1
|
Liu J, Han X, Han N, Li B, Sun Y, Wang M, Wu G. One-Pot 'Click' Synthesis of Ring-in-Rings Complexes with Customizable π-Stacked Dyads. J Am Chem Soc 2025; 147:15838-15846. [PMID: 40272249 DOI: 10.1021/jacs.5c03926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
We report an efficient one-pot aqueous synthesis of ring-in-rings complexes featuring customizable π-stacked dyads. Conventional methods for such complexes often suffer from poor solubility and low yields due to irreversible kinetically controlled reactions. To overcome these limitations, we developed a strategy combining noncovalent preassembly with efficient dynamic covalent bonding to secure a ring-in-rings complex as the exclusive thermodynamic product. Through complexation with cucurbit[8]uril (CB[8]), a folded conformation was induced in an aldehyde-functionalized bis(phenylpyridinium) derivative, predisposing the reactive aldehyde groups to promote acylhydrazone condensation with aromatic dihydrazides. The method achieves high conversion and purity, enabling direct single-crystal growth without the need for purification. We successfully synthesized π-stacked dyads across diverse aromatic moieties, including five distinct single-crystal structures demonstrating dimeric cofacial stacking. Kinetic analysis reveals that CB[8] complexation increases the ceiling temperature of the condensation reaction, rendering the process both thermodynamically and kinetically favorable. The modular nature of this strategy allows for precise tuning of photophysical properties by simply altering the linker lengths and the central aromatic cores, providing a facile platform for exploring structure-function relationships in ring-in-rings complexes and beyond.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiujie Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yibin Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| |
Collapse
|
2
|
Luo Y, Nie H, Zou C, Fan Y, Ni XL. Cucurbit[8]Uril-Stabilized Charge Transfer: An Efficient Supramolecular Approach Toward a Heterogeneous Organic Photocatalyst for Aerobic Oxidation Reactions. Chemistry 2025; 31:e202404273. [PMID: 39658510 DOI: 10.1002/chem.202404273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Host-stabilized charge transfer (HSCT) has been widely utilized in macrocycle-derived supramolecular assemblies and architectures. However, there has been less research attention focused on the direct fabrication of pure organic photocatalysts using HSCT. Herein, four viologen derivatives (m-PV2+, m-BPV2+, d-PV2+, and d-BPV2+) with different electron donor-acceptor (D-A) structures were synthesized. Their host-guest complexes with cucurbit[8]uril (Q[8]) in an aqueous solution could be switched using the substituted electron donor moieties, in which the host-guest complexes of m-BPV2+@Q[8] and d-BPV2+@Q[8] exhibited HSCT interactions. Control experiments revealed that the d-BPV2+@Q[8] complex had the strongest ability to sensitize singlet oxygen (1O2). This was ascribed to the increased π-conjugation of d-BPV2+@Q[8], which led to more effective HSCT upon encapsulation by the Q[8] host. Consequently, the d-BPV2+@Q[8] complex could be easily employed as a heterogeneous photocatalyst for the photooxidation reaction of thioether com-pounds with high selectivity. In particular, d-BPV2+@Q[8] was successfully applied to the synthesis of sulfoxide drugs, such as the con-version of inexpensive Iberverin ($7.0 per gram) to the expensive bioactive inhibitor Iberin ($19500.0 per gram) in high yield (94 %).
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Cuijuan Zou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Yan Fan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
3
|
Yu W, Yang Z, Yu C, Li X, Yuan L. Hydrogen-bonded macrocycle-mediated dimerization for orthogonal supramolecular polymerization. Beilstein J Org Chem 2025; 21:179-188. [PMID: 39834893 PMCID: PMC11744735 DOI: 10.3762/bjoc.21.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Orthogonal self-assembly represents a useful methodology to construct supramolecular polymers with AA- and AB-type monomers, as commonly used for covalently linked polymers. So far, the design of such monomers has relied heavily on three-dimensional macrocycles, and the use of two-dimensional shape-persistent macrocycles for this purpose remains rather rare. Here, we demonstrate a dimerization motif based on a hydrogen-bonded macrocycle that can be effectively applied to form orthogonal supramolecular polymers. The macrocycle-mediated connectivity was confirmed by single-crystal X-ray diffraction, which revealed a unique 2:2 binding motif between host and guest, bridged by two cationic pyridinium end groups through π-stacking interactions and other cooperative intermolecular forces. Zinc ion-induced coordination with the macrocycle and a terpyridinium derivative enabled orthogonal polymerization, as revealed by 1H NMR, DLS, and TEM techniques. In addition, viscosity measurements showed a transition from oligomers to polymers at the critical polymerization concentration of 17 μM. These polymers were highly concentration-dependent. Establishing this new dimerization motif with shape-persistent H-bonded macrocycles widens the scope of noncovalent building blocks for supramolecular polymers and augurs well for the future development of functional materials.
