1
|
Wagner FR. Delocalization-ratio analysis of 3-center bonding in position-space for closo-boranes and related systems: Approaching the styx picture and beyond. J Comput Chem 2024; 45:2862-2877. [PMID: 39211997 DOI: 10.1002/jcc.27486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Closo-boron hydrides BnHn 2- (n = 5-12) are a conceptually well understood class of compounds. For these and a few related prototype compounds, both the local and the global picture of 3-center bonding are extracted from position-space quantities based on the electron density and the pair density. For this purpose, three-center delocalization indices between quantum theory of atoms in molecules (QTAIM) atoms in position space are used to develop a consistent set of local bond and triangle, and global cluster delocalization ratios (DRs), which are quantitatively compared with conceptual Γ values derived from the styx code for each cluster. Combination of the cluster DRs with associated effective numbers of skeletal electron sharing (SES) for selected cluster surface edges, triangles, or the whole cluster yields effective styx type values describing the trend and even the size of the conceptual styx codes for closo-boranes BnHn 2- and related systems with increasing cluster size n reasonably well. For nonuniform cluster topologies, the different vertex degrees are shown to cause systematic 3-center wise bond delocalization effects for the associated edges and triangles of different average vertex degrees. Extension of DR analysis beyond the styx type triangular cluster-surface bonding corresponds to a triangulation of multicentric bonding. The cluster-wise results keep indicating consistency with the mixed 2- and 3-center bonding approach. The successfully established chemical meaning of the local edge, triangle, and global cluster DRs and their associated SES values constitutes the basis for systematic investigations of mixed 2- and 3-center bonding scenarios in particular in intermetallic and related (endohedral) cluster compounds in the future.
Collapse
Affiliation(s)
- Frank R Wagner
- Chemical Metals Science, Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| |
Collapse
|
2
|
Badri Z, Foroutan-Nejad C. On the aromaticity of actinide compounds. Nat Rev Chem 2024; 8:551-560. [PMID: 38907002 DOI: 10.1038/s41570-024-00617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/23/2024]
Abstract
The chemistry of actinides has flourished since the late 2010s with the synthesis of new actinide complexes and clusters. On the theoretical side, a range of tools is available for the characterization of these heavy element-containing compounds, but discrepancies in the assessment of aromaticity using different tools have led to controversies. In this Perspective, we examine the origin of controversies relating to the aromaticity of metallic compounds, with a focus on actinides. The aromaticity of actinides is important, not because these molecules are numerous or have a special role in catalysis or reactivity, but because this topic pushes theories of aromaticity to their limits. Owing to its reference independence, the magnetic criterion of aromaticity has been the most popular choice for the characterization of the aromaticity of metallic compounds, including actinide compounds. Through examination of several case studies, we show why this criterion might be misleading for metallic species and explain how findings relating to actinide compounds could reshape theories of aromaticity, not just for actinides but perhaps also for well-known hydrocarbons.
Collapse
Affiliation(s)
- Zahra Badri
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
3
|
Badri Z, Foroutan-Nejad C. Classical versus Collective Interactions in Asymmetric Trigonal Bipyramidal Alkaline Metal-Boron Halide Complexes. Chemistry 2024; 30:e202400156. [PMID: 38642012 DOI: 10.1002/chem.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Collective interactions are a novel type of chemical bond formed between metals and electron-rich substituents around an electron-poor central atom. So far only a limited number of candidates for having collective interactions are reported. In this work, we extend the newly introduced concept of collective bonding to a series of neutral boron complexes with the general formula M2BX3 (M=Li, Na, and K; X=F, Cl, and Br). Our state-of-the-art ab initio computations suggest that these complexes form trigonal bipyramidal structures with a D3h to C3v distortion along the C3 axis of symmetry. The BX3 unit in the complexes distorts from planar to pyramidal akin to a sp3 hybridized atom. Interestingly, the interaction of the metals with the pyramidal side of BX3, where the lone pair in a hypothetical [BX3]2- should be located, is weaker than the interactions of metals with the inverted side, i. e., the middle of three halogen atoms. The origin of this stronger interaction can be explained by the formation of collective interactions between metals and halogen atoms as we explored via energy decomposition within the context of the theory of interacting quantum atoms, IQA.
