1
|
Jin QQ, Duan XF, Yan DN, Yin F, Li CC, Zhou LP, Cai LX, Sun QF. A stimuli-responsive dimeric capsule built from an acridine-based metallacycle for ratiometric fluorescence sensing of TNP. Dalton Trans 2025; 54:4998-5005. [PMID: 39991840 DOI: 10.1039/d4dt03334e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Stimulus-responsive luminescent metal-organic architectures have received a lot of attentions in supramolecular chemistry. Herein, we report the synthesis of an acridine-based metal-organic macrocycle that undergoes reversible interconversion between the monomer and the dimer states in response to variations in the concentration and solvent, resulting in a switch between blue and green fluorescence. X-ray structure analysis reveals that hydrogen bonds between benzimidazole C-H and NO3- anions, along with π-π interactions between acridines, are the primary driving forces behind this behavior of the assembly. The stimuli-responsive supramolecular fluorescence switching originates from the monomer and excimer states. The addition of 2,4,6-trinitrophenol (TNP) leads to a fluorescence "turn-off" at 430 nm for the monomer and a "turn-on" at 520 nm for the dimer, thus facilitating the ratiometric detection of TNP with the detection limit being as low as 13 ppb. Our work provides valuable insights into the construction of stimuli-responsive materials for fluorescence sensing.
Collapse
Affiliation(s)
- Qi-Qi Jin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiao-Fang Duan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Chen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Xuan Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Shi J, Li K, Yu H, Han N, Yang T, Jiang X, Hao XQ, Chen Z, Wu G, Zhang H, Li B, Wang M. Ultra-High Metal-Ion Selectivity Induced by Intramolecular Cation-π Interactions for the One-Pot Synthesis of Precise Heterometallic Architectures. Angew Chem Int Ed Engl 2025; 64:e202416150. [PMID: 39325549 DOI: 10.1002/anie.202416150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Heterometallic supramolecules, known for their unique synergistic effects, have shown broad applications in photochemistry, host-guest chemistry, and catalysis. However, there are great challenges to precisely construct heterometallic supramolecules rather than a statistical mixture, due to the limited metal-ion selectivity of coordination units. In particular, heterometallic architectures precisely encoded with different metal ions usually fail to form in a one-pot method when only one type of coordinated motif exists due to its poor metal-ion selectivity. Herein, we propose an effective intramolecular cation-π (ICπ) strategy and successfully constructed the heterometallic supramolecule Zn2Cu4L34 by the one-pot self-assembly of tritopic terpyridyl ligand L3 with Zn(II) and Cu(II), following a clear self-assembly mechanism in which only thermodynamic dimers ZnL12 and Cu2L22 were constructed with model ligands L1, L2, Zn(II) and Cu(II) with perfect self-sorting and an ultra-high metal-selectivity feature. The successful construction of the heterometallic supramolecule Zn2Cu4L34, in which the definite sequence of metal ions Zn(II) and Cu(II) is encoded in the one-pot method, will offer a novel approach to precisely construct heterometallic architectures.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Tianyi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 637553, Singapore
| | - Xin-Qi Hao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
3
|
Hong YL, Zuo SW, Du HY, Shi ZQ, Hu H, Li G. Four Lanthanide(III) Metal-Organic Frameworks Fabricated by Bithiophene Dicarboxylate for High Inherent Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13745-13755. [PMID: 38446712 DOI: 10.1021/acsami.3c18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Currently, it is still a challenge to directly achieve highly stable metal-organic frameworks (MOFs) with superior proton conductivity solely through the exquisite design of ligands and the attentive selection of metal nodes. Inspired by this, we are intrigued by a multifunctional dicarboxylate ligand including dithiophene groups, 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), and lanthanide ions with distinct coordination topologies. Successfully, four isostructural three-dimensional lanthanide(III)-based MOFs, [Ln2(DTD)3(DEF)4]·DEF·6H2O [LnIII = TbIII (Tb-MOF), EuIII (Eu-MOF), SmIII (Sm-MOF), and DyIII (Dy-MOF)], were solvothermally prepared, in which the effective proton transport will be provided by the coordinated or free solvent molecules, the crystalline water molecules, and the framework components, as well as a large number of highly electronegative S and O atoms. As expected, the four Ln-MOFs demonstrated the highest proton conductivities (σ) being 0.54 × 10-3, 3.75 × 10-3, 1.28 × 10-3, and 1.92 × 10-3 S·cm-1 for the four MOFs, respectively, at 100 °C/98% relative humidity (RH). Excitingly, Dy-MOF demonstrated an extraordinary ultrahigh σ of 1 × 10-3 S·cm-1 at 30 °C/98% RH. Additionally, the plausible proton transport mechanisms were emphasized.
