN)2Si] towards O2, N2O, and CO2, yielding the same dioxygenation product CB-Si2O2 (2) with a four-membered 1,3,2,4-disiladioxetane ring, the activation of the latter small molecules with the phosphanyl-silylenyl-functionalised CB-SiP (3) {P[double bond, length as m-dash]P[N(tBu)CH2]2} affords with O2 the CB-Si([double bond, length as m-dash]O)P([double bond, length as m-dash]O) silanone-phosphine oxide (4), with N2O the CB-Si([double bond, length as m-dash]O)P silanone-phosphine (5), and with CO2 the CB-Si(O2C[double bond, length as m-dash]O)P silicon carbonate-phosphine (6) and CB-C([double bond, length as m-dash]O)OSiOP ester (7), respectively.
Collapse
Affiliation(s)
- Yun Xiong
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, Berlin 10623, Germany.
| | - Shenglai Yao
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, Berlin 10623, Germany.
| | - Ales Ruzicka
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Matthias Driess
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, Berlin 10623, Germany.
| |
Collapse
|
36
|
Munz D, Meyer K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 2021; 5:422-439. [PMID: 37118028 DOI: 10.1038/s41570-021-00276-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including 'click chemistry', photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity - or, rather, 'charge frustration' - as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor-acceptor ligand systems for reversible 1e- chemistry or switching.
Collapse
|
37
|
Löwe P, Witteler T, Dielmann F. Lewis base-free thiophosphonium ion: a cationic sulfur atom transfer reagent. Chem Commun (Camb) 2021; 57:5043-5046. [PMID: 33881419 DOI: 10.1039/d1cc01273h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorus(v) sulfide and Lawesson's reagent are commonly used thionating reagents which are considered to operate after dissociation into highly reactive dithiophosphorane fragments. We report the synthesis and properties of a monomeric thiophosphonium ion [R2P[double bond, length as m-dash]S]+. The highly electrophilic species reacts with carbonyls in oxo-for-sulfido exchange reactions at room temperature and undergoes phosphorus-chalcogen bond metathesis reactions with phosphine chalcogenides.
Collapse
Affiliation(s)
- Pawel Löwe
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28-30, 48149 Münster (Germany), Germany.
| | - Tim Witteler
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28-30, 48149 Münster (Germany), Germany.
| | - Fabian Dielmann
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28-30, 48149 Münster (Germany), Germany. and Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria), Austria
| |
Collapse
|
38
|
Dankert F, Richter R, Weigend F, Xie X, Balmer M, Hänisch C. Aufbau anorganischer Kronenether durch s‐Block‐Metall‐templatgesteuerte Si‐O‐Bindungsaktivierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabian Dankert
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Roman‐Malte Richter
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Florian Weigend
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Xiulan Xie
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Markus Balmer
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Carsten Hänisch
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| |
Collapse
|
39
|
Dankert F, Richter R, Weigend F, Xie X, Balmer M, von Hänisch C. Construction of Inorganic Crown Ethers by s-Block-Metal-Templated Si-O Bond Activation. Angew Chem Int Ed Engl 2021; 60:10393-10401. [PMID: 33591587 PMCID: PMC8252370 DOI: 10.1002/anie.202014822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Indexed: 11/07/2022]
Abstract
We herein report the synthesis, structures, coordination ability, and mechanism of formation of silicon analogs of crown ethers. An oligomerization of 2 D2 (I) (2 Dn ,=(Me4 Si2 O)n ) was achieved by the reaction with GaI3 and MIx (M=Li, Na, Mg, Ca, Sr). In these reactions the metal cations serve as template and the anions (I- /[GaI4 ]- ) are required as nucleophiles. In case of MIx =LiI, [Li(2 D3 )GaI4 ] (1) is formed. In case of MIx =NaI, MgI2 , CaI2 , and SrI2 the compounds [M(2 D4 )(GaI4 )x ] (M=Mg2+ (3), Ca2+ (4), Sr2+ (5) are obtained. Furthermore the proton complex [H(2 D3 )][Ga2 I7 ] (6) was isolated and structurally characterized. All complexes were characterized by means of multinuclear NMR spectroscopy, DOSY experiments and, except for compound 3, also by single crystal X-ray diffraction. Quantum chemical calculations were carried out to compare the affinity of M+ to 2 Dn and other ligands and to shed light on the formation of larger rings from smaller ones.