Collapse
Affiliation(s)
- Zahra Badri
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
4
|
Pino-Rios R, Báez-Grez R, Foroutan-Nejad C. Anti-electrostatic cation⋯π-hole and cation⋯lp-hole interactions are stabilized via collective interactions. Chem Commun (Camb) 2024; 60:400-403. [PMID: 38079184 DOI: 10.1039/d3cc05451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Collective interactions are a novel type of bond between metals and AX3 fragments with an electropositive central atom, A, and electronegative X substituents. Here, using electrostatic potential maps and state-of-the-art bonding analysis tools we have shown that collective interactions are anti-electrostatic cation⋯π-Hole or cation⋯lp-Hole interactions.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat., Casilla 121, Iquique 1100000, Chile.
- Instituto de Estudios de la Salud, Universidad Arturo Prat, Iquique, 1100000, Chile
| | - Rodrigo Báez-Grez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago 8370146, Chile
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
5
|
Šadek V, Sowlati-Hashjin S, Sadjadi S, Karttunen M, Martín-Pendás A, Foroutan-Nejad C. Reply to: On the existence of collective interactions reinforcing the metal-ligand bond in organometallic compounds. Nat Commun 2023; 14:3873. [PMID: 37400455 DOI: 10.1038/s41467-023-39504-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Affiliation(s)
- Vojtech Šadek
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - SeyedAbdolreza Sadjadi
- Faculty of Science, Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, N6A 3K7, London, Ontario, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON, N6K 3K7, Canada
| | - Angel Martín-Pendás
- Departamento de Química Física y Analítica, University of Oviedo, 33006, Oviedo, Spain.
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
6
|
Li D, Cheng L. Stabilizing hydrogen-mediated sextuple bonds by quintuple superatomic bonding and a bond. NANOSCALE 2023. [PMID: 37183662 DOI: 10.1039/d3nr00188a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Multiple bond orders of four and five are frequently obtained for d-block elements. However, compounds with sextuple bonding (2σ, 2π, and 2δ), for instance, Cr2, Mo2 and W2, are less stable and trapped only in the gas phase or inert matrices, probably resulting from large repulsion of two σ-type (σs and ) orbitals within the same zone. Herein, a superatomic bonding model is proposed to describe experimentally synthesized bridging hydride compounds. We theoretically predicted four unprecedented quintuple bridging hydride species with large EHL values, among which [(Cp)2Sc2(μ-H)5]- and [(Cp)2Mn2(μ-H)5]- (Cp = cyclopentadienyl) contain quintuple superatomic bonding (σ, 2π, and 2δ). In particular, two other species, [(Cp)2Ti2(μ-H)5]- and [(Cp)2V2(μ-H)5]+, were found to feature stable hydrogen-mediated sextuple bonding comprising a quintuple superatomic delocalized bond and an extra localized bond. Thereinto, the superatomic σs bond disperses to the outer space for better overlap with the orbitals of bridging H atoms, thus leaving the inner regions with low electron densities and providing adequate space for the bond. These two quintuple bridging hydride compounds are verified to have thermal stability by molecular dynamics simulations and expected to provide an effective strategy to synthesize molecules with stable hydrogen-mediated sextuple bonding under normal experimental conditions.
Collapse
Affiliation(s)
- Dan Li
- Department of Chemistry, Anhui University, Hefei, 230601, China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, China.
| |
Collapse
|
7
|
Searching for Systems with Planar Hexacoordinate Carbons. ATOMS 2023. [DOI: 10.3390/atoms11030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Here, we present evidence that the D2h M2C50/2+ (M = Li-K, Be-Ca, Al-In, and Zn) species comprises planar hexacoordinate carbon (phC) structures that exhibit four covalent and two electrostatic interactions. These findings have been made possible using evolutionary methods for exploring the potential energy surface (AUTOMATON program) and the Interacting Quantum Atoms (IQA) methodology, which support the observed bonding interactions. It is worth noting, however, that these structures are not the global minimum. Nonetheless, incorporating two cyclopentadienyl anion ligands (Cp) into the CaC52+ system has enhanced the relative stability of the phC isomer. Moreover, cycloparaphenylene ([8]CPP) provides system protection and kinetic stability. These results indicate that using appropriate ligands presents a promising approach for expanding the chemistry of phC species.
