1
|
Hu Y, Ribbe MW. NifEN: a versatile player in nitrogenase assembly, catalysis and evolution. J Biol Inorg Chem 2025; 30:135-149. [PMID: 39663240 DOI: 10.1007/s00775-024-02086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
The Mo-nitrogenase catalyzes the reduction of N2 to NH3 at the cofactor of its catalytic NifDK component. NifEN shares considerable homology with NifDK in primary sequence, tertiary structure and associated metallocenters. Better known for its biosynthetic function to convert an all-iron precursor (L-cluster; [Fe8S9C]) to a mature cofactor (M-cluster; [(R-homocitrate) MoFe7S9C]), NifEN also mimics NifDK in catalyzing substrate reduction at ambient conditions. The recently discovered ability of NifEN to reduce N2 to NH3 is particularly interesting, as it points to NifEN as a plausible, prototype ancient nitrogenase during evolution. Moreover, the dual function of NifEN in assembly and catalysis makes it a great template to reconstruct the functional variants or equivalents of NifDK, which could facilitate the mechanistic investigation and heterologous synthesis of nitrogenase. This perspective provides an overview of our recent studies of NifEN, with a focus on the implications of its functional versatility for nitrogenase assembly, catalysis and evolution.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
2
|
Ni X, Liu Y, Sun M, Jiang Y, Wang Y, Ke D, Guo G, Liu K. Oral Live-Carrier Vaccine of Recombinant Lactococcus lactis Inducing Prophylactic Protective Immunity Against Helicobacter pylori Infection. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10360-x. [PMID: 39251521 DOI: 10.1007/s12602-024-10360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Helicobacter pylori infects the gastric mucosa and induces chronic gastritis, peptic ulcers, and gastric cancer. Research has demonstrated that vaccination can induce a protective immune response and prevent H. pylori infection. Oral administration of the Lactococcus lactis live-carrier vaccine is safe and easily complied with by the public. In this study, two recombinant L. lactis strains were constructed that expressed antigens of H. pylori urease subunit alpha (UreA) and UreA fused with Escherichia coli heat-labile toxin B subunit (LTB-UreA), named LL-UreA and LL-LTB-UreA, respectively. The expression of antigen proteins was confirmed by Western blotting analysis. Survival assessment indicated that the engineered L. lactis could colonize in the digestive tract of BALB/c mice up to 10 days after the last oral administration with our immunization protocol. The ability to induce immune response and immune protective efficacy of the L. lactis were confirmed. These results indicated that oral administration with LL-UreA or LL-LTB-UreA could induce UreA-specific mucosal secretory IgA (sIgA) and cellular immune response, significantly increasing the cytokines levels of interferon-gamma (IFN-γ), interleukin (IL)-17A, and IL-10, together with the proportion of CD4+IFN-γ+ T cells and CD4+IL17A+ T cells. More importantly, oral administration of LL-UreA and LL-LTB-UreA brought about effective protection in mice to prevent H. pylori infection, especially LL-UreA, resulting in 70% of mice showing no H. pylori colonization and the remaining 30% showing only low levels of colonization. These findings underscore the potential of using orally administered engineered L. lactis vaccines to prevent H. pylori infection.
Collapse
Affiliation(s)
- Xiumei Ni
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yu Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Min Sun
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yajun Jiang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yi Wang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Dingxin Ke
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Gang Guo
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China.
| | - Kaiyun Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
3
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
4
|
Ribbe MW, Górecki K, Grosch M, Solomon JB, Quechol R, Liu YA, Lee CC, Hu Y. Nitrogenase Fe Protein: A Multi-Tasking Player in Substrate Reduction and Metallocluster Assembly. Molecules 2022; 27:molecules27196743. [PMID: 36235278 PMCID: PMC9571451 DOI: 10.3390/molecules27196743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
The Fe protein of nitrogenase plays multiple roles in substrate reduction and metallocluster assembly. Best known for its function to transfer electrons to its catalytic partner during nitrogenase catalysis, the Fe protein is also a key player in the biosynthesis of the complex metalloclusters of nitrogenase. In addition, it can function as a reductase on its own and affect the ambient reduction of CO2 or CO to hydrocarbons. This review will provide an overview of the properties and functions of the Fe protein, highlighting the relevance of this unique FeS enzyme to areas related to the catalysis, biosynthesis, and applications of the fascinating nitrogenase system.
Collapse
Affiliation(s)
- Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
- Correspondence: (M.W.R.); (Y.H.)
