1
|
Mou Q, Wang D, Li S, Li X, Wang J, Chen C, Huo Y, Mu Y, Huang Z. Surface Involvement in the Boosting of Chiral Organocatalysts for Efficient Asymmetric Catalysis. Macromol Rapid Commun 2025; 46:e2400872. [PMID: 39614870 DOI: 10.1002/marc.202400872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/16/2024] [Indexed: 04/29/2025]
Abstract
Nanostructures with curved surfaces and chiral-directing residues are highly desirable in the synthesis of asymmetric chemicals, but they remain challenging to synthesize without using unique templates due to the disfavored torsion energy of twisted architectures toward chiral centers. Here, a strategy for the facile fabrication of highly cured capsule-shaped catalysts with chiral interiors by the amplification of molecular chirality via the irreversible cross-linking of 2D asymmetric laminates is presented. The key to the success of these irregular 2D layers is the use of hierarchical assembly of chiral macrocycles, which can exactly regulate the cured nanostructures as well as asymmetric catalysis. The cross-linking of 2D laminates from the assembly of hexameric macrocycles with one proline edge gave rise to rarely curled capsules with a diameter of 200-400 nm and excellent enantioselectivities as well as diastereoselectivities for asymmetric aldol reactions (94% ee and 1:13 dr). The tetrameric macrocycles decorated with the chiral block produced further curled porous structures, giving an outstanding enantioselectivities (up to 98% ee and 1:17 dr). The strategy of mechanical surface folding will provide a new insight related to increasing the enantioselectivity of chiral organocatalysts.
Collapse
Affiliation(s)
- Qi Mou
- PCFM, LIFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Donghui Wang
- PCFM, LIFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shuang Li
- PCFM, LIFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xin Li
- PCFM, LIFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiahao Wang
- PCFM, LIFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Changpin Chen
- PCFM, LIFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhegang Huang
- PCFM, LIFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
2
|
Huang Q, Hu C, Qin Y, Jin Y, Huang L, Sun Y, Song Z, Xie F. Designing Heterodiatomic Carbon Hydrangea Superstructures via Machine Learning-Regulated Solvent-Precursor Interactions for Superior Zinc Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405940. [PMID: 39180267 DOI: 10.1002/smll.202405940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Carbon superstructures with exquisite morphologies and functionalities show appealing prospects in energy realms, but the systematic tailoring of their microstructures remains a perplexing topic. Here, hydrangea-shaped heterodiatomic carbon superstructures (CHS) are designed using a solution phase manufacturing route, wherein machine learning workflow is applied to screen precursor-matched solvent for optimizing solvent-precursor interaction. Based on the established solubility parameter model and molecular growth kinetics simulation, ethanol as the optimal solvent stimulates thermodynamic solubilization and growth of polymeric intermediates to evoke CHS. Featured with surface-active motifs and consecutive charge transfer paths, CHS allows high accessibility of zincophilic sites and fast ion migration with low energy barriers. A anion-cation hybrid charge storage mechanism of CHS cathode is disclosed, which entails physical alternate uptake of Zn2+/CF3SO3 - ions at electroactive sites and chemical bipedal redox of Zn2+ ions with carbonyl/pyridine motifs. Such a beneficial electrochemistry contributes to all-round improvement in Zn-ion storage, involving excellent capacities (231 mAh g-1 at 0.5 A g-1; 132 mAh g-1 at 50 A g-1), high energy density (152 Wh kg-1), and long-lasting cyclability (100 000 cycles). This work expands the design versatilities of superstructure materials and will accelerate experimental procedures during carbon manufacturing through machine learning in the future.