Collapse
Affiliation(s)
- Yu-Ling Hong
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuai-Wu Zuo
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hao-Yu Du
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Hailiang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
4
|
Yin F, Yang J, Zhou LP, Meng X, Tian CB, Sun QF. 54 K Spin Transition Temperature Shift in a Fe 6L 4 Octahedral Cage Induced by Optimal Fitted Multiple Guests. J Am Chem Soc 2024; 146:7811-7821. [PMID: 38452058 DOI: 10.1021/jacs.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Spin-crossover (SCO) coordination cages are at the forefront of research for their potential in crafting next-generation molecular devices. However, due to the scarcity of SCO hosts and their own limited cavities, the interplay between the SCO host and the multiple guests binding has remained elusive. In this contribution, we present a family of pseudo-octahedral coordination cages (M6L4, M = ZnII, CoII, FeII, and NiII) assembled from a tritopic tridentate ligand L with metal ions. The utilization of FeII ion leads to the successful creation of the Fe6L4-type SCO cage. Host-guest studies of these M6L4 cages reveal their capacity to encapsulate four adamantine-based guests. Notably, the spin transition temperature T1/2 of Fe6L4 is dependent on the multiple guests encapsulated. The inclusion of adamantine yields an unprecedented T1/2 shift of 54 K, a record shift in guest-mediated SCO coordination cages to date. This drastic shift is ascribed to the synergistic effect of multiple guests coupled with their optimal fit within the host. Through a straightforward thermodynamic cycle, the binding affinities of the high-spin (HS) and low-spin (LS) states are separated from their apparent binding constant. This result indicates that the LS state has a stronger binding affinity for the multiple guests than the HS state. Exploring the SCO thermodynamics of host-guest complexes allows us to examine the optimal fit of multiple guests to the host cavity. This study reveals that the T1/2 of the SCO host can be manipulated by the encapsulation of multiple guests, and the SCO cage is an ideal candidate for determining the multiple guest fit.
Collapse
Affiliation(s)
- Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Said A, Chen G, Zhang G, Wang D, Liu Y, Gao F, Wang G, Tung CH, Wang Y. Enhancing the photocatalytic performance of a rutile unit featuring a titanium-oxide cluster by Pb 2+ doping. Dalton Trans 2024; 53:3666-3674. [PMID: 38293811 DOI: 10.1039/d3dt03865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Titanium-oxide clusters (TOCs) are well-defined molecular models for TiO2 materials and provide the opportunity to study the structure-activity relationships of TiO2. Here, we report a new Pb-doped TOC, Ti12Pb2, which resembles a two-layer decker of the {TiTi6} structural units of rutile TiO2 with two Ti4+ ions replaced by two Pb2+ ions. Its electronic structure, photoresponse, and photocatalytic performances were investigated and compared with those of the Ti14 cluster, which is isostructural to Ti12Pb2. Our results indicate that Pb2+ does not affect the electronic structure, but it greatly enhances the photocatalytic activity by improving the charge-separation and interfacial charge-transfer properties of the TOC. The successful synthesis of Ti12Pb2 highlights the roles of closed-shell heterometal ions in the construction of new TOCs. Our mechanism may be an inspiration for understanding the structure-activity relationships of closed-shell heterometal-doped TiO2.