Collapse
|
8
|
Kanti Guha A. Inter-Alkali-Metal Dative Bond in the MMN 3 - (M=Alkali Metal) Cluster. Chemphyschem 2023; 24:e202200935. [PMID: 36717761 DOI: 10.1002/cphc.202200935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Alkali metals are generally Lewis acids. On the contrary, Lewis basic character of alkali metals forming donor - acceptor complexes is a very rare phenomenon. In this contribution, I have theoretically designed an anionic cluster MMN3 - (M=alkali metals) on the basis of experimentally known reagent, alkali salt of azide ion MN3 , which shows unprecedented M:- →M donor-acceptor interaction. To the best of author's knowledge, the characterization of such donor-acceptor interaction among alkali metals is unprecedented. Formation of the 2c-2e donor-acceptor bonds have been confirmed by quantum theory of atoms in molecules and electron localization function analyses. The calculated bond dissociation energies are significant suggesting their possible spectroscopic identification.
Collapse
Affiliation(s)
- Ankur Kanti Guha
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| |
Collapse
|
9
|
Li Z, Song G, Li ZH. Theoretical investigation of borane compounds mimicking transition metals for N 2 fixation and activation. Phys Chem Chem Phys 2023; 25:1331-1341. [PMID: 36533691 DOI: 10.1039/d2cp04560e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N2 fixation is very difficult because of the nonpolarity and high stability of N2. Traditionally, it is achieved by transition metal (TM) systems utilizing the back donation from the d orbitals of the TM to the antibonding π* orbitals of N2 to activate N2. This back donation is rare for main group compounds due to the lack of high-lying valence d orbitals. In the present study, we show that borane compounds with weak B-X (X = H, Si, Ge, and Sb) bonds can mimic TM systems and be used to fix and activate N2. This is achieved by the back donation from the σ bonding orbitals of the B-X bonds to the antibonding π* and σ* orbitals of N2. There is even a linear relationship between the number of B-X bonds and the binding potential energy of N2 with BR1R2R3 (R1, R2, R3 = H, CH3, SiH3, GeH3, and SbH2). Based on these findings, we designed several stable silylborane compounds that are feasible for N2 fixation and activation under mild reaction conditions, i.e., room temperature and 1 atm. In some sandwich-like complexes formed between N2 and silylborane compounds, N2 is even activated from the triple bond to double bond.
Collapse
Affiliation(s)
- Zhipeng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Guoliang Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Zhen Hua Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Department of Chemistry, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
10
|
Frenking G. Heretical thoughts about the present understanding and description of the chemical bond*. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Gernot Frenking
- Donostia International Physics Center (DIPC), Donostia, Spain
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, People’s Republic of China
| |
Collapse
|
11
|
Day C, Do CD, Odena C, Benet-Buchholz J, Xu L, Foroutan-Nejad C, Hopmann KH, Martin R. Room-Temperature-Stable Magnesium Electride via Ni(II) Reduction. J Am Chem Soc 2022; 144:13109-13117. [PMID: 35830190 PMCID: PMC9345648 DOI: 10.1021/jacs.2c01807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, we report the synthesis of highly reduced bipyridyl magnesium complexes and the first example of a stable organic magnesium electride supported by quantum mechanical computations and X-ray diffraction. These complexes serve as unconventional homogeneous reductants due to their high solubility, modular redox potentials, and formation of insoluble, non-coordinating byproducts. The applicability of these reductants is showcased by accessing low-valent (bipy)2Ni(0) species that are challenging to access otherwise.
Collapse
Affiliation(s)
- Craig
S. Day
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Cuong Dat Do
- Hylleraas Center for Quantum Molecular Sciences and Department of
Chemistry, UiT The Arctic University of
Norway, N-9037 Tromsø, Norway
| | - Carlota Odena
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Liang Xu
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Cina Foroutan-Nejad
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kathrin H. Hopmann
- Hylleraas Center for Quantum Molecular Sciences and Department of
Chemistry, UiT The Arctic University of
Norway, N-9037 Tromsø, Norway
| | - Ruben Martin
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Kalita AJ, Purkayastha SK, Sarmah K, Guha AK. Can an alkalide act as a perfect Lewis base? Phys Chem Chem Phys 2022; 24:18144-18149. [PMID: 35857062 DOI: 10.1039/d2cp02800j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Lewis basic character of alkali metals forming donor-acceptor complexes is a very rare phenomenon. No Lewis adduct with an alkalide as the Lewis basic centre has ever been reported. Herein, we theoretically designed EXH2- (E = Li, Na, K; X = Be, Mg, Ca) clusters which represent the first true example of Lewis adducts with alkalides as the two-electron donor basic sites. Our high level ab initio calculations reveal the formation of an unprecedented E:- → XH2 donor-acceptor interaction. Topological analysis within the realm of the electron localization function confirms this bonding scenario. The bonding scenario is exactly replicated in all the clusters, rendering support to our proposal. The calculated bond dissociation energies are significant, suggesting their possible spectroscopic identification.