Collapse
Affiliation(s)
- Fabian Dankert
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Roman‐Malte Richter
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Florian Weigend
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Xiulan Xie
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Markus Balmer
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Carsten von Hänisch
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| |
Collapse
|
40
|
Abstract
Main group carbonyl analogues (R2 E=O) derived from p-block elements (E=groups 13 to 15) have long been considered as elusive species. Previously, employment of chemical tricks such as acid- and base-stabilization protocols granted access to these transient species in their masked forms. However, electronic and steric effects inevitably perturb their chemical reactivity and distinguish them from classical carbonyl compounds. A new era was marked by the recent isolation of acid-base free main group carbonyl analogues, ranging from a lighter boracarbonyl to the heavier silacarbonyls, phosphacarbonyls and a germacarbonyl. Most importantly, their unperturbed nature elicits exciting new chemistry, spanning the vista from classical organic carbonyl-type reactions to transition metal-like oxide ion transfer chemistry. In this Review, we survey the strategies used for the isolation of such systems and document their emerging reactivity profiles, with a view to providing fundamental comparisons both with carbon and transition metal oxo species. This highlights the emerging opportunities for exciting "crossover" reactivity offered by these derivatives of the p-block elements.
Collapse
Affiliation(s)
- Ying Kai Loh
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
41
|
Kobayashi R, Ishida S, Iwamoto T. Synthesis of an NHC-Coordinated Dialkyldisilavinylidene and Its Oxidation Providing a Silicon Analog of an Acetolactone. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
42
|
Chandra S, Eckhardt AK, Turner AM, Tarczay G, Kaiser RI. A Photoionization Study on the Detection of 1-Sila Glycolaldehyde (HSiOCH 2 OH), 2-Sila Acetic Acid (H 3 SiCOOH), and 1,2-Disila Acetaldehyde (HSiOSiH 3 ). Chemistry 2021; 27:4939-4945. [PMID: 33368689 DOI: 10.1002/chem.202004863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Indexed: 11/08/2022]
Abstract
The identification of silicon-substituted, complex organics carrying multiple functional groups by classical infrared spectroscopy is challenging because the group frequencies of functional groups often overlap. Photoionization (PI) reflectron time-of-fight mass spectrometry (ReTOF-MS) in combination with temperature-programmed desorption (TPD) holds certain advantages because molecules are identified after sublimation from the matrix into in the gas phase based on distinct ionization energies and sublimation temperatures. In this study, we reveal the detection of 1-silaglycolaldehyde (HSiOCH2 OH), 2-sila-acetic acid (H3 SiCOOH), and 1,2-disila-acetaldehyde (H3 SiSiHO)-the silicon analogues of the well-known glycolaldehyde (HCOCH2 OH), acetic acid (H3 CCOOH), and acetaldehyde (H3 CCHO), in the gas phase after preparation in silane (SiH4 )-carbon dioxide ices exposed to energetic electrons and subliming the neutral reaction products formed within the ices into the gas phase.
Collapse
Affiliation(s)
- Sankhabrata Chandra
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI, 96822, USA.,W. M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| | | | - Andrew M Turner
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI, 96822, USA.,W. M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| | - György Tarczay
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI, 96822, USA.,Present address: Laboratory of Molecular Spectroscopy, Institute of Chemistry, Eötvös University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI, 96822, USA.,W. M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| |
Collapse
|
43
|
Dolati H, Denker L, Trzaskowski B, Frank R. Superseding β-Diketiminato Ligands: An Amido Imidazoline-2-Imine Ligand Stabilizes the Exhaustive Series of B=X Boranes (X=O, S, Se, Te). Angew Chem Int Ed Engl 2021; 60:4633-4639. [PMID: 33283430 PMCID: PMC7986232 DOI: 10.1002/anie.202015553] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Indexed: 01/01/2023]
Abstract
Boron reluctantly forms B=X (X=O, S, Se, Te) moieties, which has stimulated the quest for such species in the past few years. Based on the N,N'-chelating β-diketiminato ligand (HNacNac), a new amido imidazoline-2-imine ligand system (HAmIm) is presented, giving rise to the isolation of an exhaustive series of Lewis acid free, monomeric chalcogen B=X boranes with documented π-bond character between boron and the chalcogen. The chalcogenoboranes are isoelectronic and isolobal to the respective ketones. The chemical behavior of the oxoborane (B=O) strongly resembles the classical carbonyl reactivity in C=O bonds. The improved stability provided by HAmIm arises from the formation of more-stable five-membered boron chelates versus the six-membered NacNac analogues and from the imidazoline-2-imine moiety providing enhanced σ- and π-donation. The HAmIm ligand class may supersede the widely employed NacNac system in certain applications.