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Wang Z, Zhu YJ, Ahlstedt O, Konstantinou K, Akola J, Tung CH, Alkan F, Sun D. Three in One: Three Different Molybdates Trapped in a Thiacalix[4]arene Protected Ag 72 Nanocluster for Structural Transformation and Photothermal Conversion. Angew Chem Int Ed Engl 2024; 63:e202314515. [PMID: 38015420 DOI: 10.1002/anie.202314515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Polyoxometalates (POMs) represent crucial intermediates in the formation of insoluble metal oxides from soluble metal ions, however, the rapid hydrolysis-condensation kinetics of MoVI or WVI makes the direct characterization of coexisted molecular species in a given medium extremely difficult. Silver nanoclusters have shown versatile capacity to encapsulate diverse POMs, which provides an alternative scene to appreciate landscape of POMs in atomic precision. Here, we report a thiacalix[4]arene protected silver nanocluster (Ag72b) that simultaneously encapsulates three kinds of molybdates (MoO4 2- , Mo6 O22 8- and Mo7 O25 8- ) in situ transformed from classic Lindqvist Mo6 O19 2- , providing more deep understanding on the structural diversity and condensation growth route of POMs in solution. Ag72b is the first silver nanocluster trapping so many kinds of molybdates, which in turn exert collective template effect to aggregate silver atoms into a nanocluster. The post-reaction of Ag72b with AgOAc or PhCOOAg produces a discrete Ag24 nanocluster (Ag24a) or an Ag28 nanocluster based 1D chain structure (Ag28a), respectively. Moreover, the post-synthesized Ag28a can be utilized as potential ignition material for further application. This work not only provides an important model for unlocking dynamic features of POMs at atom-precise level but also pioneers a promising approach to synthesize silver nanoclusters from known to unknown.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Olli Ahlstedt
- Computational Physics Laboratory, Tampere University, 33014, Tampere, Finland
| | | | - Jaakko Akola
- Computational Physics Laboratory, Tampere University, 33014, Tampere, Finland
- Department of Physics, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Fahri Alkan
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
7
|
Liu Y, Liu FZ, Li S, Liu H, Yan K. Biasing the Formation of Solution-Unstable Intermediates in Coordination Self-Assembly by Mechanochemistry. Chemistry 2023; 29:e202302563. [PMID: 37670119 DOI: 10.1002/chem.202302563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Due to the reversible nature of coordination bonds and solvation effect, coordination self-assembly pathways are often difficult to elucidate experimentally in solution, as intermediates and products are in constant equilibration. The present study shows that some of these transient and high-energy self-assembly intermediates can be accessed by means of ball-milling approaches. Among them, highly aqueous-unstable Pd3 L11 and Pd6 L14 open-cage intermediates of the framed Fujita Pd6 L14 cage and Pd2 L22 , Pd3 L21 and Pd4 L22 intermediates of Mukherjee Pd6 L24 capsule are successfully trapped in solid-state, where Pd=tmedaPd2+ , L1=2,4,6-tris(4-pyridyl)-1,3,5-triazine and L2=1,3,5-tris(1-imidazolyl)benzene). Their structures are assigned by a combination of solution-based characterization tools such as standard NMR spectroscopy, DOSY NMR, ESI-MS and X-ray diffraction. Collectively, these results highlight the opportunity of using mechanochemistry to access unique chemical space with vastly different reactivity compared to conventional solution-based supramolecular self-assembly reactions.
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
8
|
Hu X, Tian W, Jiao Y, Kelley SP, Wang P, Dalgarno SJ, Atwood DA, Feng S, Atwood JL. Redox-Controlled Self-Assembly of Vanadium-Seamed Hexameric Pyrogallol[4]Arene Nanocapsules. J Am Chem Soc 2023; 145:20375-20380. [PMID: 37672654 DOI: 10.1021/jacs.3c05448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Here we report the controlled self-assembly of vanadium-seamed metal-organic nanocapsules with specific metal oxidation state distributions. Three supramolecular assemblies composed of the same numbers of components including 24 metal centers and six pyrogallol[4]arene ligands were constructed: a VIII24L6 capsule, a mixed-valence VIII18VIV6L6 capsule, and a VIV24L6 capsule. Crystallographic studies of the new capsules reveal their remarkable structural complexity and geometries, while marked differences in metal oxidation state distribution greatly affect the photoelectric conversion properties of these assemblies. This work therefore represents a significant step forward in the construction of intricate metal-organic architectures with tailored structure and functionality.
