1
|
Feng Z, Li J, Yang P, Xu X, Wang D, Li J, Zhang C, Li J, Zhang H, Zou G, Chen X. Dynamic multimodal information encryption combining programmable structural coloration and switchable circularly polarized luminescence. Nat Commun 2025; 16:2264. [PMID: 40050269 PMCID: PMC11885572 DOI: 10.1038/s41467-025-57649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Multimodal optical-materials are highly desirable due to their advantages in enhancing information security, though independent modulation is challenging, especially accurately controlling the orthogonal relationship between the structural coloration (SC) and fluorescence (FL) pattern. Herein, we report a strategy which combines programmable structural coloration and switchable circularly polarized luminescence (CPL) for multimodal information encryption. Using photomask with aligned grating, programmable periodic patterns are fabricated on a polydiacetylene (PDA) gel film, which produces image in tunable structural colors. Introducing a chiral fluorescence layer containing perovskite nanocrystals and twisted-stacking Ag nanowires (NWs) bilayers, which provides stimuli-responsive FL and CPL with high dissymmetry factor (glum, up to 1.3). Importantly, the structural coloration information and FL patterns (including CPL pattern) can be independently modulated without mutual interference, even selectively concealed or exposed by varying microstructure design of the cross-linked PDA gel or by acetonitrile treatment.
Collapse
Affiliation(s)
- Zeyu Feng
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jialei Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Yang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Laboratory, Suzhou, Jiangsu, China
| | - Xiangxiang Xu
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiahe Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chutian Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingguo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongli Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Gang Zou
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| | - Xin Chen
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Zou X, Gan N, Gao Y, Gu L, Huang W. Organic Circularly Polarized Room-Temperature Phosphorescence: Strategies, Applications and Challenges. Angew Chem Int Ed Engl 2025; 64:e202417906. [PMID: 39548951 DOI: 10.1002/anie.202417906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/18/2024]
Abstract
Organic circularly polarized luminescence (CPL) plays crucial roles in chemistry and biology for the potential in chiral recognition, asymmetric catalysis, 3D displays, and biological probes. The long-lived luminescence, large Stokes shift, and unique chiroptical properties make organic circularly polarized room-temperature phosphorescence (CPP) a new research hotspot in recent years. Nevertheless, achieving high-performance organic CPP is still challenging due to the sensitivity and complexity of integrating triplet excitons and polarization within organic materials. This review summarizes the latest advances in organic CPP, ranging from design strategies and photophysical properties to underlying luminescence mechanisms and potential applications. Specifically, the design strategies for generating CPP are systemically categorized and discussed according to the interactions between chiral units and chromophores. The applications of organic CPP in organic light-emitting diodes, sensing, chiral recognition, afterglow displays, and information encryption are also illustrated. In addition, we present the current challenges and perspectives on developing organic CPP. We expect this review to provide some instructive design principles to fabricate high-performance organic CPP materials, offering an in-depth understanding of the luminescence mechanism and paving the way toward diverse practical applications.
Collapse
Affiliation(s)
- Xin Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yaru Gao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore, 117543
| | - Long Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
3
|
Zhai ZM, Hou T, Xu Y, Teng Q, Bao SS, Zheng LM. Hollow Superhelices Based on Chiral Europium Coordination Polymers. Chemistry 2025; 31:e202403699. [PMID: 39441551 DOI: 10.1002/chem.202403699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
The construction of helical nanotubes based on chiral coordination polymers (CPs) is an intriguing but challenging task, which is important for the development of functional materials that combine macroscopic chirality with tube-related properties. Here, we selected a chiral europium phosphonate system, e. g., Eu(NO3)3/R-,S-pempH2, and carried out a systematic work. By controlling the hydrothermal reaction conditions such as the pH value of the reaction mixture, the molar ratio and concentration of the reactants, we obtained block-like crystals of R/S-1 b, rod-like crystals of R/S-3 r, hollow superhelices of R/S-2 hh, and solid superhelices of R/S-4 sh. In the latter two cases, the chirality has been successfully transferred and amplificated from the molecular level to the macroscopic level. Interestingly, compounds R/S-2 hh and R/S-4 sh have the same chemical composition of Eu(R/S-pempH)3⋅2H2O and show identical PXRD patterns, thus can be considered as the same material except for different morphologies. We further investigated their circularly polarized luminescence (CPL) properties and found that the hollow superhelix of R/S-2 hh had a larger dissymmetry factor than the solid superhelix of R/S-4 sh. This study not only provides the first example of hollow superhelices of chiral CPs, but also offers the possibility of modulating the chiroptical properties of CPs through morphological control.
Collapse
Affiliation(s)
- Zhi-Min Zhai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institute of Information Engineering, Suqian College, Suqian, 223800, China
| | - Qian Teng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Han J, Fujikawa S, Kimizuka N. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Angew Chem Int Ed Engl 2024; 63:e202410431. [PMID: 38987230 DOI: 10.1002/anie.202410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.
Collapse
Affiliation(s)
- Jianlei Han
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
5
|
Lu M, Li P, Dong X, Jiang Z, Ren S, Yao J, Dong H, Zhao YS. Adaptive Helical Chirality in Supramolecular Microcrystals for Circularly Polarized Lasing. Angew Chem Int Ed Engl 2024; 63:e202408619. [PMID: 38924245 DOI: 10.1002/anie.202408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.