Collapse
Affiliation(s)
- Amlan J Kalita
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| | - Siddhartha K Purkayastha
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| | - Kangkan Sarmah
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| | - Ankur K Guha
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| |
Collapse
|
13
|
Kalita AJ, Sarmah K, Borah RR, Yashmin F, Mazumder LJ, Purkayastha SK, Das K, Dutta T, Guha AK. Missing Recipe in the Na‐B Bond in NaBH
3
–
Cluster. ChemistrySelect 2022. [DOI: 10.1002/slct.202201536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amlan J. Kalita
- Advanced Computational Chemistry Centre Cotton University Panbazar Guwahati Assam India- 781001
| | - Kangkan Sarmah
- Advanced Computational Chemistry Centre Cotton University Panbazar Guwahati Assam India- 781001
| | - Ritam R. Borah
- Advanced Computational Chemistry Centre Cotton University Panbazar Guwahati Assam India- 781001
| | - Farnaz Yashmin
- Advanced Computational Chemistry Centre Cotton University Panbazar Guwahati Assam India- 781001
| | - Lakhya J. Mazumder
- Advanced Computational Chemistry Centre Cotton University Panbazar Guwahati Assam India- 781001
| | | | - Kanwaki Das
- Advanced Computational Chemistry Centre Cotton University Panbazar Guwahati Assam India- 781001
| | - Trisha Dutta
- Advanced Computational Chemistry Centre Cotton University Panbazar Guwahati Assam India- 781001
| | - Ankur K. Guha
- Advanced Computational Chemistry Centre Cotton University Panbazar Guwahati Assam India- 781001
| |
Collapse
|
14
|
Sowlati-Hashjin S, Šadek V, Sadjadi S, Karttunen M, Martín-Pendás A, Foroutan-Nejad C. Collective interactions among organometallics are exotic bonds hidden on lab shelves. Nat Commun 2022; 13:2069. [PMID: 35440588 PMCID: PMC9018958 DOI: 10.1038/s41467-022-29504-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
Recent discovery of an unusual bond between Na and B in NaBH3- motivated us to look for potentially similar bonds, which remained unnoticed among systems isoelectronic with NaBH3-. Here, we report a novel family of collective interactions and a measure called exchange-correlation interaction collectivity index (ICIXC; [Formula: see text]) to characterize the extent of collective versus pairwise bonding. Unlike conventional bonds in which ICIXC remains close to one, in collective interactions ICIXC may approach zero. We show that collective interactions are commonplace among widely used organometallics, as well as among boron and aluminum complexes with the general formula [Ma+AR3]b- (A: C, B or Al). In these species, the metal atom interacts more efficiently with the substituents (R) on the central atoms than the central atoms (A) upon forming efficient collective interactions. Furthermore, collective interactions were also found among fluorine atoms of XFn systems (X: B or C). Some of organolithium and organomagnesium species have the lowest ICIXC among the more than 100 studied systems revealing the fact that collective interactions are rather a rule than an exception among organometallic species.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Vojtěch Šadek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - SeyedAbdolreza Sadjadi
- Department of Physics, Faculty of Science, Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6K 3K7, Canada
| | - Angel Martín-Pendás
- Departamento de Química Física y Analítica, University of Oviedo, 33006, Oviedo, Spain.
