1
|
Dettmann D, Panighel M, Preetha Genesh N, Galeotti G, MacLean O, Farnesi Camellone M, Johal TK, Fabris S, Africh C, Perepichka DF, Rosei F, Contini G. Real-Time Imaging of On-Surface Ullmann Polymerization Reveals an Inhibiting Effect of Adatoms. J Am Chem Soc 2024; 146:24493-24502. [PMID: 39166403 DOI: 10.1021/jacs.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Ullmann coupling is a widely used reaction for the on-surface growth of low-dimensional carbon nanomaterials. The irreversible nature of this reaction prevents the "self-healing" of defects, and a detailed knowledge of its mechanism is therefore essential to enable the growth of extended ordered structures. However, the dynamics of the Ullmann polymerization remain largely unexplored, as coupling events occur on a timescale faster than conventional scanning probe microscopy imaging frequencies. Here, we reveal the dynamics of these surface events using high-speed variable-temperature scanning tunneling microscopy (STM) (10 frames per second). Performing the measurements at the onset reaction temperatures provides an unprecedented description of the evolution of organometallic (OM) and covalent surface species during the Ullmann polymerization of para-dibromobenzene on Cu(110). Our results demonstrate the existence of an intermediate OM phase with Cu adatoms that inhibits the polymerization. These observations now complete the picture of the pathways of on-surface Ullmann polymerization, which includes the complex interplay of the phenylene moieties and metal atoms. Our work demonstrates the unique capability of high-speed STM to capture the dynamics of molecular self-assembly and coupling.
Collapse
Affiliation(s)
- Dominik Dettmann
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Mirco Panighel
- CNR-IOM, Laboratorio, TASC, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| | - Navathej Preetha Genesh
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
| | - Gianluca Galeotti
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
| | - Oliver MacLean
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 130103 Changchun, P. R. China
| | - Matteo Farnesi Camellone
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), C/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Tarnjit Kaur Johal
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
| | - Stefano Fabris
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), C/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Cristina Africh
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), C/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, H3A 0B8 Québec, Canada
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Giorgio Contini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Roma, Italy
- Department of Physics, University Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| |
Collapse
|
2
|
Mallada B, Villalobos F, Donoso B, Casares R, Longhi G, Mendieta-Moreno JI, Jiménez-Martín A, Haïdour A, Seepersaud R, Rajagopal L, de la Torre B, Millán A, Cuerva JM. Single-Molecule Identification of the Isomers of a Lipidic Antibody Activator. J Phys Chem Lett 2024; 15:6935-6942. [PMID: 38935930 PMCID: PMC11247479 DOI: 10.1021/acs.jpclett.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
Molecular structural elucidation can be accomplished by different techniques, such as nuclear magnetic resonance or X-ray diffraction. However, the former does not give information about the three-dimensional atomic arrangement, and the latter needs crystallizable solid samples. An alternative is direct, real-space visualization of the molecules by cryogenic scanning tunneling microscopy (STM). This technique is usually limited to thermally robust molecules because an annealing step is required for sample deposition. A landmark development has been the coupling of STM with electrospray deposition (ESD), which smooths the process and widens the scope of the visualization technique. In this work, we present the on-surface characterization of air-, light-, and temperature-sensitive rhamnopolyene with relevance in molecular biology. Supported by theoretical calculations, we characterize two isomers of this flexible molecule, confirming the potential of the technique to inspect labile, non-crystallizable compounds.