Collapse
Affiliation(s)
- Miaosen Lu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Long Z, Zheng S, Zhou W, Liu G. Supramolecular chirality capture in solvent monomer-based co-assemblies via in situ photopolymerization. Chem Commun (Camb) 2024; 60:9054-9057. [PMID: 39099543 DOI: 10.1039/d4cc03560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Supramolecular assemblies with chirality inversion were developed using a co-assembly system comprising solvent monomers and a pyridine-cholesterol gelator. The polarity-dependent chiralities were captured in situ through photopolymerization, enabling the formation of multi-color circularly polarized luminescence films.
Collapse
Affiliation(s)
- Zefeng Long
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| | - Shuyuan Zheng
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| | - Weiqiang Zhou
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Guofeng Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
7
|
Zhao C, Wang Y, Jiang Y, Wu N, Wang H, Li T, Ouyang G, Liu M. Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403329. [PMID: 38625749 DOI: 10.1002/adma.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/18/2024]
Abstract
The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.
Collapse
Affiliation(s)
- Chenyang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningning Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
8
|
Ermakova EV, Zvyagina AI, Kharlamova AD, Abel AS, Andraud C, Bessmertnykh-Lemeune A. Preparation of Langmuir-Blodgett Films from Quinoxalines Exhibiting Aggregation-Induced Emission and Their Acidochromism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15117-15128. [PMID: 38979711 DOI: 10.1021/acs.langmuir.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The development of aggregation-induced emission (AIE)-exhibiting compounds heavily relies on our evolving comprehension of their behavior at interfaces, an understanding that still remains notably limited. In this study, we explored the preparation of two-dimensional (2D) sensing films from 2,3-diphenylquinoxaline-based diazapolyoxa- and polyazamacrocycles displaying AIE via the Langmuir-Blodgett (LB) technique. This systematic investigation highlights the key role of the heteroatom-containing tether of 2,3-diphenylquinoxalines in the successful fabrication of Langmuir layers at the air-water interface and the transfer of AIE-emitting supramolecular aggregates onto solid supports. Using both diazapolyoxa- and polyazamacrocycles, we prepared AIE-exhibiting monolayer films containing emissive supramolecular aggregates on silica, mica, and quartz glass and characterized them using ultraviolet-visible (UV-vis) and photoluminescence (PL) spectroscopies, atomic force microscopy (AFM) imaging, and fluorescence microscopy. We also obtained multilayer AIE-emitting films through the LB technique, albeit with increased complexity. Remarkably, by employing the smallest macrocycle N2C3Q, we successfully prepared LB films suitable for the visual detection of acidic vapors. This sensing material, which contains a much lesser amount of organic dye compared with traditional drop-cast films, can be regenerated and utilized for real-life sample analysis, such as monitoring the presence of ammonia in the air and the freshness of meat.
Collapse
Affiliation(s)
- Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alexandra I Zvyagina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alisa D Kharlamova
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Anton S Abel
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Chantal Andraud
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| | - Alla Bessmertnykh-Lemeune
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| |
Collapse
|
9
|
Li C, Wei Y, Zhang Y, Luo Z, Liu Y, He M, Quan Z. Efficient Ultraviolet Circularly Polarized Luminescence in Zero-Dimensional Hybrid Cerium Bromides. Angew Chem Int Ed Engl 2024; 63:e202403727. [PMID: 38632082 DOI: 10.1002/anie.202403727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Ultraviolet circularly polarized luminescence (UV-CPL) with high photon energy shows great potential in polarized light sources and stereoselective photopolymerization. However, developing luminescent materials with high UV-CPL performance remains challenging. Here, we report a pair of rare earth Ce3+-based zero-dimensional (0D) chiral hybrid metal halides (HMHs), R/S-(C14H24N2)2CeBr7, which exhibits characteristic UV emissions derived from the Ce 5d-4f transition. The compounds show simultaneously high photoluminescent quantum yields of (32-39)% and large luminescent dissymmetry factor (|glum|) values of (1.3-1.5)×10-2. Thus, the figures of merits of R/S-(C14H24N2)2CeBr7 are calculated to be (4.5-5.8)×10-3, which are superior to the reported UV-CPL emissive materials. Additionally, nearly 91 % of their PL intensities at 300 K can be well preserved at 380 K (LED operating temperature) without phase transition or decomposition, demonstrating the excellent structural and optical thermal stabilities of R/S-(C14H24N2)2CeBr7. Based on these enantiomers, the fabricated UV-emitting CP-LEDs exhibit high polarization degrees of ±1.0 %. Notably, the UV-CPL generated from the devices can significantly trigger the enantioselective photopolymerization of diacetylene with remarkable stereoselectivity, and consequently yield polymerized products with the anisotropy factors of circular dichroism (gCD) up to ±3.9×10-2, outperforming other UV-CPL materials and demonstrating their great potential as UV-polarized light sources.
Collapse
Affiliation(s)
- Chen Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yi Wei
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yan Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhishan Luo
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yulian Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Meiying He
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
Zhang Z, Wang Q, Zhang X, Mei J, Tian H. Multimode Stimuli-Responsive Room-Temperature Phosphorescence Achieved by Doping Butterfly-like Fluorogens into Crystalline Small-Molecular Hosts. JACS AU 2024; 4:1954-1965. [PMID: 38818060 PMCID: PMC11134381 DOI: 10.1021/jacsau.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qijing Wang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Ginesi RE, Draper ER. Methods of changing low molecular weight gel properties through gelation kinetics. SOFT MATTER 2024; 20:3887-3896. [PMID: 38691131 DOI: 10.1039/d4sm00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Low molecular weight gels continue to attract notable interest, with many potential applications. However, there are still significant gaps in our understanding of these systems and the correlation between the pre-gel and final gel states. The kinetics of the gelation process plays a crucial role in the bulk properties of the hydrogel and presents an opportunity to fine-tune these systems to meet the requirements of the chosen application. Therefore, it is possible to use a single gelator for multiple applications. This review discusses four ways to modify the pre-gelled structures before triggering gelation. Such modifications can enhance the material's intended performance, which may result in significant advancements in high-tech areas, such as drug delivery, cell culturing, electronics, and tissue engineering.