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
15
|
Auride ion interaction with borane: A theoretical study of AuBH3−. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Poater J, Andrada DM, Solà M, Foroutan-Nejad C. Path-dependency of energy decomposition analysis & the elusive nature of bonding. Phys Chem Chem Phys 2022; 24:2344-2348. [PMID: 35018916 PMCID: PMC8790740 DOI: 10.1039/d1cp04135e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we provide evidence of the path-dependency of the energy components of the energy decomposition analysis scheme, EDA, by studying a set of thirty-one closed-shell model systems with the D2h symmetry point group. For each system, we computed EDA components from nine different pathways and numerically showed that the relative magnitudes of the components differ substantially from one path to the other. Not surprisingly, yet unfortunately, the most significant variations in the relative magnitudes of the EDA components appear in the case of species with bonds within the grey zone of covalency and ionicity. We further discussed that the role of anions and their effect on arbitrary Pauli repulsion energy components affects the nature of bonding defined by EDA. The outcome variation by the selected partitioning scheme of EDA might bring arbitrariness when a careful comparison is overlooked. Here, we provide evidence of the path-dependency of the energy components of the energy decomposition analysis scheme, EDA, by studying a set of thirty-one closed-shell model systems with the D2h symmetry point group.![]()
Collapse
Affiliation(s)
- Jordi Poater
- Departament de Química Inorgànica i Orgànica and IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Catalonia, Spain. .,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Diego M Andrada
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
17
|
Leyva-Parra L, Diego L, Inostroza D, Yañez O, Pumachagua-Huertas R, Barroso J, Vásquez-Espinal A, Merino G, Tiznado W. Planar Hypercoordinate Carbons in Alkali Metal Decorated CE 3 2- and CE 2 2- Dianions. Chemistry 2021; 27:16701-16706. [PMID: 34617347 DOI: 10.1002/chem.202102864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/08/2022]
Abstract
After exploring the potential energy surfaces of Mm CE2 p (E=S-Te, M=Li-Cs, m=2, 3 and p=m-2) and Mn CE3 q (E=S-Te, M=Li-Cs, n=1, 2, q=n-2) combinations, we introduce 38 new global minima containing a planar hypercoordinate carbon atom (24 with a planar tetracoordinate carbon and 14 with a planar pentacoordinate carbon). These exotic clusters result from the decoration of V-shaped CE2 2- and Y-shaped CE3 2- dianions, respectively, with alkali counterions. All these 38 systems fulfill the geometrical and electronic criteria to be considered as true planar hypercoordinate carbon systems. Chemical bonding analyses indicate that carbon is covalently bonded to chalcogens and ionically connected to alkali metals.
Collapse
Affiliation(s)
- Luis Leyva-Parra
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile.,Universidad Andrés Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas, Santiago, Chile
| | - Luz Diego
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile.,Universidad Andrés Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas, Santiago, Chile
| | - Diego Inostroza
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile.,Universidad Andrés Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas, Santiago, Chile
| | - Osvaldo Yañez
- Center of New Drugs for Hypertension (CENDHY), 8380494, Santiago, Chile.,Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, Universidad de Chile, 8380494, Santiago, Chile
| | - Rodolfo Pumachagua-Huertas
- Laboratorio de Investigación en Química Teórica, Escuela Profesional de Química, Facultad de Ciencias Naturales y Matemáticas, Universidad Nacional Federico Villarreal, Jr. Río Chepén 290, El Agustino, Lima, Perú
| | - Jorge Barroso
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida km. 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, Yuc, Mexico
| | - Alejandro Vásquez-Espinal
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida km. 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, Yuc, Mexico
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 498, Santiago, Chile
| |
Collapse
|
18
|
Rincón L, Mora JR, Rodriguez V, Torres FJ. Na⋯B bond in NaBH 3 - : An induced spin-polarized bond. Chemphyschem 2021; 23:e202100676. [PMID: 34708497 DOI: 10.1002/cphc.202100676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Indexed: 11/10/2022]
Abstract
The nature of the Na⋯B bond, in the recently synthesized NaBH 3 - adduct, is analyzed on the light of the Na- propensity to polarize along the bond axis as a consequence of the electric field produced by the BH3 fragment. The observed induced polarization has two consequences: (i) the energetic stabilization of the Na- , and (ii) the split of its valence electrons into two opposite lobes along the bond axis. Additionally, an analysis of the electron localization is presented using the information content of the correlated conditional pair density that reveals a significant delocalization between one lobe of the polarized Na- anion and the BH3 fragment at the equilibrium distance. Our findings reported here complement previous works on this system.