Collapse
Affiliation(s)
- Benjamin Mallada
- Institute
of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
| | - Federico Villalobos
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Beatriz Donoso
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Raquel Casares
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Giovanna Longhi
- Dipartimento
di Medicina Molecolare e Traslazionale, Universitá di Brescia, Viale Europa 11, 25121 Brescia, Italy
| | - Jesús I. Mendieta-Moreno
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Alejandro Jiménez-Martín
- Institute
of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech
Republic
| | - Ali Haïdour
- Unidad
de Resonancia Magnética Nuclear, Centro de Instrumentación
Científica, Universidad de Granada, Paseo Juan Osorio s/n, 18071 Granada, Spain
| | - Ravin Seepersaud
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Lakshmi Rajagopal
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98105, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98105, United States
| | - Bruno de la Torre
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
| | - Alba Millán
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Juan M. Cuerva
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Zhong Q, Jung J, Kohrs D, Kaczmarek LA, Ebeling D, Mollenhauer D, Wegner HA, Schirmeisen A. Deciphering the Mechanism of On-Surface Dehydrogenative C-C Coupling Reactions. J Am Chem Soc 2024; 146:1849-1859. [PMID: 38226612 DOI: 10.1021/jacs.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
On-surface synthesis has proven to be a powerful approach for fabricating various low-dimensional covalent nanostructures with atomic precision that could be challenging for conventional solution chemistry. Dehydrogenative Caryl-Caryl coupling is one of the most popular on-surface reactions, of which the mechanisms, however, have not been well understood due to the lack of microscopic insights into the intermediates that are fleetingly existing under harsh reaction conditions. Here, we bypass the most energy-demanding initiation step to generate and capture some of the intermediates at room temperature (RT) via the cyclodehydrobromination of 1-bromo-8-phenylnaphthalene on a Cu(111) surface. Bond-level scanning probe imaging and manipulation in combination with DFT calculations allow for the identification of chemisorbed radicals, cyclized intermediates, and dehydrogenated products. These intermediates correspond to three main reaction steps, namely, debromination, cyclization (radical addition), and H elimination. H elimination is the rate-determining step as evidenced by the predominant cyclized intermediates. Furthermore, we reveal a long-overlooked pathway of dehydrogenation, namely, atomic hydrogen-catalyzed H shift and elimination, based on the observation of intermediates for H shift and superhydrogenation and the proof of a self-amplifying effect of the reaction. This pathway is further corroborated by comprehensive theoretical analysis on the reaction thermodynamics and kinetics.
Collapse
Affiliation(s)
- Qigang Zhong
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Jannis Jung
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Daniel Kohrs
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - L Alix Kaczmarek
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Daniel Ebeling
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
| | - Doreen Mollenhauer
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Hermann A Wegner
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - André Schirmeisen
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
4
|
Lipton-Duffin J, MacLeod J. Innovations in nanosynthesis: emerging techniques for precision, scalability, and spatial control in reactions of organic molecules on solid surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:183001. [PMID: 36876935 DOI: 10.1088/1361-648x/acbc01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The surface science-based approach to synthesising new organic materials on surfaces has gained considerable attention in recent years, owing to its success in facilitating the formation of novel 0D, 1D and 2D architectures. The primary mechanism used to date has been the catalytic transformation of small organic molecules through substrate-enabled reactions. In this Topical Review, we provide an overview of alternate approaches to controlling molecular reactions on surfaces. These approaches include light, electron and ion-initiated reactions, electrospray ionisation deposition-based techniques, collisions of neutral atoms and molecules, and superhydrogenation. We focus on the opportunities afforded by these alternative approaches, in particular where they may offer advantages in terms of selectivity, spatial control or scalability.
Collapse
Affiliation(s)
- Josh Lipton-Duffin
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT), Brisbane, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
5
|
Sloan PA, Rusimova KR. A self-consistent model to link surface electronic band structure to the voltage dependence of hot electron induced molecular nanoprobe experiments. NANOSCALE ADVANCES 2022; 4:4880-4885. [PMID: 36381505 PMCID: PMC9642357 DOI: 10.1039/d2na00644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Understanding the ultra-fast transport properties of hot charge carriers is of significant importance both fundamentally and technically in applications like solar cells and transistors. However, direct measurement of charge transport at the relevant nanometre length scales is challenging with only a few experimental methods demonstrated to date. Here we report on molecular nanoprobe experiments on the Si(111)-7 × 7 at room temperature where charge injected from the tip of a scanning tunnelling microscope (STM) travels laterally across a surface and induces single adsorbate toluene molecules to react over length scales of tens of nanometres. A simple model is developed for the fraction of the tunnelling current captured into each of the surface electronic bands with input from only high-resolution scanning tunnelling spectroscopy (STS) of the clean Si(111)-7 × 7 surface. This model is quantitatively linked to the voltage dependence of the molecular nanoprobe experiments through a single manipulation probability (i.e. fitting parameter) per state. This model fits the measured data and gives explanation to the measured voltage onsets, exponential increase in the measured manipulation probabilities and plateau at higher voltages. It also confirms an ultrafast relaxation to the bottom of a surface band for the injected charge after injection, but before the nonlocal spread across the surface.