Collapse
Affiliation(s)
- Xiangquan Hu
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Wenjuan Tian
- Key Laboratory of Chemical Biology, Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- Key Laboratory of Chemical Biology, Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Steven P Kelley
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Ping Wang
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
| | - David A Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sisi Feng
- Key Laboratory of Chemical Biology, Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Institute of Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
| | - Jerry L Atwood
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
9
|
Wang Z, Zhu YJ, Han BL, Li YZ, Tung CH, Sun D. A route to metalloligands consolidated silver nanoclusters by grafting thiacalix[4]arene onto polyoxovanadates. Nat Commun 2023; 14:5295. [PMID: 37652941 PMCID: PMC10471715 DOI: 10.1038/s41467-023-41050-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Metalloligands provide a potent strategy for manipulating the surface metal arrangements of metal nanoclusters, but their synthesis and subsequent installation onto metal nanoclusters remains a significant challenge. Herein, two atomically precise silver nanoclusters {Ag14[(TC4A)6(V9O16)](CyS)3} (Ag14) and {Ag43S[(TC4A)2(V4O9)]3(CyS)9(PhCOO)3Cl3(SO4)4(DMF)3·6DMF} (Ag43) are synthesized by controlling reaction temperature (H4TC4A = p-tert-butylthiacalix[4]arene). Interestingly, the 3D scaffold-like [(TC4A)6(V9O16)]11- metalloligand in Ag14 and 1D arcuate [(TC4A)2(V4O9)]6- metalloligand in Ag43 exhibit a dual role that is the internal polyoxovanadates as anion template and the surface TC4A4- as the passivating agent. Furthermore, the thermal-induced structure transformation between Ag14 and Ag43 is achieved based on the temperature-dependent assembly process. Ag14 shows superior photothermal conversion performance than Ag43 in solid state indicating its potential for remote laser ignition. Here, we show the potential of two thiacalix[4]arene modified polyoxovanadates metalloligands in the assembly of metal nanoclusters and provide a cornerstone for the remote laser ignition applications of silver nanoclusters.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Yi-Zhi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| |
Collapse
|
10
|
Hu X, Han M, Wang L, Shao L, Peeyush Y, Du J, Kelley SP, Dalgarno SJ, Atwood DA, Feng S, Atwood JL. A copper-seamed coordination nanocapsule as a semiconductor photocatalyst for molecular oxygen activation. Chem Sci 2023; 14:4532-4537. [PMID: 37152257 PMCID: PMC10155914 DOI: 10.1039/d3sc00318c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 05/09/2023] Open
Abstract
Here we report that a Cu2+-seamed coordination nanocapsule can serve as an efficient semiconductor photocatalyst for molecular oxygen activation. This capsule was constructed through a redox reaction facilitated self-assembly of cuprous bromide and C-pentyl-pyrogallol[4]arene. Photophysical and electrochemical studies revealed its strong visible-light absorption and photocurrent polarity switching effect. This novel molecular solid material is capable of activating molecular oxygen into reactive oxygen species under simulated sunlight irradiation. The oxygen activation process has been exploited for catalyzing aerobic oxidation reactions. The present work provides new insights into designing nonporous discrete metal-organic supramolecular assemblies for solar-driven molecular oxygen activation.
Collapse
Affiliation(s)
- Xiangquan Hu
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Meirong Han
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Leicheng Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Li Shao
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Yadav Peeyush
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Jialei Du
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Steven P Kelley
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - David A Atwood
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sisi Feng
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Jerry L Atwood
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| |
Collapse
|
11
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
12
|
Metallic–Organic Cages (MOCs) with Heterometallic Character: Flexibility-Enhancing MOFs. Catalysts 2023. [DOI: 10.3390/catal13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The dichotomy between metal–organic frameworks (MOFs) and metal–organic cages (MOCs) opens up the research spectrum of two fields which, despite having similarities, both have their advantages and disadvantages. Due to the fact that they have cavities inside, they also have applicability in the porosity sector. Bloch and coworkers within this evolution from MOFs to MOCs manage to describe a MOC with a structure of Cu2 paddlewheel Cu4L4 (L = bis(pyrazolyl)methane) with high precision thanks to crystallographic analyses of X-ray diffraction and also SEM-EDX. Then, also at the same level of concreteness, they were able to find the self-assembly of Pd(II)Cl2 moieties on the available nitrogen donor atoms leading to a [Cu4(L(PdCl2))4] structure. Here, calculations of the DFT density functional allow us to reach an unusual precision given the magnitude and structural complexity, explaining how a pyrazole ring of each bis(pyprazolyl)methane ligand must rotate from an anti to a syn conformation, and a truncation of the MOC structure allows us to elucidate, in the absence of the MOC constraint and its packing in the crystal, that the rotation is almost barrierless, as well as also explain the relative stability of the different conformations, with the anti being the most stable conformation. Characterization calculations with Mayer bond orders (MBO) and noncovalent interaction (NCI) plots discern what is important in the interaction of this type of cage with PdCl2 moieties, also CuCl2 by analogy, as well as simple molecules of water, since the complex is stable in this solvent. However, the L ligand is proved to not have the ability to stabilize an H2O molecule.