Collapse
Affiliation(s)
- Rebecca E Ginesi
- School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK.
| | - Emily R Draper
- School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK.
| |
Collapse
|
12
|
Lian Z, Liu L, He J, Fan S, Guo S, Li X, Liu G, Fan Y, Chen X, Li M, Chen C, Jiang H. Structurally Diverse Pyrene-decorated Planar Chiral [2,2]Paracyclophanes with Tunable Circularly Polarized Luminescence between Monomer and Excimer. Chemistry 2024; 30:e202303819. [PMID: 37997515 DOI: 10.1002/chem.202303819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
We reported the synthesis of a series of structurally diverse CPL-active molecules, in which pyrene units were installed to chiral pm/po-[2,2]PCP scaffolds either with or without a triple bond spacer for pm/po-PCP-P1 and pm/po-PCP-P2, respectively. The X-ray crystallographic analyses revealed that these pyrene-based [2,2]PCP derivatives exhibited diverse structures and crystal packings in the solid phases. The pyrene-based [2,2]PCP derivatives exhibit various (chir)optical properties in organic solutions, depending on their respective structures. In a mixture of dioxane and water, pm/po-PCP-P1 emit green excimer fluorescence, whereas pm/po-PCP-P2 emit blue one. The chiroptical investigation demonstrated that Rp-pm-PCP-P1 and Rp-pm-PCP-P2 exhibited completely opposite CD and CPL signals even they possess the same chiral Rp-[2,2]PCP core. The same argument also holds for other chiral pyrene-based [2,2]PCP derivatives. The theoretical calculation revealed that these unusual phenomena were attributed to different orientation between transition electric dipole moments and the magnetic dipole moments originating from the presence or absence of a triple bond spacer. These pyrene-based [2,2]PCP derivatives display various colours and fluorescence emissions in the solid state and PMMA films, possibly due to the different packings as observed in the crystal structure. Moreover, these compounds also can interact with perylene diimide through π-π interactions, leading to near-white fluorescence.
Collapse
Affiliation(s)
- Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shimin Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guoqin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuanfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
13
|
Yin C, Yan ZA, Ma X. A supramolecular assembly strategy towards organic luminescent materials. Chem Commun (Camb) 2023; 59:13421-13433. [PMID: 37877212 DOI: 10.1039/d3cc04051h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Supramolecular organic luminescent materials with different dimensionalities usually exhibit different optical properties as well as their potential applications in various fields. Recent reports showed that non-covalent interactions are useful tools to obtain diverse luminescent materials due to their dynamicity and reversibility, including π-π stacking, host-guest interactions, hydrophobic effects, hydrogen bonding, electrostatic effects and so on. In this review, we summarized recent progress in zero-, one-, two-, three-dimensional and disordered organic luminescent materials using the aforementioned strategies, in order to provide a solution for designing luminescent materials with specific structures and morphologies. The relationship between assembly behavior and luminescent properties is discussed in detail, along with the existing difficulties hindering the development of supramolecular assembly systems and future research directions.
Collapse
Affiliation(s)
- Chenjia Yin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Zi-Ang Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
14
|
Chen X, Chen J, Su W, Su J, Zou Q, Zhang Z. Dynamic monitoring of self-assembly by confining conformational changes of butterfly-motion-based molecules. Chem Commun (Camb) 2023; 59:11999-12002. [PMID: 37727890 DOI: 10.1039/d3cc03017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A simple dynamic monitoring strategy for chiral self-assembly is achieved by confining the bent-to-planar evolution observed in N,N'-diphenyl-dihydrodibenzo[a,c]phenazine derivatives (DPAC-R/S-GLD). Besides, this approach provides a facile pathway to fabricate architectures with circularly polarized luminescence (CPL) properties.
