1
|
Fang K, Dou BH, Zhang FM, Wang YP, Shan ZR, Wang XY, Hou SH, Tu YQ, Ding TM. Expansion of Structure Property in Cascade Nazarov Cyclization and Cycloexpansion Reaction to Diverse Angular Tricycles and Total Synthesis of Nominal Madreporanone. Angew Chem Int Ed Engl 2024; 63:e202412337. [PMID: 39106111 DOI: 10.1002/anie.202412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/09/2024]
Abstract
A cascade Nazarov cyclization/dicycloexpansions reaction was developed for the precise synthesis of the angularly fused M/5/N (M=5, 6; N=4-9, 13) tricyclic skeletons. The prioritized expansion of the first ring played a critical role in the transformations, due to the release of ring strain, and the nature of the substituents present on the substrate is another influencing factor. This pioneering cascade reaction features broad substrates scope (33 examples), short reaction time, exceptional yields (up to 95 %), and remarkable regioselectivities (>20 : 1). Exploiting the synthetic application of this cascade reaction, we successfully executed a succinct total synthesis of nominal madreporanone for the first time.
Collapse
Affiliation(s)
- Kun Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Heng Dou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yun-Peng Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zi-Rui Shan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Yu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Hu N, Sun S, Wang X, Li S. Modular Synthesis and Antimicrobial Investigation of Mycoleptodiscin A and Simplified Indolosesquiterpenoids. Org Lett 2024; 26:5764-5769. [PMID: 38958211 DOI: 10.1021/acs.orglett.4c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The structure-activity relationship of the unusual indolosesquiterpenoid mycoleptodiscin A is unknown due to natural scarcity and inefficient synthesis. A modular approach leveraging Larock indole synthesis has been established to access mycoleptodiscin A and a divergent collection of drimenyl indoles. It features the utilization of an inexpensive (+)-sclareolide, modularity, purification-economy, and scalability, which facilitates the first biological evaluation of mycoleptodiscin A and related precursors.
Collapse
Affiliation(s)
- Nvdan Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China
| | - Shengxin Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xia Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Du J, Fu S, Liu B. A Photoinduced Radical Cascade Cyclization for the Synthesis of Angularly Fused Tricyclic Compounds. Org Lett 2024. [PMID: 38805032 DOI: 10.1021/acs.orglett.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A photoinduced electron transfer (PET)-triggered cascade reaction has been devised for the conversion of second-generation enol silyl ethers into angularly fused tricyclic scaffolds. Utilizing readily available and cost-effective DCA and phenanthrene as the catalytic systems, this cascade transformation is achieved with high efficiency. The reaction demonstrates a good substrate scope and excellent stereoselectivity, thereby enriching the realm of PET-induced cascade reactions. Additionally, the radical adducts generated through this process can serve as valuable subunits for the synthesis of complex molecules.
Collapse
Affiliation(s)
- Jiaxin Du
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Xu H, Dickschat JS. Isotopic labelings for mechanistic studies. Methods Enzymol 2024; 699:163-186. [PMID: 38942502 DOI: 10.1016/bs.mie.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The intricate mechanisms in the biosynthesis of terpenes belong to the most challenging problems in natural product chemistry. Methods to address these problems include the structure-based site-directed mutagenesis of terpene synthases, computational approaches, and isotopic labeling experiments. The latter approach has a long tradition in biosynthesis studies and has recently experienced a revival, after genome sequencing enabled rapid access to biosynthetic genes and enzymes. Today, this allows for a combined approach in which isotopically labeled substrates can be incubated with recombinant terpene synthases. These clearly defined reaction setups can give detailed mechanistic insights into the reactions catalyzed by terpene synthases, and recent developments have substantially deepened our understanding of terpene biosynthesis. This chapter will discuss the state of the art and introduce some of the most important methods that make use of isotopic labelings in mechanistic studies on terpene synthases.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Kudashev A, Vergura S, Zuccarello M, Bürgi T, Baudoin O. Methylene C(sp 3 )-H Arylation Enables the Stereoselective Synthesis and Structure Revision of Indidene Natural Products. Angew Chem Int Ed Engl 2024; 63:e202316103. [PMID: 37997293 DOI: 10.1002/anie.202316103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The divergent synthesis of two indane polyketides of the indidene family, namely (±)-indidene A (11 steps, 1.7 %) and (+)-indidene C (13 steps, 1.3 %), is reported. The synthesis of the trans-configured common indane intermediate was enabled by palladium(0)-catalyzed methylene C(sp3 )-H arylation, which was performed in both racemic and enantioselective (e.r. 99 : 1) modes. Further elaboration of this common intermediate by nickel-catalyzed dehydrogenative coupling allowed the rapid installation of the aroyl moiety of (±)-indidene A. In parallel, the biphenyl system of (±)- and (+)-indidene C was constructed by Suzuki-Miyaura coupling. These investigations led us to revise the structures of indidenes B and C.