Collapse
Affiliation(s)
- Luis Rincón
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Colegio Politecnico de Ciencias e Ingeniería, Universidad San Francisco de Quito, Quito, 170157, Ecuador.,Instituto de Simulación Computacional, Universidad San Francisco de Quito, Quito, 170157, Ecuador
| | - Jose R Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Colegio Politecnico de Ciencias e Ingeniería, Universidad San Francisco de Quito, Quito, 170157, Ecuador.,Instituto de Simulación Computacional, Universidad San Francisco de Quito, Quito, 170157, Ecuador
| | - Vladimir Rodriguez
- Instituto de Simulación Computacional, Universidad San Francisco de Quito, Quito, 170157, Ecuador.,Departamento de Matemáticas, Colegio Politecnico de Ciencias e Ingeniería, Quito, 170157, Ecuador
| | - F Javier Torres
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Colegio Politecnico de Ciencias e Ingeniería, Universidad San Francisco de Quito, Quito, 170157, Ecuador.,Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, 111221, Colombia
| |
Collapse
|
19
|
Pan S, Frenking G. A Critical Look at Linus Pauling's Influence on the Understanding of Chemical Bonding. Molecules 2021; 26:4695. [PMID: 34361846 PMCID: PMC8348226 DOI: 10.3390/molecules26154695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
The influence of Linus Pauling on the understanding of chemical bonding is critically examined. Pauling deserves credit for presenting a connection between the quantum theoretical description of chemical bonding and Gilbert Lewis's classical bonding model of localized electron pair bonds for a wide range of chemistry. Using the concept of resonance that he introduced, he was able to present a consistent description of chemical bonding for molecules, metals, and ionic crystals which was used by many chemists and subsequently found its way into chemistry textbooks. However, his one-sided restriction to the valence bond method and his rejection of the molecular orbital approach hindered further development of chemical bonding theory for a while and his close association of the heuristic Lewis binding model with the quantum chemical VB approach led to misleading ideas until today.
Collapse
Affiliation(s)
- Sudip Pan
- Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, China;
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037 Marburg, Germany
| | - Gernot Frenking
- Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, China;
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
20
|
A double bond with weak σ- and strong π-interactions is still a double bond. Nat Commun 2021; 12:4037. [PMID: 34188025 PMCID: PMC8241832 DOI: 10.1038/s41467-021-24238-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
|
21
|
Yang Q, Li Q, Scheiner S. Diboron Bonds Between BX 3 (X=H, F, CH 3 ) and BYZ 2 (Y=H, F; Z=CO, N 2 , CNH). Chemphyschem 2021; 22:1461-1469. [PMID: 34089563 DOI: 10.1002/cphc.202100332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Indexed: 11/12/2022]
Abstract
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2 , and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3 ), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2 , and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2 , engage in a typical noncovalent bond with B(CH3 )3 and BF3 , with interaction energies in the 3-8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26-44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2 , BH(CNH)2 , BH(N2 )2 , and BF(CO)2 , or in the complexes of BH(N2 )2 with B(CH3 )3 and BF3 . The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.
Collapse
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322-0300, USA
| |
Collapse
|
22
|
Radenković S, Shaik SS, Braïda B. Na⋅⋅⋅B Bond in NaBH
3
−
: Solving the Conundrum. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sason S. Shaik
- Institute of Chemistry The Hebrew University of Jerusalem 9190401 Jerusalem Israel
| | - Benoît Braïda
- Sorbonne Université Laboratoire de Chimie Théorique 75005 Paris France
| |
Collapse
|
23
|
Pino‐Rios R, Inostroza D, Tiznado W. Neither too Classic nor too Exotic: One‐Electron Na⋅B Bond in NaBH
3
−
Cluster. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ricardo Pino‐Rios
- Laboratorio de Química teórica Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Av. Libertador Bernardo O'Higgins 3363 Santiago, Estación Central, Región Metropolitana Chile
| | - Diego Inostroza
- Universidad Andres Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas Santiago Chile
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - William Tiznado
- Universidad Andres Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas Santiago Chile
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| |
Collapse
|
24
|
Radenković S, Shaik SS, Braïda B. Na⋅⋅⋅B Bond in NaBH 3 - : Solving the Conundrum. Angew Chem Int Ed Engl 2021; 60:12723-12726. [PMID: 33794051 DOI: 10.1002/anie.202100616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 01/08/2023]
Abstract
Bonding in the recently synthesized NaBH3 - cluster is investigated using the high level Valence Bond BOVB method. Contrary to earlier conclusions, the Na-B bond is found to be neither a genuine dative bond, nor a standard polar-covalent bond at equilibrium. It is rather revealed as a split and polarized weakly coupled electron-pair, which allows this cluster to be more effectively stabilized by a combination of (major) dipole-dipole electrostatic interaction and (secondary) resonant one-electron bonding mechanism. Our analysis of this unprecedented bonding situation extends to similar clusters, and the VB model unifies and articulates the previously published variegated views on this exotic "bond".