Collapse
Affiliation(s)
- Xuanying Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiacheng Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wenyuan Su
- Shanghai United International School Wanyuan Campus, Shanghai 201102, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
15
|
Zhang Z, Wang Q, Zhang X, Mei D, Mei J. Modulating the Luminescence, Photosensitizing Properties, and Mitochondria-Targeting Ability of D-π-A-Structured Dihydrodibenzo[ a, c]phenazines. Molecules 2023; 28:6392. [PMID: 37687220 PMCID: PMC10490149 DOI: 10.3390/molecules28176392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Herein, pyridinium and 4-vinylpyridinium groups are introduced into the VIE-active N,N'-disubstituted-dihydrodibenzo[a,c]phenazines (DPAC) framework to afford a series of D-π-A-structured dihydrodibenzo[a,c]phenazines in consideration of the aggregation-benefited performance of the DPAC module and the potential mitochondria-targeting capability of the resultant pyridinium-decorated DPACs (DPAC-PyPF6 and DPAC-D-PyPF6). To modulate the properties and elucidate the structure-property relationship, the corresponding pyridinyl/4-vinylpyridinyl-substituted DPACs, i.e., DPAC-Py and DPAC-D-Py, are designed and studied as controls. It is found that the strong intramolecular charge transfer (ICT) effect enables the effective separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of DPAC-PyPF6 and DPAC-D-PyPF6, which is conducive to the generation of ROS. By adjusting the electron-accepting group and the π-bridge, the excitation, absorption, luminescence, photosensitizing properties as well as the mitochondria-targeting ability can be finely tuned. Both DPAC-PyPF6 and DPAC-D-PyPF6 display large Stokes shifts (70-222 nm), solvent-dependent absorptions and emissions, aggregation-induced emission (AIE), red fluorescence in the aggregated state (λem = 600-650 nm), aggregation-promoted photosensitizing ability with the relative singlet-oxygen quantum yields higher than 1.10, and a mitochondria-targeting ability with the Pearson coefficients larger than 0.85. DPAC-D-PyPF6 shows absorption maximum at a longer wavelength, slightly redder fluorescence and better photosensitivity as compared to DPAC-PyPF6, which consequently leads to the higher photocytotoxicity under the irradiation of white light as a result of the larger π-conjugation.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Qijing Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Dong Mei
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| |
Collapse
|
16
|
Ai Y, Ni Z, Shu Z, Zeng Q, Lei X, Zhu Y, Zhang Y, Fei Y, Li Y. Supramolecular Strategy to Achieve Distinct Optical Characteristics and Boosted Chiroptical Enhancement Based on the Closed Conformation of Platinum(II) Complexes. Inorg Chem 2023. [PMID: 37365822 DOI: 10.1021/acs.inorgchem.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Synthesis of chiral molecules for understanding and revealing the expression, transfer, and amplification of chirality is beneficial to explore effective chiral medicines and high-performance chiroptical materials. Herein, we report a series of square-planar phosphorescent platinum(II) complexes adopting a dominantly closed conformation that exhibit efficient chiroptical transfer and enhancement due to the nonclassical intramolecular C-H···O or C-H···F hydrogen bonds between bipyridyl chelating and alkynyl auxiliary ligands as well as the intermolecular π-π stacking and metal-metal interactions. The spectroscopic and theoretical calculation results demonstrate that the chirality and optic properties are regulated from the molecular level to hierarchical assemblies. Notably, a 154 times larger gabs value of the circular dichroism signals is obtained. This study provides a feasible design principle to achieve large chiropticity and control the expression and transfer of the chirality.
Collapse
Affiliation(s)
- Yeye Ai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhigang Ni
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhu Shu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Qingguo Zeng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xin Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yihang Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yinghao Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yuexuan Fei
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongguang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
17
|
Ma S, Kim JH, Chen W, Li L, Lee J, Xue J, Liu Y, Chen G, Tang B, Tao W, Kim JS. Cancer Cell-Specific Fluorescent Prodrug Delivery Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207768. [PMID: 37026629 PMCID: PMC10238224 DOI: 10.1002/advs.202207768] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Indexed: 06/04/2023]
Abstract
Targeting cancer cells with high specificity is one of the most essential yet challenging goals of tumor therapy. Because different surface receptors, transporters, and integrins are overexpressed specifically on tumor cells, using these tumor cell-specific properties to improve drug targeting efficacy holds particular promise. Targeted fluorescent prodrugs not only improve intracellular accumulation and bioavailability but also report their own localization and activation through real-time changes in fluorescence. In this review, efforts are highlighted to develop innovative targeted fluorescent prodrugs that efficiently accumulate in tumor cells in different organs, including lung cancer, liver cancer, cervical cancer, breast cancer, glioma, and colorectal cancer. The latest progress and advances in chemical design and synthetic considerations in fluorescence prodrug conjugates and how their therapeutic efficacy and fluorescence can be activated by tumor-specific stimuli are reviewed. Additionally, novel perspectives are provided on strategies behind engineered nanoparticle platforms self-assembled from targeted fluorescence prodrugs, and how fluorescence readouts can be used to monitor the position and action of the nanoparticle-mediated delivery of therapeutic agents in preclinical models. Finally, future opportunities for fluorescent prodrug-based strategies and solutions to the challenges of accelerating clinical translation for the treatment of organ-specific tumors are proposed.
