1
|
Zhao D, Gao B, An G, Xu S, Tian Q, Xu Q. Copper Intercalation Induces Amorphization of 2D Cu/WO 3 for Room-Temperature Ferromagnetism. Angew Chem Int Ed Engl 2024; 63:e202412811. [PMID: 39073271 DOI: 10.1002/anie.202412811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Ferromagnetism in the two-dimensional limit has become an intriguing topic for exploring new physical phenomena and potential applications. To induce ferromagnetism in 2D materials, intercalation has been proposed to be an effective strategy, which could introduce lattice distortion and unpaired spin into the material to modulate the magnetocrystalline anisotropy and magnetic exchange interactions. To strengthen the understanding of the magnetic origin of 2D material, Cu was introduced into a 2D WO3 through chemical intercalation in this work (2D Cu/WO3). In contrast to the diamagnetic nature of Cu and WO3, room-temperature ferromagnetism was characterized for 2D Cu/WO3. Experimental and theoretical results attribute the ferromagnetism to the bound magnetic polaron in 2D Cu/WO3, which is consist of unpaired spins from W5+/W4+ with localized carriers from oxygen vacancies. Overall, this work provides a novel approach to introduce ferromagnetism into diamagnetic WO3, which could be applied for a wider scope of 2D materials.
Collapse
Affiliation(s)
- Duanduan Zhao
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Guangyu An
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Song Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Qingyong Tian
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Qun Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Interfacial behavior and emulsion stability of lipid delivery system regulated by two-dimensional facial amphiphiles bile salts. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Sun T, Su Y, Song H, Lv Y. New advanced oxidation progress with chemiluminescence behavior based on NaClO triggered by WS 2 nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128329. [PMID: 35101764 DOI: 10.1016/j.jhazmat.2022.128329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
As one integral part of coping strategies for addressing water pollution, advanced oxidation progresses (AOPs) get enormous attentions in recent years. However, the complex synthesis and high cost of H2O2 and K2S2O8 hampered their developments. Herein, a novel AOP with the chemiluminescence (CL) property based on economic NaClO and WS2 nanosheets was proposed to achieve efficient decomposition of organic pollutants. In this AOP, WS2 nanosheets exhibited a dual-function feature of the catalyst and energy acceptor. It demonstrated that the reaction order of WS2 nanosheets was equal to 0.8271 and enormous singlet oxygen (1O2),·ClO and hydroxyl radical (·OH) were generated in rhodamine B (RhB) degradation process. Interestingly, a strong CL emission was observed and reflected the relative concentration of 1O2 and·OH for adjusting the oxidizing capability in WS2 nanosheets-NaClO system. Through a series of degradation tests, RhB, methylene blue (MB), p-nitrophenol and phenol were decomposed and the degradation efficiency of over 90% was achieved. Therefore, this study not only builds a chemiluminescent AOPs to eliminate organic pollutants, but also broadens the applications of WS2 nanomaterials and CL in environmental field.
Collapse
Affiliation(s)
- Tong Sun
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Karger L, Synnatschke K, Settele S, Hofstetter YJ, Nowack T, Zaumseil J, Vaynzof Y, Backes C. The Role of Additives in Suppressing the Degradation of Liquid-Exfoliated WS 2 Monolayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102883. [PMID: 34477255 PMCID: PMC11469120 DOI: 10.1002/adma.202102883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Group VI transition metal dichalcogenides (TMDs) are considered to be chemically widely inert, but recent reports point toward an oxidation of monolayered sheets in ambient conditions, due to defects. To date, the degradation of monolayered TMDs is only studied on individual, substrate-supported nanosheets with varying defect type and concentration, strain, and in an inhomogeneous environment. Here, degradation kinetics of WS2 nanosheet ensembles in the liquid phase are investigated through photoluminescence measurements, which selectively probe the monolayers. Monolayer-enriched WS2 dispersions are produced with varying lateral sizes in the two common surfactant stabilizers sodium cholate (SC) and sodium dodecyl sulfate (SDS). Well-defined degradation kinetics are observed, which enable the determination of activation energies of the degradation and decouple photoinduced and thermal degradation. The thermal degradation is slower than the photoinduced degradation and requires higher activation energy. Using SC as surfactant, it is sufficiently suppressed. The photoinduced degradation can be widely prevented through chemical passivation achieved through the addition of cysteine which, on the one hand, coordinates to defects on the nanosheets and, on the other hand, stabilizes oxides on the surface, which shield the nanosheets from further degradation.