Collapse
Affiliation(s)
- Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Chengmin Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yang Qin
- Department of Mechanical Engineering, College of Engineering and Applied Science, University of Wisconsin Milwaukee, Milwaukee, WI, 53211, USA
| | - Yaowei Jin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lu Huang
- Department of Stomatology, Hangzhou Ninth People's Hospital, Hangzhou, 311225, P. R. China
| | - Yaojie Sun
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Zhang Y, Song Z, Miao L, Lv Y, Gan L, Liu M. All-Round Enhancement in Zn-Ion Storage Enabled by Solvent-Guided Lewis Acid-Base Self-Assembly of Heterodiatomic Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37440355 DOI: 10.1021/acsami.3c06849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Designing zincophilic and stable carbon nanostructures is critical for Zn-ion storage with superior capacitive activity and durability. Here, we report solvent-guided Lewis acid-base self-assembly to customize heterodiatomic carbon nanotubes, triggered by the reaction between iron chloride and α,α'-dichloro-p-xylene. In this strategy, modulating the solvent-precursor interaction through the optimization of solvent formula stimulates differential thermodynamic solubilization, growth kinetics, and self-assembly behaviors of Lewis polymeric chains, thereby accurately tailoring carbon nanoarchitectures to evoke superior Zn-ion storage. Featured with open hollow interiors and porous tubular topologies, the solvent-optimized carbon nanotubes allow low ion-migration barriers to deeply access the built-in zincophilic sites by high-kinetics physical Zn2+/CF3SO3- adsorption and robust chemical Zn2+ redox with pyridine/carbonyl motifs, which maximizes the spatial capacitive charge storage density. Thus, as-designed heterodiatomic carbon nanotube cathodes provide all-round improvement in Zn-ion storage, including a high energy density (140 W h kg-1), a large current activity (100 A g-1), and an exceptional long-term cyclability (100,000 cycles at 50 A g-1). This study provides appealing insights into the solvent-mediated Lewis pair self-assembly design of nanostructured carbons toward advanced Zn-ion energy storage.
Collapse
Affiliation(s)
- Yehui Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
4
|
Fang Y, Yang Y, Xu R, Liang M, Mou Q, Chen S, Kim J, Jin LY, Lee M, Huang Z. Hierarchical porous photosensitizers with efficient photooxidation. Nat Commun 2023; 14:2503. [PMID: 37130853 PMCID: PMC10154327 DOI: 10.1038/s41467-023-38283-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Photosensitizers (PSs) with nano- or micro-sized pore provide a great promise in the conversion of light energy into chemical fuel due to the excellent promotion for transporting singlet oxygen (1O2) into active sites. Despite such hollow PSs can be achieved by introducing molecular-level PSs into porous skeleton, however, the catalytic efficiency is far away from imagination because of the problems with pore deformation and blocking. Here, very ordered porous PSs with excellent 1O2 generation are presented from cross-linking of hierarchical porous laminates originated by co-assembly of hydrogen donative PSs and functionalized acceptor. The catalytic performance strongly depends on the preformed porous architectures, which is regulated by special recognition of hydrogen binding. As the increasing of hydrogen acceptor quantities, 2D-organized PSs laminates gradually transform into uniformly perforated porous layers with highly dispersed molecular PSs. The premature termination by porous assembly endows superior activity as well as specific selectivity for the photo-oxidative degradation, which contributes to efficient purification in aryl-bromination without any postprocessing.
Collapse
Affiliation(s)
- Yajun Fang
- PCFM and LIFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Yuntian Yang
- PCFM and LIFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, 133002, P.R. China
| | - Rui Xu
- PCFM and LIFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Mingyun Liang
- PCFM and LIFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Qi Mou
- PCFM and LIFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Shuixia Chen
- PCFM and LIFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Jehan Kim
- Pohang Accelerator Laboratory, Postech, Pohang, Gyeongbuk, Korea
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, 133002, P.R. China
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Shanghai, 200438, P.R. China
| | - Zhegang Huang
- PCFM and LIFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China.
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, 133002, P.R. China.
| |
Collapse
|
5
|
Ye N, Pei YR, Han Q, Jin LY. Photoresponsive reversible self-assembly of rod-coil amphiphiles containing spiropyran groups. SOFT MATTER 2023; 19:1540-1548. [PMID: 36745471 DOI: 10.1039/d2sm01690g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive assembly deformation is a key feature in constructing smart soft materials, which makes them versatile and autonomous. In this study, rod-coil amphiphilic compounds containing spiropyran (SP) groups were developed and synthesized to investigate their stimuli-responsive assembly in a solution system with 99% water content. In addition to photochromic phenomena, reversible light-mediated morphological alterations occurred in these molecular aggregates. Based on the different flexible chain segments of rod-coil amphiphiles, the initial assemblies underwent a dissociation-reassembly process under ultraviolet (UV) irradiation, whereupon they deformed or disassembled to assemblies. Furthermore, as the UV source was removed, the original nanostructures were gradually recovered again via the ring-closing reaction process. These compounds, interestingly, can selectively combine with copper ions to produce cross-linked co-assembled nanostructures. The copper ion complex solution of rod-coil amphiphilic compounds emitted unique bright blue fluorescence, which allowed for the specific visual identification of copper ions in aqueous solutions.