Collapse
Affiliation(s)
- Siyue Ma
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
- Key Laboratory of Emergency and Trauma, Ministry of EducationCollege of Emergency and TraumaHainan Medical UniversityHaikou571199China
| | - Ji Hyeon Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Wei Chen
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lu Li
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Jieun Lee
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Junlian Xue
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Guang Chen
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitutes of Biomedical SciencesShandong Normal UniversityJinan250014China
| | - Bo Tang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitutes of Biomedical SciencesShandong Normal UniversityJinan250014China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jong Seung Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| |
Collapse
|
18
|
Khanra P, Singh AK, Roy L, Das A. Pathway Complexity in Supramolecular Copolymerization and Blocky Star Copolymers by a Hetero-Seeding Effect. J Am Chem Soc 2023; 145:5270-5284. [PMID: 36797682 DOI: 10.1021/jacs.2c12894] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
19
|
Huang W, Feng S, Liu J, Liang B, Zhou Y, Yu M, Liang J, Huang J, Lü X, Huang W. Configuration-Induced Multichromism of Phenanthridine Derivatives: A Type of Versatile Fluorescent Probe for Microenvironmental Monitoring. Angew Chem Int Ed Engl 2023; 62:e202219337. [PMID: 36602266 DOI: 10.1002/anie.202219337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Fluorescent probes are attractive in diagnosis and sensing. However, most reported fluorophores can only detect one or few analytes/parameters, notably limiting their applications. Here we have designed three phenanthridine-based fluorophores (i.e., B1, F1, and T1 with 1D, 2D, and 3D molecular configuration, respectively) capable of monitoring various microenvironments. In rigidifying media, all fluorophores show bathochromic emissions but with different wavelength and intensity changes. Under compression, F1 shows a bathochromic emission of over 163 nm, which results in organic fluorophore-based full-color piezochromism. Moreover, both B1 and F1 exhibit an aggregation-caused quenching (ACQ) behavior, while T1 is an aggregation-induced emission (AIE) fluorophore. Further, F1 and T1 selectively concentrate in cell nucleus, whereas B1 mainly stains the cytoplasm in live cell imaging. This work provides a general design strategy of versatile fluorophores for microenvironmental monitoring.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ya Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Mengya Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiayuan Liang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Jiaguo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Jin JM, Chen WC, Tan JH, Li Y, Mu Y, Zhu ZL, Cao C, Ji S, Hu D, Huo Y, Zhang HL, Lee CS. Photo-controllable Luminescence from Radicals Leading to Ratiometric Emission Switching via Dynamic Intermolecular Coupling. Angew Chem Int Ed Engl 2023; 62:e202214281. [PMID: 36314420 DOI: 10.1002/anie.202214281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The development of photoinduced luminescent radicals with dynamic emission color is still challenging. Herein we report a novel molecular radical system (TBIQ) that shows photo-controllable luminescence, leading to a wide range of ratiometric color changes via light excitation. The conjugated skeleton of TBIQ is decorated with steric-demanding tertiary butyl groups that enable appropriate intermolecular interaction to make dynamic intermolecular coupling possible for controllable behaviors. We reveal that the helicenic pseudo-planar conformation of TBIQ experiences a planarization process after light excitation, leading to more compactly stacked supermolecules and thus generating radicals via intermolecular charge transfer. The photo-controllable luminescent radical system is employed for a high-level information encryption application. This study may offer unique insight into molecular dynamic motion for optical manufacturing and broaden the scope of smart-responsive materials for advanced applications.
Collapse
Affiliation(s)
- Jia-Ming Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yang Li
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dehua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hao-Li Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
21
|
Li J, Zhang J, Wang J, Wang D, Yan Y, Huang J, Tang BZ. Insights into Self-Assembly of Nonplanar Molecules with Aggregation-Induced Emission Characteristics. ACS NANO 2022; 16:20559-20566. [PMID: 36383407 DOI: 10.1021/acsnano.2c07263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Utilizing nonplanar conjugated molecules as building blocks facilitates the development of self-assembly but is fundamentally challenging. To study the self-assembly behavior, we herein demonstrate the self-assembly process of a nonplanar conjugated molecule with aggregation-induced emission (AIE) feature from an isolated molecule to an irregular cluster to a well-defined vesicle driven by amphiphiles. The superhigh aggregation-sensitive emission affords more precise and detailed information about the self-assembly process than traditional dyes. Meanwhile, the arrangements of the AIE-active molecule change from disordered to well-organized forms by reducing the twisted configuration during the transformation process, and the strong hydrophobicity of amphiphiles is crucial for such configuration and morphology transformations. Owing to the thermophilic bacteria-mimetic membranes, the obtained vesicles exhibit a property of superhigh thermal stability. They also display promising light-harvesting applications. This work not only deciphers the self-assembly of AIE molecules but also provides a strategy for nonplanar molecules to build well-organized self-assemblies.
Collapse
Affiliation(s)
- Jie Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianxing Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
22
|
Zhang Z, Jin X, Sun X, Su J, Qu DH. Vibration-induced emission: Dynamic multiple intrinsic luminescence. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022; 61:e202210604. [DOI: 10.1002/anie.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weili Shang
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Jie Cui
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Kaiang Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
24
|
Wang L, Hao A, Xing P. Steroid-Aromatics Clathrates as Chiroptical Materials with Circularly Polarized Luminescence and Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44902-44908. [PMID: 36134641 DOI: 10.1021/acsami.2c15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solid-state host-guest complexation shows great potential in the fabrication of chiroptical and phosphorescent materials. Developing chiral hosts toward achiral guests with a wide guest scope would expand the chiroptical application, which however remains a major challenge. Here, we report the steroid-aromatic compound complexation in the solid state that could realize effective chirality transfer, circularly polarized luminescence, and room temperature phosphorescence (RTP). Progesterone shows cocrystallization behavior toward a wide scope of guests through CH-π interaction, which also offers a rigid yet chiral microenvironment to entrap aromatic luminophores within the cavities or channels. Depending on the geometry of the guests, the handedness of the Cotton effects and circularly polarized luminescence could be tuned. Host-guest complexation not only gave rise to Cotton effects and circularly polarized luminescence but also stabilized the triplet state of bromo-compounds to achieve RTP and circularly polarized phosphorescence. This work first illustrates the application of steroid complexation in the chiroptical and phosphorescent materials, which shows potential in the display and information aspects.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
25
|
Kumar G, Kumar M, Bhalla V. Controlling the Transition of Nanospheres to Superhelices in Aqueous Media by Using a “Smart” Pyrazine Building Block. Angew Chem Int Ed Engl 2022; 61:e202207416. [DOI: 10.1002/anie.202207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| | - Manoj Kumar
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| | - Vandana Bhalla
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| |
Collapse
|
26
|
Shi Z, Wang Q, Yi J, Zhao C, Chen S, Tian H, Qu D. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022; 61:e202207405. [DOI: 10.1002/anie.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shao‐Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
27
|
Nabika H, Tsukada K, Itatani M, Ban T. Tunability of Self-Organized Structures Based on Thermodynamic Flux. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11330-11336. [PMID: 36067357 DOI: 10.1021/acs.langmuir.2c01602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nature establishes structures and functions via self-organization of constituents, including ions, molecules, and particles. Understanding the selection rule that determines the self-organized structure formed from many possible alternatives is fundamentally and technologically important. In this study, the selection rule for the self-organization associated with a reaction-diffusion system was explored using the Liesegang phenomenon, by which a periodic precipitation pattern is formed as a model system. Experiments were conducted by systematically changing the mass flux. At low mass fluxes, a vertically periodic pattern was formed, whereas at high mass fluxes, a horizontally periodic pattern was formed. The results inferred that a structural vertical-to-horizontal periodicity transition occurred in the self-organized periodic structure at the crossover flux at which the entropy production rate reversed. Numerical analyses attributed the as-observed flux-dependent structural transition to the selection of the self-organized pattern with a higher entropy production rate. These findings contribute to our understanding of how nature controls self-organized structures and geometry, potentially facilitating the development of novel designs, syntheses, and fabrication processes for well-controlled organized functional structures.