Collapse
|
13
|
Min H, Craze AR, Wallis MJ, Tokunaga R, Taira T, Hirai Y, Bhadbhade MM, Fanna DJ, Marjo CE, Hayami S, Lindoy LF, Li F. Spin Crossover Induced by Changing the Identity of the Secondary Metal Ion from Pd II to Ni II in a Face-Centered Fe II 8 M II 6 Cubic Cage. Chemistry 2022; 29:e202203742. [PMID: 36550089 DOI: 10.1002/chem.202203742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Discrete spin crossover (SCO) heteronuclear cages are a rare class of materials which have potential use in next-generation molecular transport and catalysis. Previous investigations of cubic cage [Fe8 Pd6 L8 ]28+ constructed using semi-rigid metalloligands, found that FeII centers of the cage did not undergo spin transition. In this work, substitution of the secondary metal center at the face of the cage resulted in SCO behavior, evidenced by magnetic susceptibility, Mössbauer spectroscopy and single crystal X-ray diffraction. Structural comparisons of these two cages shed light on the possible interplay of inter- and intramolecular interactions associated with SCO in the NiII analogue, 1 ([Fe8 Ni6 L8 (CH3 CN)12 ]28+ ). The distorted octahedral coordination environment, as well as the occupation of the CH3 CN in the NiII axial positions of 1, prevented close packing of cages observed in the PdII analogue. This led to offset, distant packing arrangements whereby important areas within the cage underwent dramatic structural changes with the exhibition of SCO.
Collapse
Affiliation(s)
- Hyunsung Min
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alexander R Craze
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3Ta, UK
| | - Matthew J Wallis
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Ryuya Tokunaga
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Takahiro Taira
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yutaka Hirai
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Mohan M Bhadbhade
- Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Daniel J Fanna
- Advanced Materials Characterisation Facility, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Christopher E Marjo
- Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry F11, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Feng Li
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
14
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
15
|
Kniazeva MK, Ovsyannikov AS, Islamov DR, Samigullina AI, Gubaidullin AT, Dorovatovskii PV, Solovieva SE, Antipin IS, FERLAY S. Crystalline Assembly and Solvent‐induced Solid‐state Transformation of 1D Zigzag Chains Based on Sulfonylcalix[4]arene Trinuclear Co (II) and Zn (II) Clusters. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mariia K. Kniazeva
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN - RUSSIAN FEDERATION
| | - Alexander S. Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN - RUSSIAN FEDERATION
| | - Daut R. Islamov
- Laboratory for structural analysis of biomacromolecules , FRC Kazan scientific center - RUSSIAN FEDERATION
| | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN - RUSSIAN FEDERATION
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN - RUSSIAN FEDERATION
| | - Pavel V. Dorovatovskii
- Kurchatov Institute: Nacional'nyj issledovatel'skij centr Kurcatovskij institut - RUSSIAN FEDERATION
| | - Svetlana E. Solovieva
- Kazan Federal University: Kazanskij Privolzskij federal'nyj universitet - RUSSIAN FEDERATION
| | - Igor S. Antipin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN - RUSSIAN FEDERATION
| | - Sylvie FERLAY
- University of Strasbourg Faculty of Chemistry 4 rue Blaise Pascal 67000 STRASBOURG FRANCE
| |
Collapse
|
16
|
Yong MT, Linder-Patton OM, Bloch WM. Assembly of a Heterometallic Cu(II)-Pd(II) Cage by Post-assembly Metal Insertion. Inorg Chem 2022; 61:12863-12869. [PMID: 35920858 DOI: 10.1021/acs.inorgchem.2c02046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous structures based on multi-metallic motifs are receiving growing interest, but their general preparation still remains a challenge. Here, we report the self-assembly and structure of a CuII metal-organic cage (MOC) that is functionalized with free bis(pyrazolyl)methane sites. The homometallic Cu4L4 cage is isolated as a water-stable crystalline solid, and its formation is dependent on metal-ligand stoichiometry and the pre-organization of the Cu2 paddlewheel. We show by X-ray diffraction and SEM-EDX that PdII chloride can be quantitatively inserted into the free chelating sites of the MOC to yield a [Cu4(L(PdCl2))4] structure. Moreover, the solvent employed in the metalation dictates the solid-state isomerism of the heterometallic cage─a further handle to control the MOC's structural diversity and permanent porosity.