Collapse
Affiliation(s)
- Nan Ye
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
6
|
Karak S, Dey K, Banerjee R. Maneuvering Applications of Covalent Organic Frameworks via Framework-Morphology Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202751. [PMID: 35760553 DOI: 10.1002/adma.202202751] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Translating the performance of covalent organic frameworks (COFs) from laboratory to macroscopic reality demands specific morphologies. Thus, the advancement in morphological modulation has recently gained some momentum. A clear understanding of nano- to macroscopic architecture is critical to determine, optimize, and improve performances of this atomically precise porous material. Along with their chemical compositions and molecular frameworks, the prospect of morphology in various applications should be discussed and highlighted. A thorough insight into morphology versus application will help produce better-engineered COFs for practical implications. 2D and 3D frameworks can be transformed into various solids such as nanospheres, thin films, membranes, monoliths, foams, etc., for numerous applications in adsorption, separation photocatalysis, the carbon dioxide reduction, supercapacitors, and fuel cells. However, the research on COF chemistry mainly focuses on correlating structure to property, structure to morphology, and structure to applications. Here, critical insights on various morphological evolution and associated applications are provided. In each case, the underlying role of morphology is unveiled. Toward the end, a correlation between morphology and application is provided for the future development of COFs.
Collapse
Affiliation(s)
- Suvendu Karak
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, 97074, Würzburg, Germany
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
7
|
Wu J, Li X, Shi Z, He C. Single‐crystal‐to‐single‐crystal transformation and alcohols enantioseparation of homochiral Ir(III)‐metallohelix‐based porous molecular crystal. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinguo Wu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xuezhao Li
- Dalian University of Technology Zhang Dayu College of Chemistry CHINA
| | - Zhuolin Shi
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Cheng He
- Dalian University of Technology Linggong Road 2 116024 Dalian CHINA
| |
Collapse
|
8
|
Ju JM, Lee CH, Park JH, Lee JH, Lee H, Shin JH, Kwak SY, Lee SU, Kim JH. Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24404-24414. [PMID: 35584866 DOI: 10.1021/acsami.2c04194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent organic frameworks (COFs) are promising candidates for the controllable design of electrocatalysts. However, bifunctional electrocatalytic activities for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remain challenging in COFs. In this study, imidazolium-rich COFs (IMCOFs) with well-defined active sites and characteristic three-dimensional assembly structures were readily prepared, and their electronic structures were tuned by Co incorporation to elicit bifunctional electrocatalytic activities for the ORR and OER. The Co nanoparticle-incorporated spherical IMCOF-derived electrocatalyst (CoNP-s-IMCOF) exhibited lower overpotentials for the ORR and OER compared with the atomic Co-incorporated planar IMCOF-derived electrocatalyst (Co-p-IMCOF). Computational simulations revealed that the imidazole carbon sites of CoNP-s-IMCOF rather than the triazine carbons were the active sites for the ORR and OER, and its p-band center downshifted via charge transfer, facilitating the chemisorption of oxygen intermediates during the reactions. A Zn-air battery with CoNP-s-IMCOF exhibited a small voltage gap of 1.3 V with excellent durability for 935 cycles. This approach for control over the three-dimensional assembly and electronic structures of IMCOFs can be extended to the development of diverse catalytic nanomaterials for applications of interest.
Collapse
Affiliation(s)
- Jong-Min Ju
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Chi Ho Lee
- Artie McFerrin Department of Chemical Engineering and Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843, United States
| | - Jung Hyun Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jun-Hyeong Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hajin Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae-Hoon Shin
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|