Collapse
Affiliation(s)
- Hideki Nabika
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560, Japan
- Graduate School of Science and Engineering, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560, Japan
| | - Kanta Tsukada
- Graduate School of Science and Engineering, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560, Japan
| | - Masaki Itatani
- Graduate School of Science and Engineering, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560, Japan
| | - Takahiko Ban
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Machikaneyamacho 1-3, Toyonaka City, Osaka 560-8531, Japan
| |
Collapse
|
28
|
Li J, Peng X, Hou C, Shi S, Ma J, Qi Q, Lai W. Discriminating Chiral Supramolecular Motions by Circularly Polarized Luminescence. Chemistry 2022; 28:e202202336. [DOI: 10.1002/chem.202202336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Junfeng Li
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xuelei Peng
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chenxi Hou
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shunan Shi
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiamian Ma
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Qi Qi
- School of Chemistry and Chemical Engineering Southeast University No.2 SEU Road Nanjing 211189 China
| | - Wen‐Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
29
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202208574. [DOI: 10.1002/anie.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Song
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
30
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weili Shang
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Yuqian Jiang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Jie Cui
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Kaiang Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Tiesheng Li
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
31
|
Yang J, Guo L, Yong X, Zhang T, Wang B, Song H, Zhao YS, Hou H, Yang B, Ding J, Lu S. Simulating the Structure of Carbon Dots via Crystalline π‐Aggregated Organic Nanodots Prepared by Kinetically Trapped Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202207817. [DOI: 10.1002/anie.202207817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jianye Yang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Like Guo
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Xue Yong
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Tongjin Zhang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Boyang Wang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Haoqiang Song
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongwei Hou
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Jie Ding
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
32
|
Zhang Y, Ding Z, Ma Y, Jiang S. Morphology-dependent photoresponsive behaviors of a self-assembled system based on a single cyanostilbene derivative. SOFT MATTER 2022; 18:5850-5856. [PMID: 35904072 DOI: 10.1039/d2sm00691j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, photoresponsive supramolecular self-assemblies have shown great potential in various fields. However, it is still a great challenge to integrate and control multiple photoresponsive behaviors in a self-assembled system. Herein, we design a novel cyanostilbene-based molecule VOE. In the aggregated state, it has different photoresponsive behaviors under different morphologies. When VOE molecules are dispersed in a 70% H2O/THF mixture, two different assembly morphologies are obtained as the aging time changes. One is weakly emissive nanoparticles with amorphous packing arrangements, and the other is highly emissive microbelts with well-ordered stacking modes. When they are irradiated with blue light (420 nm), the disordered assembly structure of nanoparticles leads to a [2+2] cycloaddition reaction, while a Z/E isomerization reaction occurs in ordered packed microbelts. Therefore, we can use a self-assembled system to generate two different morphologies, enabling completely different emissions and photoresponsive behaviors.
Collapse
Affiliation(s)
- Yangdaiyi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zeyang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yao Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
33
|
Shi ZT, Wang Q, Yi J, Zhao C, Chen SY, Tian H, Qu DH. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboretory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Joint Research Center East China University of Science and Technology CHINA
| | - Qian Wang
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Chengxi Zhao
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Jiont Research Center East China University of Science and Technology CHINA
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - He Tian
- Key Laboratory for Advanced Materials and Joint Internation Research Laboratory of Precision Chemistry and Molecular Enginering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
34
|
Chettri B, Jha S, Dey N. Unique CT emission from Aryl Terpyridine Nanoparticles in Aqueous Medium: A Combined Effect of Excited State Hydrogen bonding and Conformational Planarization. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Fang M, Wei W, Li R, Mao L, Wang Y, Guan Y, Chen Q, Shuai Z, Wei Y. The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States. Polymers (Basel) 2022; 14:polym14142880. [PMID: 35890656 PMCID: PMC9320569 DOI: 10.3390/polym14142880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
The study of aggregation-induced emission luminogens (AIEgens) shows promising perspectives explored in lighting, optical sensors, and biological therapies. Due to their unique feature of intense emissions in aggregated solid states, it smoothly circumvents the weaknesses in fluorescent dyes, which include aggregation-caused quenching of emission and poor photobleaching character. However, our present knowledge of the AIE phenomena still cannot comprehensively explain the mechanism behind the substantially enhanced emission in their aggregated solid states. Herein, to systematically study the mechanism, the typical AIEgens tetraphenylethene (TPE) was chosen, to elucidate its photophysical properties, the TPE in THF/H2O binary solvents, TPE in THF solvents depending on concentration, and the following direct conversion from a dissolved state to a precipitated solid state were analyzed. Moreover, the TPE derivatives were also investigated to supply more evidence to better decipher the generally optical behaviors of TPE and its derivatives. For instance, the TPE derivative was homogeneously dispersed into tetraethyl orthosilicate to monitor the variance of photophysical properties during sol–gel processing. Consequently, TPE and its derivatives are hypothesized to abide by the anti-Kasha rule in dissolved states. In addition, the factors primarily influencing the nonlinear emission shifting of TPE and its derivatives are also discussed.