Collapse
Affiliation(s)
- Leonhard Karger
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Kevin Synnatschke
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Simon Settele
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Yvonne J. Hofstetter
- Integrated Center for Applied Photophysics and Photonic MaterialsTU DresdenNöthnitzer Straße 6101187DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)TU DresdenHelmhotzstraße 1801069DresdenGermany
| | - Tim Nowack
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Jana Zaumseil
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Yana Vaynzof
- Integrated Center for Applied Photophysics and Photonic MaterialsTU DresdenNöthnitzer Straße 6101187DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)TU DresdenHelmhotzstraße 1801069DresdenGermany
| | - Claudia Backes
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| |
Collapse
|
5
|
Hu CX, Shin Y, Read O, Casiraghi C. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. NANOSCALE 2021; 13:460-484. [PMID: 33404043 DOI: 10.1039/d0nr05514j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The extensive research on liquid-phase exfoliation (LPE) performed in the last 10 years has enabled a low cost and mass scalable approach to the successful production of a range of solution-processed 2-dimensional (2D) materials suitable for many applications, from composites to energy storage and printed electronics. However, direct LPE requires the use of specific solvents, which are typically toxic and expensive. Dispersant-assisted LPE allows us to overcome this problem by enabling production of solution processed 2D materials in a wider range of solvents, including water. This approach is based on the inclusion of an additive, typically an amphiphilic molecule, designed to interact with both the nanosheet and the solvent, enabling exfoliation and stabilization at the same time. This method has been extensively used for the LPE of graphene and has been discussed in many reviews, whilst little attention has been given to dispersant-assisted LPE of 2D materials beyond graphene. Considering the increasing number of 2D materials and their potential in many applications, from nanomedicine to energy storage and catalysis, this review focuses on the dispersant-assisted LPE of transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN) and less studied 2D materials. We first provide an introduction to the fundamentals of LPE and the type of dispersants that have been used for the production of graphene, we then discuss each class of 2D material, providing an overview on the concentration and properties of the nanosheets obtained. Finally, a perspective is given on some of the challenges that need to be addressed in this field of research.
Collapse
Affiliation(s)
- Chen-Xia Hu
- Department of Chemistry, University of Manchester, M139PL, Manchester, UK.
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, M139PL, Manchester, UK.
| | - Oliver Read
- Department of Chemistry, University of Manchester, M139PL, Manchester, UK.
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, M139PL, Manchester, UK.
| |
Collapse
|
6
|
Grieger S, Szydłowska BM, Rao VJ, Steinmann E, Dodds M, Gholamvand Z, Duesberg GS, Zaumseil J, Backes C. Site-Selective Oxidation of Monolayered Liquid-Exfoliated WS 2 by Shielding the Basal Plane through Adsorption of a Facial Amphiphile. Angew Chem Int Ed Engl 2020; 59:13785-13792. [PMID: 32449582 PMCID: PMC7496821 DOI: 10.1002/anie.202005730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/31/2022]
Abstract
In recent years, various functionalization strategies for transition‐metal dichalcogenides have been explored to tailor the properties of materials and to provide anchor points for the fabrication of hybrid structures. Herein, new insights into the role of the surfactant in functionalization reactions are described. Using the spontaneous reaction of WS2 with chloroauric acid as a model reaction, the regioselective formation of gold nanoparticles on WS2 is shown to be heavily dependent on the surfactant employed. A simple model is developed to explain the role of the chosen surfactant in this heterogeneous functionalization reaction. The surfactant coverage is identified as the crucial element that governs the dominant reaction pathway and therefore can severely alter the reaction outcome. This study shows the general importance of the surfactant choice and how detrimental or beneficial a certain surfactant can be to the desired functionalization.
Collapse
Affiliation(s)
- Sebastian Grieger
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Beata M Szydłowska
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.,Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
| | - Vaishnavi J Rao
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Eva Steinmann
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Marcus Dodds
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Zahra Gholamvand
- School of Physics and CRANN & AMBER Research Centres, Trinity College Dublin, Dublin, 2, Ireland
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Claudia Backes
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| |
Collapse
|