Collapse
Affiliation(s)
- Slavko Radenković
- University of Kragujevac, Faculty of Science, 34000, Kragujevac, Serbia
| | - Sason S Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Benoît Braïda
- Sorbonne Université, Laboratoire de Chimie Théorique, 75005, Paris, France
| |
Collapse
|
25
|
Pino-Rios R, Inostroza D, Tiznado W. Neither too Classic nor too Exotic: One-Electron Na⋅B Bond in NaBH 3 - Cluster. Angew Chem Int Ed Engl 2021; 60:12747-12753. [PMID: 33876517 DOI: 10.1002/anie.202101403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/17/2022]
Abstract
It is here reported that the NaBH3 - cluster exhibits a Na⋅B one-electron bond, a well-established type of electron-deficient bonding in the literature. The topological analysis of the electron localization function, at the correlated level, reveals that Na- , when approaching the bonding distance, fairly distributes its valence electron pair between two lobes. One of these electrons is used to bond with BH3 , which participates through its boron empty p-orbital. Furthermore, the bonding situation of LiBH3 - , KBH3 - , MgBH3 , and CaBH3 global minima structures are similar to that of NaBH3 - , extending the family of these new one-electron bond systems with biradicaloid character.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Laboratorio de Química teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Estación Central, Región Metropolitana, Chile
| | - Diego Inostroza
- Universidad Andres Bello, Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Santiago, Chile.,Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - William Tiznado
- Universidad Andres Bello, Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Santiago, Chile.,Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| |
Collapse
|
26
|
Leyva-Parra L, Diego L, Yañez O, Inostroza D, Barroso J, Vásquez-Espinal A, Merino G, Tiznado W. Planar Hexacoordinate Carbons: Half Covalent, Half Ionic. Angew Chem Int Ed Engl 2021; 60:8700-8704. [PMID: 33527696 DOI: 10.1002/anie.202100940] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 11/06/2022]
Abstract
Herein, the first global minima containing a planar hexacoordinate carbon (phC) atom are reported. The fifteen structures belong to the CE3 M3 + (E=S-Te and M=Li-Cs) series and satisfy both geometric and electronic criteria to be considered as a true phC. The design strategy consisted of replacing oxygen in the D3h CO3 Li3 + structure with heavy and less electronegative chalcogens, inducing a negative charge on the C atom and an attractive electrostatic interaction between C and the alkali-metal cations. The chemical bonding analyses indicate that carbon is covalently bonded to three chalcogens and ionically connected to the three alkali metals.
Collapse
Affiliation(s)
- Luis Leyva-Parra
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - Luz Diego
- Escuela Profesional de Química, Facultad de Ciencias Naturales, Universidad Nacional Federico Villarreal, Jr. Río Chepén 290, El Agustino, Lima, Perú
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile.,Center of New Drugs for Hypertension (CENDHY), Santiago, Chile
| | - Diego Inostroza
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - Jorge Barroso
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km. 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, Yuc., México
| | - Alejandro Vásquez-Espinal
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km. 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, Yuc., México
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| |
Collapse
|
27
|
Leyva‐Parra L, Diego L, Yañez O, Inostroza D, Barroso J, Vásquez‐Espinal A, Merino G, Tiznado W. Planar Hexacoordinate Carbons: Half Covalent, Half Ionic. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luis Leyva‐Parra
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - Luz Diego
- Escuela Profesional de Química Facultad de Ciencias Naturales Universidad Nacional Federico Villarreal Jr. Río Chepén 290, El Agustino Lima Perú
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
- Center of New Drugs for Hypertension (CENDHY) Santiago Chile
| | - Diego Inostroza
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - Jorge Barroso
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Unidad Mérida km. 6 Antigua carretera a Progreso Apdo. Postal 73, Cordemex Mérida Yuc. México
| | - Alejandro Vásquez‐Espinal
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - Gabriel Merino
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Unidad Mérida km. 6 Antigua carretera a Progreso Apdo. Postal 73, Cordemex Mérida Yuc. México
| | - William Tiznado
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| |
Collapse
|
28
|
Abstract
As the first thermal stable molecule with a B≡B bond, the diboryne complex protected by N-heterocyclic carbene ligands (NHC-B≡B-NHC) has attracted much interest. Researchers point out that π-back-donation highly stabilizes the B≡B bond besides σ-donation, both of which are induced by NHC ligands. In this work, details of the π-back-donation are revisited by using DFT calculations. There are two delocalized π* orbitals in NHC, and the symmetry of one π* orbital is highly adaptive to the π orbitals in B≡B bond, whereas the other cannot be involved in the π-back-donation. In staggered configuration, two orthogonal π orbitals of B≡B interact with this π* orbital in each NHC ligand, respectively, to form π-back-donations in both sides. This interaction has proven to be more intensive than π-conjunction, resulting in the lower energy of the staggered isomer compared with the eclipsed one containing greater π-conjunction. Moreover, intensity of the π-back-donation can be enhanced by reducing the energy levels of the matched π* orbitals in ligands, which gives references for the design of stable diborynes.