Collapse
Affiliation(s)
- Ming Fang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
- Correspondence: (M.F.); (Y.W.)
| | - Wenjuan Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Ruoxin Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Liucheng Mao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China; (Y.W.); (Z.S.)
| | - Yan Guan
- Analytical Instrumentation Center of Peking University, Center for Physicochemical Analysis and Measurement in ICCAS, Beijing 100871, China;
| | - Qiang Chen
- Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China;
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China; (Y.W.); (Z.S.)
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
- Correspondence: (M.F.); (Y.W.)
| |
Collapse
|
36
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Song
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Shuai Qiu
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Wei Tian
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
37
|
Kumar G, Kumar M, Bhalla V. Controlling the Transition of Nanospheres to Superhelices in Aqueous Media by Using a ‘Smart’ Pyrazine Building Block. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaurav Kumar
- Guru Nanak Dev University Department of Chemistry INDIA
| | - Manoj Kumar
- Guru Nanak Dev University Department of Chemistry INDIA
| | - Vandana Bhalla
- Guru Nanak Dev University, Amritsar Chemistry Assistant Professor, Department of Chemistry,Guru Nanak Dev University, AmritsarPunjab 143005 AMRITSAR INDIA
| |
Collapse
|
38
|
Du C, Zhu X, Yang C, Liu M. Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Chenchen Yang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Chen Y, Zhang Y, Li H, Li Y, Zheng W, Quan Y, Cheng Y. Dynamic Circularly Polarized Luminescence with Tunable Handedness and Intensity Enabled by Achiral Dichroic Dyes in Cholesteric Liquid Crystal Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202309. [PMID: 35535384 DOI: 10.1002/adma.202202309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Cholesteric liquid crystals (CLCs) are chiral supramolecular systems that self-assemble into a highly regular helical arrangement in a liquid crystal (LC) medium. Such an arrangement is highly beneficial for the chiral enlargement effect on circularly polarized luminescence (CPL) signals. Dichroic dyes with rod-like molecular structures can exhibit fluorescence anisotropy along both the long and short molecular axes owing to their transition dipole moment (TDM) vectors. In this work, a pair of donor-accepter (D-A) achiral dichroic dyes is prepared, namely, 3,4-ethylenedioxythiophene derivative (P1, whose TDM vector is parallel to the long axis of the molecule, i.e., F|| > F⊥ ) and anthraquinone derivative (N1, whose TDM vector is perpendicular to the long axis of the molecule, i.e., F|| < F⊥ ). CLCs can be fabricated by doping P1 or N1 together with chiral 1,1'-binaphthyl-derived inducers into SLC1717 medium. Dynamic CPL with tunable handedness and intensity is achieved by changing the N1:P1 mass ratio, and the luminescence dissymmetry factor (gem ) value reaches |0.71|. This work describes the first observation of dynamic CPL with tunable handedness and intensity enabled by TDM regulation of achiral dichroic dyes in a CLC medium.
Collapse
Affiliation(s)
- Yihan Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yang Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenhua Zheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
40
|
Yang J, Guo L, Yong X, Zhang T, Wang B, Song H, Zhao Y, Hou H, Yang B, Ding J, Lu S. Simulating the Structure of Carbon Dots via Crystalline π ‐aggregated Organic Nanodots Prepared by Kinetically Trapped Self‐assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianye Yang
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Like Guo
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Xue Yong
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Tongjin Zhang
- Chinese Academy of Sciences Key Laboratory of Photochemistry, Institute of Chemistry CHINA
| | - Boyang Wang
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Haoqiang Song
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - YongSheng Zhao
- Chinese Academy of Sciences Key Laboratory of Photochemistry, Institute of Chemistry CHINA
| | - Hongwei Hou
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Bai Yang
- Jilin University College of Chemistry CHINA
| | - Jie Ding
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Siyu Lu
- Zhengzhou University College of Chemistry and Molecular Engineering No.100 Science Avenue, Zhengzhou City, Henan Province P.R.China. Zhengzhou, Henan CHINA
| |
Collapse
|
41
|
Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle. Nat Commun 2022; 13:2850. [PMID: 35606365 PMCID: PMC9126912 DOI: 10.1038/s41467-022-30121-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/18/2022] [Indexed: 12/29/2022] Open
Abstract
We presented an effective and universal strategy for the improvement of luminophore’s solid-state emission, i.e., macrocyclization-induced emission enhancement (MIEE), by linking luminophores through C(sp3) bridges to give a macrocycle. Benzothiadiazole-based macrocycle (BT-LC) has been synthesized by a one-step condensation of the monomer 4,7-bis(2,4-dimethoxyphenyl)−2,1,3-benzothiadiazole (BT-M) with paraformaldehyde, catalyzed by Lewis acid. In comparison with the monomer, macrocycle BT-LC produces much more intense fluorescence in the solid state (ΦPL = 99%) and exhibits better device performance in the application of OLEDs. Single-crystal analysis and theoretical simulations reveal that the monomer can return to the ground state through a minimum energy crossing point (MECPS1/S0), resulting in the decrease of fluorescence efficiency. For the macrocycle, its inherent structural rigidity prohibits this non-radiative relaxation process and promotes the radiative relaxation, therefore emitting intense fluorescence. More significantly, MIEE strategy has good universality that several macrocycles with different luminophores also display emission improvement. Organic luminescent materials attract attention due to their wide application range, but many organic luminogens suffer from severe quenching effect in the aggregate state. Here, the authors demonstrate a macrocyclization induced emission enhancement by linking luminophores through methylene bridges to give a macrocycle.