Collapse
Affiliation(s)
- Wentao Yu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhiyao Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengkan Yu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Li G, Du Z, Wu C, Liu Y, Xu Y, Lavendomme R, Liang S, Gao EQ, Zhang D. Charge-transfer complexation of coordination cages for enhanced photochromism and photocatalysis. Nat Commun 2025; 16:546. [PMID: 39789017 PMCID: PMC11718061 DOI: 10.1038/s41467-025-55893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BArF-) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method. Enforced arrangement of the multiple electron-deficient pyridinium groups into one cage (1) leads to magnified positive electrostatic field and electron-accepting strength in favor of hosting electron-donating anions, including halides and tetraarylborates. The strong charge-transfer (CT) interactions activate guest-to-host photoinduced electron transfer (PET), leading to pronounced and regulable photochromisms. Both ground-state and radical structures of host and host-guest complexes have been unambiguously characterized by X-ray crystallography. The CT-enhanced PET also enables the use of 1 as an efficient photocatalyst for aerobic oxidation of tetraarylborates into biaryls and phenols. This work presents the solution assembly of soluble Zr-MOCs from cationic ligands with the assistance of solubilizing anions and highlights the great potential of harnessing host-guest CT for boosting PET-based functions and applications.
Collapse
Affiliation(s)
- Gen Li
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zelin Du
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chao Wu
- Department of Computer Science, Durham University, Durham, UK
| | - Yawei Liu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yan Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Shihang Liang
- State Key Laboratory of Petroleum Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing, Beijing, PR China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, PR China.
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, PR China.
| |
Collapse
|
5
|
Xu W, Du Y, Ma H, Tang X, Ou Q, Xu JF, Zhang X. Generation of Triplet States by Host-Stabilized Through-Space Conjugation for the Construction of Efficient Supramolecular Photocatalysts. Angew Chem Int Ed Engl 2025; 64:e202413129. [PMID: 39240087 DOI: 10.1002/anie.202413129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Promoting the generation of triplet states is essential for developing efficient photocatalytic systems. This research presents a novel approach of host-stabilized through-space conjugation via the combination of covalent and non-covalent methods. The designed building block, 4,4'-(1,4(1,4)-dibenzene cyclohexaphane-1,4-diyl)bis(1-phenylpyridinium) chloride, features inherently stable through-space conjugation. When this block forms a 1 : 1 host-guest complex with cucurbit[8]uril, the through-space conjugation is further stabilized within the confined cavity. Both the generation and lifetime of triplet state are significantly increased, resulting from the host-stabilized through-space conjugation. Additionally, the ultrahigh binding constant of 6.58×1014 M-1 ensures the persistence of host-stabilization effect. As a result, the host-guest complex acts as a highly efficient catalyst in the photocatalytic oxidation of thioether and aromatic alcohol. In the photodegradation of lignin, a complex natural product, the host-guest complex also exhibits high efficiency, demonstrating its robustness. This line of research is anticipated to enrich the toolbox of supramolecular photochemistry and provide a strategy for fabricating efficient supramolecular photocatalysts.