Collapse
Affiliation(s)
- Hadi Dolati
- Institute of Inorganic and Analytical ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Lars Denker
- Institute of Inorganic and Analytical ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Bartosz Trzaskowski
- Centre of New TechnologiesUniversity of WarsawBanacha 2C02-097WarszawaPoland
| | - René Frank
- Institute of Inorganic and Analytical ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
44
|
Zheng X, Heilmann A, McManus C, Aldridge S. A Xanthene-Based Mono-Anionic PON Ligand: Exploiting a Bulky, Electronically Unsymmetrical Donor in Main Group Chemistry. Chemistry 2021; 27:3159-3165. [PMID: 33200850 PMCID: PMC7898390 DOI: 10.1002/chem.202004741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Indexed: 12/05/2022]
Abstract
The synthesis of a novel mono-anionic phosphino-amide ligand based on a xanthene backbone is reported, togetherr with the corresponding GaI complex, (PON)Ga (PON = 4-(di(2,4,6-trimethylphenyl)phosphino)-5-(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). The solid-state structure of (PON)Ga (obtained from X-ray crystallography) reveals very weak O⋅⋅⋅Ga and P⋅⋅⋅Ga interactions, consistent with a R2 NGa fragment which closely resembles those found in one-coordinate amidogallium systems. Strong N-to-Ga π donation from the amido substituent is reflected in a very short N-Ga distance (1.961(2) Å), while the P⋅⋅⋅Ga contact (3.076(1) Å) is well outside the sum of the respective covalent radii. While the donor properties of the PON ligand towards GaI are highly unsymmetrical, oxidation to GaIII leads to much stronger coordination of the pendant phosphine as shown by P-Ga distances which are up to 20 % shorter. From a steric perspective, the PON ligand is shown to be significantly bulkier than related β-diketiminate systems, a finding consistent with reactions of (PON)Ga towards O-atom sources that proceed without oligomerization. Despite this, the enhanced P-donor properties brought about by oxidation at gallium are not sufficient to quench the reactivity of the highly polar Ga-O unit. Instead, intramolecular benzylic C-H activation is observed across the Ga-O bond of a transient gallanone intermediate.
Collapse
Affiliation(s)
- Xiongfei Zheng
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andreas Heilmann
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Caitilín McManus
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
45
|
Weyer N, Heinz M, Schweizer JI, Bruhn C, Holthausen MC, Siemeling U. A Stable N-Heterocyclic Silylene with a 1,1'-Ferrocenediyl Backbone. Angew Chem Int Ed Engl 2021; 60:2624-2628. [PMID: 33058389 PMCID: PMC7898919 DOI: 10.1002/anie.202011691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Indexed: 12/14/2022]
Abstract
The N-heterocyclic silylene [{Fe(η5 -C5 H4 -NDipp)2 }Si] (1DippSi, Dipp=2,6-diisopropylphenyl) shows an excellent combination of pronounced thermal stability and high reactivity towards small molecules. It reacts readily with CO2 and N2 O, respectively affording (1DippSiO2 )2 C and (1DippSiO)2 as follow-up products of the silanone 1DippSiO. Its reactions with H2 O, NH3 , and FcPH2 (Fc=ferrocenyl) furnish the respective oxidative addition products 1DippSi(H)X (X=OH, NH2 , PHFc). Its reaction with H3 BNH3 unexpectedly results in B-H, instead of N-H, bond activation, affording 1DippSi(H)(BH2 NH3 ). DFT results suggest that dramatically different mechanisms are operative for these H-X insertions.