Collapse
|
42
|
Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1245-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Chen X, Zhang S, Chen X, Li Q. Tunable Circularly Polarized Luminescent Supramolecular Systems: Approaches and Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
45
|
Yang X, Jin X, Zhou L, Duan P, Fan Y, Wang Y. Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Lili Zhou
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| |
Collapse
|
46
|
Hu L, Zhu X, Yang C, Liu M. Two‐Dimensional Chiral Polyrotaxane Monolayer with Emergent and Steerable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | | | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
47
|
Qiu S, Gao Z, Song X, Hu X, Yuan H, Tian W. Hierarchical self-assembly induced supramolecular polymer helical nanowires with white circularly polarized luminescence. Chem Commun (Camb) 2022; 58:4647-4650. [DOI: 10.1039/d2cc00336h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel CPL-active supramolecular helical nanowires (SHNW) was successfully constructed, via the hierarchical self-assembly of supramolecular coordination polymers. The CPL colors of the resultant SHNWs are drastically regulated from blue...
Collapse
|
48
|
Mu B, Zhang Z, Quan X, Hao X, Tian W. Perylene Bisimide-Based Luminescent Liquid Crystals with Tunable Solid-State Light Emission. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57786-57795. [PMID: 34821143 DOI: 10.1021/acsami.1c17280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perylene bisimides are among the most studied building blocks for supramolecular assemblies in the fabrication of optoelectronic devices for their exceptional optical and electronic properties; however, developing perylene bisimide-based luminescent liquid crystals remains a challenge for the strong π-stacking tendency of the large planar aromatic core to quench the emission. We here reported a novel strategy to achieve luminescent liquid crystals based on perylene bisimides by introducing a conformation-adjustable core to control the molecular stacking arrangement of planar perylene bisimides in the solid state. The emission wavelength is in the deep-red region with a luminescence efficiency of up to 10%. Fluorescence properties of the liquid crystals can be further regulated by photoisomerization-induced structural evolution from columnar to lamellar mesophases. These luminescent liquid crystals are also able to not only exhibit strong emission at high temperatures but also show attractive thermochromic luminescence tuning behaviors. This work provides a new strategy for the design and development of novel solid-state luminescent materials with potential for various optoelectronic applications.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuhong Quan
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
49
|
Yang X, Jin X, Zhou L, Duan P, Fan Y, Wang Y. Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angew Chem Int Ed Engl 2021; 61:e202115600. [PMID: 34881474 DOI: 10.1002/anie.202115600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/11/2022]
Abstract
Chirality generation and transfer is not only of critical importance in resolving the origin of biological homochirality, but also is of great significance for exploring the chirality-related functionalities in nanomaterials and supramolecular systems. Although modulating the ground state chirality in chiral nanomaterials has been widely demonstrated, it remains a big challenge to steer the excited state chirality (circularly polarized luminescence, CPL). Herein, we present a kind of chiral spherical micelles constructed by chiral cationic gemini surfactants, whose surfaces and cavities could co-assemble with hydrophilic and hydrophobic emitters concurrently. Subsequently, the hydrophilic and hydrophobic emitters could be endowed with CPL activity in the aqueous phase. Additionally, the cavities of such micelles can be regarded as the powerful chiral confined space, which could effectively modulate the excited state chirality of dynamic chemical reactions, enabling color-adjustable CPL emission.
Collapse
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Lili Zhou
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| |
Collapse
|
50
|
Hu L, Zhu X, Yang C, Liu M. Two-Dimensional Chiral Polyrotaxane Monolayer with Emergent and Steerable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 61:e202114759. [PMID: 34816570 DOI: 10.1002/anie.202114759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/20/2022]
Abstract
Here, we propose a mechanically interlocked strategy to achieve a 2D chiral polyrotaxane (2D CPR) monolayer with emergent and steerable CPL activity by utilizing β-cyclodextrin as the chiral wheel and a luminescent dynamic covalent organic framework as 2D polymeric axle. Such methodology, integrating host-guest and dynamic covalent chemistry, enabled the direct construction of a delaminated 2D CPR monolayer with extraordinarily large size (up to tens of micrometers) and simultaneously endowed chirality to the extended 2D CPR network to generate CPL activity. Importantly, not only the structure but also the CPL performance of the 2D CPR network can be further regulated by the feeding amount of β-cyclodextrin. This work demonstrated a monolayered 2D CPR with CPL activity for the first time. The insightful structure-property relationship of the induced CPL will be of benefit for a deeper understanding of the excited-state chirality of 2D chiral nanomaterials.
Collapse
Affiliation(s)
- Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | | | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|