Collapse
Affiliation(s)
- Peter A Sloan
- Department of Physics, University of Bath Bath BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath Bath BA2 7AY UK
| | - Kristina R Rusimova
- Department of Physics, University of Bath Bath BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath Bath BA2 7AY UK
- Centre for Photonics and Photonic Materials, University of Bath Bath BA2 7AY UK
| |
Collapse
|
6
|
Abstract
Two-dimensional (2D) polymers have garnered widespread interest because of their intriguing physicochemical properties. Envisaged applications in fields including nanodevices, solid-state chemistry, physical organic chemistry, and condensed matter physics, however, demand high-quality and large-scale production. In this perspective, we first introduce exotic band structures of organic frameworks holding honeycomb, kagome, and Lieb lattices. We further discuss how mesoscale ordered 2D polymers can be synthesized by means of choosing suitable monomers and optimizing growth conditions. We describe successful polymerization strategies to introducing a non-benzenoid subunit into a π-conjugated carbon lattice via delicately designed monomer precursors. Also, to obviate transfer and restore the intrinsic properties of π-conjugated polymers, new paradigms of aryl-aryl coupling on inert surfaces are discussed. Recent achievements in the photopolymerization demonstrate the need for monomer design. We conclude the potential applications of these organic networks and project the future possibilities in providing new insights into on-surface polymerization.
Collapse
Affiliation(s)
- Tianchao Niu
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Chenqiang Hua
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Miao Zhou
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
- School of Physics, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
7
|
Chen H, Jiang F, Hu C, Jiao Y, Chen S, Qiu Y, Zhou P, Zhang L, Cai K, Song B, Chen XY, Zhao X, Wasielewski MR, Guo H, Hong W, Stoddart JF. Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. J Am Chem Soc 2021; 143:8476-8487. [PMID: 34043344 DOI: 10.1021/jacs.1c03141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigating how electrons propagate through a single molecule is one of the missions of molecular electronics. Electrons, however, are also efficient catalysts for conducting radical reactions, a property that is often overlooked by chemists. Special attention should be paid to electron catalysis when interpreting single-molecule conductance results for the simple reason that an unexpected reaction mediated or triggered by electrons might take place in the single-molecule junction. Here, we describe a counterintuitive structure-property relationship that molecules, both linear and cyclic, employing a saturated bipyridinium-ethane backbone, display a similar conductance signature when compared to junctions formed with molecules containing conjugated bipyridinium-ethene backbones. We describe an ethane-to-ethene transformation, which proceeds in the single-molecule junction by an electron-catalyzed dehydrogenation. Electrochemically based ensemble experiments and theoretical calculations have revealed that the electrons trigger the redox process, and the electric field promotes the dehydrogenation. This finding not only demonstrates the importance of electron catalysis when interpreting experimental results, but also charts a pathway to gaining more insight into the mechanism of electrocatalytic hydrogen production at the single-molecule level.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Feng Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Hu
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Su Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hong Guo
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
8
|
Albrecht F, Rey D, Fatayer S, Schulz F, Pérez D, Peña D, Gross L. Intramolecular Coupling of Terminal Alkynes by Atom Manipulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Dulce Rey
- Centro de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | | | | | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Leo Gross
- IBM Research–Zurich 8803 Rüschlikon Switzerland
| |
Collapse
|
9
|
Albrecht F, Rey D, Fatayer S, Schulz F, Pérez D, Peña D, Gross L. Intramolecular Coupling of Terminal Alkynes by Atom Manipulation. Angew Chem Int Ed Engl 2020; 59:22989-22993. [PMID: 32845044 PMCID: PMC7756451 DOI: 10.1002/anie.202009200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Glaser-like coupling of terminal alkynes by thermal activation is extensively used in on-surface chemistry. Here we demonstrate an intramolecular version of this reaction performed by atom manipulation. We used voltage pulses from the tip to trigger a Glaser-like coupling between terminal alkyne carbons within a custom-synthesized precursor molecule adsorbed on bilayer NaCl on Cu(111). Different conformations of the precursor molecule and the product were characterized by molecular structure elucidation with atomic force microscopy and orbital density mapping with scanning tunneling microscopy, accompanied by density functional theory calculations. We revealed partially dehydrogenated intermediates, providing insight into the reaction pathway.
Collapse
Affiliation(s)
| | - Dulce Rey
- Centro de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| | | | | | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| | - Leo Gross
- IBM Research–Zurich8803RüschlikonSwitzerland
| |
Collapse
|
10
|
Kunitake M, Uemura S. Construction and Scanning Probe Microscopy Imaging of Two-dimensional Nanomaterials. CHEM LETT 2020. [DOI: 10.1246/cl.200080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masashi Kunitake
- Faculty of Advanced Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinobu Uemura
- Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| |
Collapse
|