Collapse
Affiliation(s)
- Chang Xu
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yingying Ma
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Longjiu Cheng
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
29
|
Foroutan-Nejad C. Bonding and Aromaticity in Electron-Rich Boron and Aluminum Clusters. J Phys Chem A 2021; 125:1367-1373. [PMID: 33538582 DOI: 10.1021/acs.jpca.0c11474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work bonding and aromaticity of triply bonded atoms of group 13 elements (M≡M, M = B and Al) in recently characterized B2Al3-, Na3Al2-, and Na4Al2 are studied. Here, I show that although molecular orbital-based analyses characterize triple bonds, the electropositive nature of group 13 elements gives these bonds unique characteristics. The bond orders derived from the delocalization index, topology of the electron density, and local characteristics of (3, -1) critical points, as defined within the context of quantum theory of atoms in molecules, do not conform with those of ordinary triple bonds. In Na3Al2- and Na4Al2 clusters non-nuclear attractors form between the electropositive Al atoms acting like pseudo atoms. The bond between boron atoms in B2Al3- is more similar to an ordinary triple covalent bond benefiting from the exchange-correlation component of the interatomic interaction energy as defined via interacting quantum atom theory. However, extreme electrostatic repulsion between negatively charged boron atoms attenuates this bond. Finally, current density analysis suggests that B2Al3- is a magnetic aromatic system, nearly 50% more aromatic compared to benzene.
Collapse
Affiliation(s)
- Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka44/52, 01-224 Warsaw, Poland
| |
Collapse
|
30
|
Jiménez‐Grávalos F, Gallegos M, Martín Pendás Á, Novikov AS. Challenging the electrostatic
σ
‐hole picture of halogen bonding using minimal models and the interacting quantum atoms approach. J Comput Chem 2021; 42:676-687. [DOI: 10.1002/jcc.26488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Miguel Gallegos
- Department of Analytical and Physical Chemistry University of Oviedo Oviedo Spain
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry University of Oviedo Oviedo Spain
| | | |
Collapse
|
31
|
Salvador P, Vos E, Corral I, Andrada DM. Beyond the Classical Electron-Sharing and Dative Bond Picture: Case of the Spin-Polarized Bond. Angew Chem Int Ed Engl 2021; 60:1498-1502. [PMID: 32866305 PMCID: PMC7839703 DOI: 10.1002/anie.202010948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/29/2020] [Indexed: 11/12/2022]
Abstract
Chemical bonds are traditionally assigned as electron-sharing or donor-acceptor/dative. External criteria such as the nature of the dissociation process, energy partitioning schemes, or quantum chemical topology are invoked to assess the bonding situation. However, for systems with marked multi-reference character, this binary categorization might not be precise enough to render the bonding properties. A third scenario can be foreseen: spin polarized bonds. To illustrate this, the case of a NaBH3 - cluster is presented. According to the analysis NaBH3 - exhibits a strong diradical character and cannot be classified as either electron-sharing or a dative bond. Elaborated upon are the common problems of popular bonding descriptions. Additionally, a simple model, based on the bond order and local spin indicators, which discriminates between all three bonding situations, is provided.
Collapse
Affiliation(s)
- Pedro Salvador
- Institut de Química Computacional i Catàlisi i Departament de QuímicaUniversitat de Gironac/M Aurelia Capmany 6917003GironaSpain
| | - Eva Vos
- Departamento de QuímicaFacultad de CienciasMódulo 13, and Institute of Advanced Chemical Sciences (IadChem)Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco28049MadridSpain
| | - Inés Corral
- Departamento de QuímicaFacultad de CienciasMódulo 13, and Institute of Advanced Chemical Sciences (IadChem)Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco28049MadridSpain
| | - Diego M. Andrada
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland University66123SaarbrückenGermany
| |
Collapse
|
32
|
Zhang N, Li A, Wang C, Wu Q, Lan J, Chai Z, Zhao Y, Shi W. Theoretical prediction of chiral actinide endohedral borospherenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00211b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Actinide encapsulation can form chiral borospherenes, and the covalent character of An–B bonds dominates the formation of these actinoborospherenes.
Collapse
Affiliation(s)
- Naixin Zhang
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Ailin Li
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Congzhi Wang
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Jianhui Lan
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yubao Zhao
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|