Collapse
Affiliation(s)
- Mei Tieng Yong
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Oliver M Linder-Patton
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Witold M Bloch
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia.,Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
17
|
Li L, Zhu Y, Han B, Wang Q, Zheng L, Feng L, Sun D, Wang Z. A classical [V 10O 28] 6- anion templated high-nuclearity silver thiolate cluster. Chem Commun (Camb) 2022; 58:9234-9237. [PMID: 35899795 DOI: 10.1039/d2cc03003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxovanadates (POVs) as templates are still scarcely observed in silver clusters. Herein, the largest known POV-based silver cluster (Ag50) was synthesized, which is a core-shell conformation composed of the in situ generated classical [V10O28]6- core and Ag50 shell, constrained by the S- and O-donor ligands with a specific distribution. Such {V10O28@Ag50} structure displays geometric inheritance from the D2h symmetric decavanadate to the silver skeleton. The solution behavior, solid-state stability and photoelectric properties are discussed in detail. This work provides enlightenment for the further construction of POV-templated high-nuclearity silver clusters.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Yanjie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Baoliang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Qiongyi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Luming Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| |
Collapse
|
18
|
Wang Z, Li L, Feng L, Gao ZY, Tung CH, Zheng LS, Sun D. Solvent-Controlled Condensation of [Mo 2 O 5 (PTC4A) 2 ] 6- Metalloligand in Stepwise Assembly of Hexagonal and Rectangular Ag 18 Nanoclusters. Angew Chem Int Ed Engl 2022; 61:e202200823. [PMID: 35229421 DOI: 10.1002/anie.202200823] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/08/2023]
Abstract
Stepwise assembly starting from a preassembled metalloligand is a promising approach to obtain otherwise unattainable silver nanoclusters, but hard to be intrinsically identified due to the lack of convincing evidence to justify such a process. Herein, hexagonal and rectangular Ag18 nanoclusters are constructed from the [Mo2 O5 (PTC4A)2 ]6- (H4 PTC4A=p-phenyl-thiacalix[4]arene) metalloligand through stepwise assembly. The formation of the metalloligand is confirmed by electrospray ionization mass spectrometry, then assembled with silver ions to form two geometrically different Ag18 nanoclusters in different solvents. The cyclization from the metalloligand to [(Mo2 O5 PTC4A)6 ]12- can be realized without alcohols and otherwise blocked by them. The installation of this metalloligand not only provides comprehensive understanding of how the solvents regulate the silver nanocluster structures, but also brings new insights for the controllable ligand metallization and subsequent condensation.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Li Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
19
|
Liu Y, Liu FZ, Yan K. Mechanochemical Access to a Short-Lived Cyclic Dimer Pd 2 L 2 : An Elusive Kinetic Species En Route to Molecular Triangle Pd 3 L 3 and Molecular Square Pd 4 L 4. Angew Chem Int Ed Engl 2022; 61:e202116980. [PMID: 35191567 DOI: 10.1002/anie.202116980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Pd-based molecular square Pd4 L4 and triangle Pd3 L3 represent the molecular ancestors of metal-coordination polyhedra that have been an integral part of the field for the last 30 years. Conventional solution-based reactions between cis-protected Pd ions and 2,2'-bipyridine exclusively give Pd4 L4 and/or Pd3 L3 as the sole products. We herein show that, under solvent-free mechanochemical conditions, the self-assembly energy landscape can be thermodynamically manipulated to form an elusive cyclic dimer Pd2 L2 for the first time. In the absence of solvent, Pd2 L2 is indefinitely stable in the solid-state, but converts rapidly to its thermodynamic products Pd3 L3 and Pd4 L4 in solution, confirming Pd2 L2 as a short-lived kinetic species in the solution-based self-assembly process. Our results highlight how mechanochemistry grants access to a vastly different chemical space than available under conventional solution conditions. This provides a unique opportunity to isolate elusive species in self-assembly processes that are too reactive to both "see" and "capture".