Collapse
Affiliation(s)
- Anton Kudashev
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Stefania Vergura
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Marco Zuccarello
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Thomas Bürgi
- University of Geneva, Department of Physical Chemistry, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
6
|
Xu Z, Li X, Rose JA, Herzon SB. Finding activity through rigidity: syntheses of natural products containing tricyclic bridgehead carbon centers. Nat Prod Rep 2023; 40:1393-1431. [PMID: 37140079 PMCID: PMC10472132 DOI: 10.1039/d3np00008g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Covering: up to 2022Tricyclic bridgehead carbon centers (TBCCs) are a synthetically challenging substructure found in many complex natural products. Here we review the syntheses of ten representative families of TBCC-containing isolates, with the goal of outlining the strategies and tactics used to install these centers, including a discussion of the evolution of the successful synthetic design. We provide a summary of common strategies to inform future synthetic endeavors.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - John A Rose
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
7
|
Zou YP, Lai ZL, Zhang MW, Peng J, Ning S, Li CC. Total Synthesis of (±)- and (-)-Daphnillonin B. J Am Chem Soc 2023; 145:10998-11004. [PMID: 37167083 DOI: 10.1021/jacs.3c03755] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first total synthesis of (±)- and (-)-daphnillonin B, a daphnicyclidin-type alkaloid with a new [7-6-5-7-5-5] A/B/C/D/E/F hexacyclic core, has been achieved. The [6-5-7] B/C/D ring system was efficiently and diastereoselectively constructed via a mild type I intramolecular [5+2] cycloaddition, followed by a Grubbs II catalyst-catalyzed radical cyclization. The [5-5] fused E/F ring system was synthesized via a diastereoselective intramolecular Pauson-Khand reaction. Notably, the synthetically challenging [7-6-5-7-5-5] hexacyclic core was reassembled by a unique Wagner-Meerwein-type rearrangement from the [6-6-5-7-5-5] hexacyclic framework found in calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Yun-Peng Zou
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng-Lin Lai
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng-Wei Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianzhao Peng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Ning
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
8
|
Abstract
The structurally intriguing diterpene (+)-aberrarone has been assembled in only 12 steps from the commercially available (S,S)-carveol without protecting group manipulations. This concise synthesis features a Cu-catalyzed asymmetric hydroboration to generate the chiral methyl group, a Ni-catalyzed reductive coupling to link two fragments, and a Mn-mediated radical cascade cyclization to construct the triquinane system.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yongjian Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
9
|
Shi L, Gao Z, Li Y, Dai Y, Liu Y, Shi L, Hao HD. Synthetic study toward the diterpenoid aberrarone. Beilstein J Org Chem 2022; 18:1625-1628. [DOI: 10.3762/bjoc.18.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
An approach to aberrarone, an antimalarial diterpenoid natural product with tetracyclic skeleton is reported. Key to the stereoselective preparation of the 6-5-5 tricyclic skeleton includes the mediation of Nagata reagent for constructing the C1 all-carbon quaternary centers and gold-catalyzed cyclopentenone synthesis through C–H insertion.
Collapse
|
10
|
Kanwal A, Bilal M, Rasool N, Zubair M, Shah SAA, Zakaria ZA. Total Synthesis of Terpenes and Their Biological Significance: A Critical Review. Pharmaceuticals (Basel) 2022; 15:1392. [PMID: 36422521 PMCID: PMC9699253 DOI: 10.3390/ph15111392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 09/10/2024] Open
Abstract
Terpenes are a group of natural products made up of molecules with the formula (C5H8)n that are typically found in plants. They are widely employed in the medicinal, flavor, and fragrance industries. The total synthesis of terpenes as well as their origin and biological potential are discussed in this review.