Collapse
Affiliation(s)
- Weiquan Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yinghao Du
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - He Ma
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xingchen Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Qi Ou
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, 100083, Beijing, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
6
|
Zhang X, Yu H, Guan S, Lu Y, Zhang Y, Huang Y, Wang Y, Liu C, Cao Z, Qin Y, Pan M, Shen J, Su C. A Highly Charged Positive Cage Causes Simultaneous Enhancement of Type-II and O 2-Independent-Type-I Photodynamic Therapy via One-/Two-Photon Stimulation and Tumor Immunotherapy via PANoptosis and Ferroptosis. SMALL SCIENCE 2024; 4:2400220. [PMID: 40213464 PMCID: PMC11935160 DOI: 10.1002/smsc.202400220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Indexed: 01/22/2025] Open
Abstract
To solve the oxygen dependence problem of photodynamic therapy (PDT), it is critical to explore photosensitizers that do not rely on O2 molecule to generate reactive oxygen species (ROS). Herein, a stable cationic metal-organic cage [Pd6(RuLoz 3)8](BF4)28 (MOC-88) that possesses high +28 charges is designed. The cage-confined positive microenvironment enables efficient generation of hydroxyl radicals and improved yield of the singlet oxygen under one-/two-photon excitation, showing excellent performance to concurrently enhance Type-II and O2-independent-Type-I PDT. Moreover, the effective ROS production and robust lipid peroxidation trigger a series of signaling pathways (inflammasome, cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes, and NF-κB) to evoke PANoptosis and ferroptosis in tumor cells, enabling MOC-88 to simultaneously cause the loss of cell membrane integrity, release a series of inflammatory cytokines and damage-associated molecular patterns, stimulate the maturation and antigen presentation ability of dendritic cells, and ultimately activate T-cell-dependent adaptive immunity in vivo to inhibit tumor growth.
Collapse
Affiliation(s)
- Xiao‐Dong Zhang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Hui‐Juan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of ZoologyGuangdong Academy of SciencesGuangzhou510275China
| | - Shao‐Qi Guan
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu‐Lin Lu
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu Zhang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yin‐Hui Huang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Ya‐Ping Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510030China
| | - Chen‐Hui Liu
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Zhong‐Min Cao
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu‐Han Qin
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Mei Pan
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510030China
| | - Cheng‐Yong Su
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| |
Collapse
|
7
|
Cui X, Shi H, Pang S, Li X, Long Y, Zhang X, Song K, Jiang L. Synthesis of benzothiazole compounds based on 2D graphene oxide membrane nanoreactors. Chem Commun (Camb) 2024; 60:9622-9625. [PMID: 39150351 DOI: 10.1039/d4cc02606c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The nanoconfinement effect plays an important role in chemical reactions. Inspired by enzymes, this work presents a new way to conduct the rapid flow synthesis of benzothiazoles in the two-dimensional (2D) nanoconfined space created by a graphene oxide membrane. The conversion reaches 96.7% in a short reaction time of less than 23 s at 22 °C.
Collapse
Affiliation(s)
- Xinxin Cui
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haoran Shi
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuai Pang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiang Li
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Long
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256600, P. R. China
| | - Xiqi Zhang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256600, P. R. China
| | - Kai Song
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256600, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256600, P. R. China
| |
Collapse
|
8
|
Zhu W, Ding Z, Guo S, Guo WJ, Yan S, Liu B, Li H, Liu Z, Tang BZ, Peng HQ. Exclusive and Switchable Superoxide Radical Generation by O 2-Capture-Based Electron Transfer and Supramolecular Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309424. [PMID: 38174600 DOI: 10.1002/smll.202309424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Type-I photosensitizers (PSs) can generate free radical anions with a broad diffusion range and powerful damage effect, rendering them highly desirable in various areas. However, it still remains a recognized challenge to develop pure Type-I PSs due to the inefficiency in producing oxygen radical anions through the collision of PSs with nearby substrates. In addition, regulating the generation of oxygen radical anions is also of great importance toward the control of photosensitizer (PS) activities on demand. Herein, a piperazine-based cationic Type-I PS (PPE-DPI) that exhibits efficient intersystem crossing and subsequently captures oxygen molecules through binding O2 to the lone pair of nitrogen in piperazine is reported. The close spatial vicinity between O2 and PPE-DPI strongly promotes the electron transfer reaction, ensuring the exclusive superoxide radical (O2 •-) generation via Type-I process. Particularly, PPE-DPI with cationic pyridine groups is able to associate with cucurbit[7]uril (CB[7]) through host-guest interactions. Thus, supramolecular assembly and disassembly are easily utilized to realize switchable O2 •- generation. This switchable Type-I PS is successfully employed in photodynamic antibacterial control.