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
20
|
Wang Z, Li L, Feng L, Gao Z, Tung C, Zheng L, Sun D. Solvent‐Controlled Condensation of [Mo
2
O
5
(PTC4A)
2
]
6−
Metalloligand in Stepwise Assembly of Hexagonal and Rectangular Ag
18
Nanoclusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Li Li
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Zhi‐Yong Gao
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 P. R. China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| | - Lan‐Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Ji'nan 250100 P. R. China
| |
Collapse
|
21
|
Liu Y, Liu F, Yan K. Mechanochemical Access to a Short‐Lived Cyclic Dimer Pd
2
L
2
: An Elusive Kinetic Species En Route to Molecular Triangle Pd
3
L
3
and Molecular Square Pd
4
L
4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - Fang‐Zi Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - KaKing Yan
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| |
Collapse
|
22
|
Kniazeva MV, Ovsyannikov AS, Samigullina AI, Islamov DR, Gubaidullin AT, Dorovatovskii PV, Lazarenko VA, Solovieva SE, Antipin IS, Ferlay S. Impact of flexible succinate connectors on the formation of tetrasulfonylcalix[4]arene based nano-sized polynuclear cages: structural diversity and induced chirality study. CrystEngComm 2022. [DOI: 10.1039/d1ce01482j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The formation of three types of supramolecular coordination cages is described. Tetrasulfonylcalixarene, combined with metallic salts (Ni, Co and Zn) and the flexible succinate ligand, led to cages. H bonded induced chirality was observed for both isomorphous cages.
Collapse
Affiliation(s)
- Mariia V. Kniazeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Alexander S. Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Daut R. Islamov
- Laboratory for structural analysis of biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo 2 str, Kazan 420008, Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Centre “Kurchatov Institute”, Acad. Kurchatov 1 Sq., 123182 Moscow, Russian Federation
| | - Vladimir A. Lazarenko
- National Research Centre “Kurchatov Institute”, Acad. Kurchatov 1 Sq., 123182 Moscow, Russian Federation
| | | | - Igor S. Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| |
Collapse
|
23
|
Zhou J, Xu M, Jin Z, Borum RM, Avakyan N, Cheng Y, Yim W, He T, Zhou J, Wu Z, Mantri Y, Jokerst JV. Versatile Polymer Nanocapsules via Redox Competition. Angew Chem Int Ed Engl 2021; 60:26357-26362. [PMID: 34580967 PMCID: PMC8629958 DOI: 10.1002/anie.202110829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/18/2022]
Abstract
Polymer nanocapsules have demonstrated significant value in materials science and biomedical technology, but require complicated and time-consuming synthetic steps. We report here the facile synthesis of monodisperse polymer nanocapsules via a redox-mediated kinetic strategy from two simple molecules: dopamine and benzene-1,4-dithiol (BDT). Specifically, BDT forms core templates and modulates the oxidation kinetics of dopamine into polydopamine (PDA) shells. These uniform nanoparticles can be tuned between ≈70 and 200 nm because the core diameter directly depends on BDT while the shell thickness depends on dopamine. The supramolecular core can then rapidly disassemble in organic solvents to produce PDA nanocapsules. Such nanocapsules exhibit enhanced physicochemical performance (e.g., loading capacity, photothermal transduction, and anti-oxidation) versus their solid counterparts. Particularly, this method enables a straightforward encapsulation of functional nanoparticles providing opportunities for designing complex nanostructures such as yolk-shell nanoparticles.
Collapse
Affiliation(s)
- Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Raina M Borum
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nicole Avakyan
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| |
Collapse
|
24
|
Zhou J, Xu M, Jin Z, Borum RM, Avakyan N, Cheng Y, Yim W, He T, Zhou J, Wu Z, Mantri Y, Jokerst JV. Versatile Polymer Nanocapsules via Redox Competition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiajing Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Ming Xu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhicheng Jin
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Raina M. Borum
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Nicole Avakyan
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Yong Cheng
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Wonjun Yim
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Tengyu He
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jingcheng Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhuohong Wu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yash Mantri
- Department of Bioengineering University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
- Department of Radiology University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| |
Collapse
|
25
|
Sheng K, Wang R, Tang X, Jagodič M, Jagličić Z, Pang L, Dou JM, Gao ZY, Feng HY, Tung CH, Sun D. A Carbonate-Templated Decanuclear Mn Nanocage with Two Different Silsesquioxane Ligands. Inorg Chem 2021; 60:14866-14871. [PMID: 34533931 DOI: 10.1021/acs.inorgchem.1c02190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mild reaction of the preorganized silsesquioxane precursor with Mn(II) acetate under ambient conditions results in a mixed-valent {MnII6MnIII4} nanocage (SD/Mn10) which is protected by both acyclic trimer [Si3] and cyclic tetramer [Si4]. Serendipitous capture of atmospheric CO2 as a μ5-carbonate anion placed at the center supports the formation of the cluster. The magnetic analysis reveals the strong antiferromagnetic interactions between Mn ions. Moreover, the drop-casting film of SD/Mn10 shows photoelectric activity indicating its great potential as a semiconductor for photoelectric conversion applications.