Collapse
Affiliation(s)
- Nadine Weyer
- Institut für ChemieUniversität KasselHeinrich-Plett-Straße 4034132KasselGermany
| | - Myron Heinz
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Julia I. Schweizer
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Clemens Bruhn
- Institut für ChemieUniversität KasselHeinrich-Plett-Straße 4034132KasselGermany
| | - Max C. Holthausen
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Ulrich Siemeling
- Institut für ChemieUniversität KasselHeinrich-Plett-Straße 4034132KasselGermany
| |
Collapse
|
46
|
Weyer N, Heinz M, Schweizer JI, Bruhn C, Holthausen MC, Siemeling U. A Stable N‐Heterocyclic Silylene with a 1,1′‐Ferrocenediyl Backbone. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nadine Weyer
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Myron Heinz
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Julia I. Schweizer
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Clemens Bruhn
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Max C. Holthausen
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Ulrich Siemeling
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| |
Collapse
|
47
|
Protsak I, Gun’ko V, Morozov Y, Henderson IM, Zhang D, Yinjun Z, Turov V. Intermediates of tris(pentafluorophenyl)borane and dimethyl carbonate pave the way for deeper organosiloxane depolymerization reactions. Polym J 2021. [DOI: 10.1038/s41428-020-00452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Dolati H, Denker L, Trzaskowski B, Frank R. Superseding β‐Diketiminato Ligands: An Amido Imidazoline‐2‐Imine Ligand Stabilizes the Exhaustive Series of B=X Boranes (X=O, S, Se, Te). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hadi Dolati
- Institute of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Lars Denker
- Institute of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Bartosz Trzaskowski
- Centre of New Technologies University of Warsaw Banacha 2C 02-097 Warszawa Poland
| | - René Frank
- Institute of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
49
|
Omaña AA, Green RK, Kobayashi R, He Y, Antoniuk ER, Ferguson MJ, Zhou Y, Veinot JGC, Iwamoto T, Brown A, Rivard E. Frustrated Lewis Pair Chelation as a Vehicle for Low-Temperature Semiconductor Element and Polymer Deposition. Angew Chem Int Ed Engl 2021; 60:228-231. [PMID: 32960472 DOI: 10.1002/anie.202012218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 01/03/2023]
Abstract
The stabilization of silicon(II) and germanium(II) dihydrides by an intramolecular Frustrated Lewis Pair (FLP) ligand, PB, i Pr2 P(C6 H4 )BCy2 (Cy=cyclohexyl) is reported. The resulting hydride complexes [PB{SiH2 }] and [PB{GeH2 }] are indefinitely stable at room temperature, yet can deposit films of silicon and germanium, respectively, upon mild thermolysis in solution. Hallmarks of this work include: 1) the ability to recycle the FLP phosphine-borane ligand (PB) after element deposition, and 2) the single-source precursor [PB{SiH2 }] deposits Si films at a record low temperature from solution (110 °C). The dialkylsilicon(II) adduct [PB{SiMe2 }] was also prepared, and shown to release poly(dimethylsilane) [SiMe2 ]n upon heating. Overall, this study introduces a "closed loop" deposition strategy for semiconductors that steers materials science away from the use of harsh reagents or high temperatures.
Collapse
Affiliation(s)
- Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Rachel K Green
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Yingjie He
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Evan R Antoniuk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Alex Brown
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
50
|
Omaña AA, Green RK, Kobayashi R, He Y, Antoniuk ER, Ferguson MJ, Zhou Y, Veinot JGC, Iwamoto T, Brown A, Rivard E. Frustrated Lewis Pair Chelation as a Vehicle for Low‐Temperature Semiconductor Element and Polymer Deposition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alvaro A. Omaña
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Rachel K. Green
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Ryo Kobayashi
- Department of Chemistry Graduate School of Science Tohoku University, Aoba-ku Sendai 980-8578 Japan
| | - Yingjie He
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Evan R. Antoniuk
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Ferguson
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Yuqiao Zhou
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Jonathan G. C. Veinot
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Takeaki Iwamoto
- Department of Chemistry Graduate School of Science Tohoku University, Aoba-ku Sendai 980-8578 Japan
| | - Alex Brown
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Eric Rivard
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|