Collapse
Affiliation(s)
- Wenping Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhen Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shaoxun Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wu-Jie Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shirong Yan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhen Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Hui-Qing Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
Wang X, Shi G, Wei R, Li M, Zhang Q, Zhang T, Chen CF, Hu HY. Fine-tuning of stable organic free-radical photosensitizers for photodynamic immunotherapy. Chem Sci 2024; 15:6421-6431. [PMID: 38699264 PMCID: PMC11062115 DOI: 10.1039/d3sc06826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Photodynamic immunotherapy (PDI) is an innovative approach to cancer treatment that utilizes photodynamic therapy (PDT) and photosensitizers (PSs) to induce immunogenic cell death (ICD). However, currently most commonly used PSs have restricted capabilities to generate reactive oxygen species (ROS) via a type-II mechanism under hypoxic environments, which limits their effectiveness in PDI. To overcome this, we propose a novel approach for constructing oxygen independent PSs based on stable organic free-radical molecules. By fine-tuning the characteristics of tris(2,4,6-trichlorophenyl)-methyl (TTM) radicals through the incorporation of electron-donating moieties, we successfully found that TTMIndoOMe could produce substantial amounts of ROS even in hypoxic environments. In vitro experiments showed that TTMIndoOMe could effectively produce O2˙-, kill tumor cells and trigger ICD. Moreover, in vivo experiments also demonstrated that TTMIndoOMe could further trigger anti-tumor immune response and exhibit a superior therapeutic effect compared with PDT alone. Our study offers a promising approach towards the development of next-generation PSs functioning efficiently even under hypoxic conditions and also paves the way for the creation of more effective PSs for PDI.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Rao Wei
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
10
|
Zhang Q, Li H, Kang Y, Cui Q, Zhang H, Li L. Tunable Fluorescence, Morphology, and Antibacterial Behaviors of Conjugated Oligomers via Host-Guest Supramolecular Self-Assembly. ACS APPLIED BIO MATERIALS 2024; 7:2533-2543. [PMID: 38526040 DOI: 10.1021/acsabm.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Host-guest supramolecular self-assembly has become one facile but efficient way to regulate the optical properties of conjugated oligomers and construct promising photofunctional materials. Herein, we design two linear conjugated oligomers terminated with two or four pyridinium moieties, which show different 1:1 'head-to-tail' binding patterns with cucurbit[8]uril (CB[8]) to form host-guest supramolecules. After being encapsulated in the hydrophobic cavity of the CB[8] host, the fluorescence emission of the conjugated oligomers undergoes significant changes, resulting in tunable fluorescence color with enhanced quantum yields. Triggered by the aggregation of supramolecules, the regular or rigid binding modes lead to the formation of cuboids and spheroids in nanoscale, respectively. Due to the macrocyclic-confinement effect, the light-driven reactive oxygen species (ROS) production of the host-guest complex is increased significantly, thereby improving the photodynamic antibacterial performance toward Staphylococcus aureus (S. aureus).
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hui Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yuetong Kang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Qianling Cui
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hean Zhang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lidong Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
11
|
Yang C, Shi SY, Zhang J, Wang L, Yu ZP, Zhou H. Unveiling the Impact of Light-Induced Acceptor-Generated ROS on Device Stability in Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16573-16579. [PMID: 38511295 DOI: 10.1021/acsami.3c19612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The intrinsic stability of the acceptor is a crucial component of the photovoltaic device stability. In this study, we investigated the efficiency and stability of the nonfused-ring acceptors LC8 and BC8 under indoor light conditions. Interestingly, we found that devices based on BC8 with terminal side chains exhibited a higher indoor efficiency and stability. Through accelerated aging experiments, we discovered that the acceptors generate singlet oxygen under light exposure with BC8 demonstrating lower levels of ROS compared to LC8. We attribute this difference to the modulation of the acceptor aggregation orientation. Furthermore, the generated reactive oxygen species (ROS) further deteriorate the acceptor structure, and this phenomenon is also observed in high-efficiency acceptor structures, such as Y6. Our research reveals important mechanisms of acceptor photo-oxidation processes, providing a theoretical basis for enhancing the intrinsic stability of acceptors.