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Correspondence: (M.W.R.); (Y.H.)
| |
Collapse
|
5
|
Liu YA, Quechol R, Solomon JB, Lee CC, Ribbe MW, Hu Y, Hedman B, Hodgson KO. Radical SAM-dependent formation of a nitrogenase cofactor core on NifB. J Inorg Biochem 2022; 233:111837. [PMID: 35550498 PMCID: PMC9526504 DOI: 10.1016/j.jinorgbio.2022.111837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022]
Abstract
Nitrogenase is a versatile metalloenzyme that reduces N2, CO and CO2 at its cofactor site. Designated the M-cluster, this complex cofactor has a composition of [(R-homocitrate)MoFe7S9C], and it is assembled through the generation of a unique [Fe8S9C] core prior to the insertion of Mo and homocitrate. NifB is a radical S-adenosyl-L-methionine (SAM) enzyme that is essential for nitrogenase cofactor assembly. This review focuses on the recent work that sheds light on the role of NifB in the formation of the [Fe8S9C] core of the nitrogenase cofactor, highlighting the structure, function and mechanism of this unique radical SAM methyltransferase.
Collapse
Affiliation(s)
- Yiling A Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Joseph B Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America; Department of Chemistry, University of California, Irvine, CA 92697-2025, United States of America
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America; Department of Chemistry, University of California, Irvine, CA 92697-2025, United States of America.
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America.
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States of America.
| | - Keith O Hodgson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States of America; Department of Chemistry, Stanford University, Stanford, CA 94305, United States of America.
| |
Collapse
|
6
|
Garcia AK, Kolaczkowski B, Kaçar B. Reconstruction of nitrogenase predecessors suggests origin from maturase-like proteins. Genome Biol Evol 2022; 14:6531971. [PMID: 35179578 PMCID: PMC8890362 DOI: 10.1093/gbe/evac031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
The evolution of biological nitrogen fixation, uniquely catalyzed by nitrogenase enzymes, has been one of the most consequential biogeochemical innovations over life’s history. Though understanding the early evolution of nitrogen fixation has been a longstanding goal from molecular, biogeochemical, and planetary perspectives, its origins remain enigmatic. In this study, we reconstructed the evolutionary histories of nitrogenases, as well as homologous maturase proteins that participate in the assembly of the nitrogenase active-site cofactor but are not able to fix nitrogen. We combined phylogenetic and ancestral sequence inference with an analysis of predicted functionally divergent sites between nitrogenases and maturases to infer the nitrogen-fixing capabilities of their shared ancestors. Our results provide phylogenetic constraints to the emergence of nitrogen fixation and are consistent with a model wherein nitrogenases emerged from maturase-like predecessors. Though the precise functional role of such a predecessor protein remains speculative, our results highlight evolutionary contingency as a significant factor shaping the evolution of a biogeochemically essential enzyme.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Bacteriology, University of Wisconsin - Madison, USA
| | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin - Madison, USA
| |
Collapse
|
7
|
Advances in microbial production of feed amino acid. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:1-33. [DOI: 10.1016/bs.aambs.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Carruthers BM, Garcia AK, Rivier A, Kacar B. Automated Laboratory Growth Assessment and Maintenance of Azotobacter vinelandii. Curr Protoc 2021; 1:e57. [PMID: 33656286 DOI: 10.1002/cpz1.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Azotobacter vinelandii (A. vinelandii) is a commonly used model organism for the study of aerobic respiration, the bacterial production of several industrially relevant compounds, and, perhaps most significantly, the genetics and biochemistry of biological nitrogen fixation. Laboratory growth assessments of A. vinelandii are useful for evaluating the impact of environmental and genetic modifications on physiological properties, including diazotrophy. However, researchers typically rely on manual growth methods that are oftentimes laborious and inefficient. We present a protocol for the automated growth assessment of A. vinelandii on a microplate reader, particularly well-suited for studies of diazotrophic growth. We discuss common pitfalls and strategies for protocol optimization, and demonstrate the protocol's application toward growth evaluation of strains carrying modifications to nitrogen-fixation genes. © 2021 The Authors. Basic Protocol 1: Preparation of A. vinelandii plate cultures from frozen stock Basic Protocol 2: Preparation of A. vinelandii liquid precultures Basic Protocol 3: Automated growth rate experiment of A. vinelandii on a microplate reader.
Collapse
Affiliation(s)
- Brooke M Carruthers
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Amanda K Garcia
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Alex Rivier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona.,Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona
| |
Collapse
|
9
|
Goyal RK, Schmidt MA, Hynes MF. Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals. Microorganisms 2021; 9:microorganisms9010125. [PMID: 33430332 PMCID: PMC7825764 DOI: 10.3390/microorganisms9010125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Correspondence:
| | - Maria Augusta Schmidt
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|