Collapse
Affiliation(s)
- Kai Sheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China.,School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Ran Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xinde Tang
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Marko Jagodič
- Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Zvonko Jagličić
- Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Laixue Pang
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, China
| | - Hua-Yu Feng
- Center of Nanoelectronics and School of Microelectronics, Shandong University, Ji'nan 250100, China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China
| |
Collapse
|
26
|
Shao L, Hu X, Sikligar K, Baker GA, Atwood JL. Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules. Acc Chem Res 2021; 54:3191-3203. [PMID: 34329553 DOI: 10.1021/acs.accounts.1c00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coordination polymers, commonly known as infinite crystalline lattices, are versatile networks and have diverse potential applications in the fields of gas storage, molecular separation, catalysis, optics, and drug delivery, among other areas. Secondary building blocks, mainly incorporating rigid polydentate organic linkers and metal ions or clusters, are commonly employed to construct coordination polymers. Recently, novel building blocks such as coordination polyhedra have been utilized as metal nodes to fabricate coordination polymers. Benefiting from the rigid porous structure of the coordination polyhedron, prefabricated designer "pores" can be incorporated in this type of coordinate polymer. In this Account, coordination polymers built by pyrogallol[4]arene-assembled metal-organic nanocapsules are summarized. This class of metal-organic nanocapsule possesses the following advantages that make them excellent candidates in the construction of coordination polymers: (i) Various geometrical shapes with different volumes of the inner cavities can be obtained from these capsules. Among them, the two main categories illustrated are dimeric and hexameric capsules, which comprise two and six pyrogallol[4]arenes units, respectively. (ii) A wide range of possible metal ions ranging from main group metals to transition metals and even lanthanides have been demonstrated to seam the capsules. Therefore, these coordination polymers can be endowed with fascinating functionalities such as magnetism, semiconductivity, luminescence, and radioactivity. (iii) Up to 24 metal ions have been successfully embedded on the surface of the nanocapsule, each a potential reaction site in the construction of coordination polymers, opening up pathways for the formation of multidimensional frameworks.In this Account, we focus primarily on the synthesis and the structural information on pyrogallol[4]arene-derived coordination polymers. Coordination polymers can be formed by introducing linkers with two coordination sites, using pyrogallol[4]arenes with coordination sites on the tail, or even via metal ions cross-linking with each other. Machine learning was recently developed to help us predict and screen the structures of the coordination polymers. With single crystal analysis in hand, detailed structural information provides a molecular-level perspective. Significantly, following the formation of coordination polymers, the overall shape and structure of the discrete metal-organic nanocapsules remains essentially unchanged, with full retention of the prefabricated pores. If a rigid linker is used to connect capsules, more than one lattice void with different volumes can be found within the framework. Thus, molecules with different sizes could potentially be encapsulated within these coordination polymers. In addition, flexible ligands can also be employed as linkers. For example, polymers have been employed as large linkers that transform the crystalline coordination polymers into polymer matrices, paving the way toward the synthesis of advanced functional materials. Overall, coordination polymers constructed with pyrogallol[4]arene-assembled metal-organic nanocapsules show wide diversity and tunability in structure and fascinating properties, as well as the promise of built-in functionality in the future.
Collapse
Affiliation(s)
- Li Shao
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiangquan Hu
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kanishka Sikligar
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jerry L. Atwood
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
27
|
Yu S, Zhang QH, Chen Z, Zou HH, Hu H, Liu D, Liang FP. Structure, assembly mechanism and magnetic properties of heterometallic dodecanuclear nanoclusters DyIII4MII8 (M = Ni, Co). Inorg Chem Front 2021. [DOI: 10.1039/d1qi01051d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two isostructural heterometallic dodecanuclear nanoclusters [Dy4Co8(μ3-OH)8(L)8(OAc)4(H2O)4]·3EtOH·3CH3CN·H2O (1) and [Dy4Ni8(μ3-OH)8(L)8(OAc)4(H2O)4]·3.5EtOH·0.5CH3CN·5H2O (2) with different assembly mechanisms are presented here.
Collapse
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Qin-Hua Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| |
Collapse
|