Collapse
Affiliation(s)
- Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Sabah Universiti Malaysia, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
11
|
Wang X, Liu F, Xu T. Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2 + 2] cycloaddition and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Wang YP, Fang K, Tu YQ, Yin JJ, Zhao Q, Ke T. An efficient approach to angular tricyclic molecular architecture via Nazarov-like cyclization and double ring-expansion cascade. Nat Commun 2022; 13:2335. [PMID: 35484150 PMCID: PMC9050659 DOI: 10.1038/s41467-022-29947-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/17/2022] [Indexed: 01/13/2023] Open
Abstract
A modular and efficient method for constructing angular tri-carbocyclic architectures containing quaternary carbon center(s) from 1,3-dicycloalkylidenyl ketones is established, which involves an unconventional synergistic cascade of a Nazarov cyclization and two ring expansions. It features high selectivity, mild conditions and convenient operation, wide scope and easy availability of substrate. Substitution with R1 and R2 at the 4πe-system with electron-donating group favors this reaction, while that with electron-withdrawing group or proton disfavors. The electron-donating group as R1 directs the initial ring expansion at its own site, while the p-π- or n-π- associated substituent as R2 favors selectively the later ring expansion near its location because of the beneficial maintenance of an original conjugated system. The stereoselectivity has proved to be governed by either the steric effect of R3 and R4 at the expanded rings, or the migration ability of the migrating atom. Density Functional Theory calculation suggests the initial Nazarov cyclization would be the rate-determining step. A racemic total synthesis of the natural (±)-waihoensene is realized in 18 steps by use of this methodology.
Collapse
Affiliation(s)
- Yun-Peng Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China. .,State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Jun-Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.,A training graduate student from Harbin Institute of Technology, Shenzhen, 518055, China
| | - Qi Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tian Ke
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Abstract
Terpenoids constitute a broad class of natural compounds with tremendous variability in structure and bioactivity, which resulted in a strong interest of the chemical community to this class of natural products over the last 150 years. The presence of strained small rings renders the terpenoid targets interesting for chemical synthesis, due to limited number of available methods and stability issues. In this feature article, a number of recent examples of total syntheses of terpenoids with complex carbon frameworks featuring small rings are discussed. Specific emphasis is given to the new developments in strategical and tactical approaches to construction of such systems.
Collapse
Affiliation(s)
- Gleb A Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
14
|
Abstract
Peyssonnoside A is a marine-derived sulfated diterpenoid glucoside with a unique 5/6/3/6 tetracyclic skeleton with a highly substituted cyclopropane ring deeply embedded into the structure. Herein, we report the first total synthesis of this natural product in a concise, efficient, scalable, and highly diastereoselective fashion. The aglucone peyssonnosol was synthesized in 21% overall yield after 15 steps, featuring a Simmons-Smith cyclopropanation and Mukaiyama hydration, fully controlled by the spatial structure of the substrates.
Collapse
Affiliation(s)
- Gleb A Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
15
|
Yang D, Wu X, Zheng XJ, Xie JH, Zhou QL. Dynamic Kinetic Resolution of γ-Substituted Cyclic β-Ketoesters via Asymmetric Hydrogenation: Constructing Chiral Cyclic β-Hydroxyesters with Three Contiguous Stereocenters. Org Lett 2021; 23:5153-5157. [PMID: 34152152 DOI: 10.1021/acs.orglett.1c01689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient asymmetric hydrogenation of racemic γ-substituted cyclic β-ketoesters via dynamic kinetic resolution to provide chiral cyclic β-hydroxy esters with three contiguous stereocenters is reported. Using a chiral spiro iridium catalyst (R)-5 (Ir-SpiroSAP), a series of racemic γ-aryl/alkyl substituted cyclic β-ketoesters were hydrogenated to the corresponding chiral cyclic β-hydroxy esters in high yields (84-97%) with good to excellent enantioselectivities (69->99% ee) and cis,cis-selectivities (up to >99:1).
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Jie Zheng
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Recent advances in the total synthesis of natural products bearing the contiguous all-carbon quaternary stereocenters. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|