Collapse
Affiliation(s)
- Chao Yang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Sheng-Yu Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Jie Zhang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Lianke Wang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Zhi-Peng Yu
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Hongping Zhou
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
12
|
Yang XZ, Zhu RX, Zhu RY, Liu H, Yu S, Xing LB. Superoxide radical generator based on triphenylamine-based supramolecular organic framework for green light photocatalysis. J Colloid Interface Sci 2024; 658:392-400. [PMID: 38113548 DOI: 10.1016/j.jcis.2023.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Supramolecular organic frameworks (SOFs) mostly require high-energy purple or blue light for photocatalytic reactions, while highly abundant and low-energy light systems have rarely been explored. Therefore, it is necessary to construct 2D SOFs for low-energy light-induced photocatalysis. This study describes the design and synthesis of a water-soluble two-dimensional (2D) supramolecular organic framework (TP-SOF) using the host-guest interaction between a triphenylamine derivative (TP-3Py) and cucurbit[8]uril (CB[8]). The formation of the 2D SOF can be attributed to the synergistic impact resulting from the orientated head-to-tail superposition mode between the vinylpyridine arms of TP-3Py and CB[8], which results in a significant redshift in the UV-vis absorption spectrum, especially displaying a strong absorption band in the green light region. The monomeric TP-3Py can effectively produce singlet oxygen (1O2) and realize the photocatalytic oxidation of thioanisole in the aqueous solution. In comparison to monomeric TP-3Py, the confinement effect of CB[8] results in a notable enhancement in the production efficiency of superoxide anion radicals (O2•-), exhibiting promising prospects in the field of photocatalytic oxidation reaction, which facilitates the application of TP-SOF as a very efficient photosensitizer for the promotion of the oxidative hydroxylation of arylboronic acids under green light in the aqueous solution, giving a high yield of 91%. The present study not only presents a compelling illustration of photocatalysis utilizing a 2D SOF derived from triphenylamine, but also unveils promising avenues for the photocatalytic oxidation of SOF employing low-energy light systems.
Collapse
Affiliation(s)
- Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Rong-Xin Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Ru-Yu Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
13
|
Liang L, Peng T, Geng XY, Zhu W, Liu C, Peng HQ, Chen BZ, Guo XD. Aggregation-induced emission photosensitizer microneedles for enhanced melanoma photodynamic therapy. Biomater Sci 2024; 12:1263-1273. [PMID: 38247398 DOI: 10.1039/d3bm01819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The incidence and mortality rates of skin melanoma have been increasing annually. Photodynamic therapy (PDT) enables effective destruction of tumor cells while minimizing harm to normal cells. However, traditional photosensitizers (PSs) suffer from photobleaching, photodegradation and the aggregation-caused quenching (ACQ) effect, and it is challenging for light to reach the deep layers of the skin to maximize the efficacy of PSs. Herein, we developed dissolving microneedles (MNs) loaded with PSs of TPE-EPy@CB[7] through supramolecular assembly. The PSs effectively enhanced the type-I reactive oxygen species (ROS) generation capacity, with a concentration of 2 μM possessing nearly half of the tumor cell-killing ability under 10 min white light irradiation. The MNs were successfully pierced into the targeted site for precise drug delivery. Additionally, the conical structure of the MNs, as well as the lens-like structure after dissolution, facilitated the transmission of light in the subcutaneous tissue, achieving significant inhibition of tumor growth with a tumor suppression rate of 97.8% and no systemic toxicity or side effects in melanoma mice. The results demonstrated the potent melanoma inhibition and biosafety of this treatment approach, exhibiting a new and promising strategy to conquer malignant melanoma.
Collapse
Affiliation(s)
- Ling Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tuokai Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Yao Geng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenping Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui-Qing Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Yu S, Zhu RX, Niu KK, Han N, Liu H, Xing LB. Switchover from singlet oxygen to superoxide radical through a photoinduced two-step sequential energy transfer process. Chem Sci 2024; 15:1870-1878. [PMID: 38303940 PMCID: PMC10829035 DOI: 10.1039/d3sc05820d] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024] Open
Abstract
The competitive nature of type II photosensitizers in the transfer of excitation energy for the generation of singlet oxygen (1O2) presents significant challenges in the design of type I photosensitizers to produce the superoxide anion radical (O2˙-). In this study, we present an efficient method for the direct transformation of type II photosensitizers into type I photosensitizers through the implementation of an artificial light-harvesting system (ALHSs) involving a two-step sequential energy transfer process. The designed supramolecular complex (DNPY-SBE-β-CD) not only has the ability to generate 1O2 as type II photosensitizers, but also demonstrates remarkable fluorescence properties in aqueous solution, which renders it an efficient energy donor for the development of type I photosensitizers ALHSs, thereby enabling the efficient generation of O2˙-. Meanwhile, to ascertain the capability and practicality of this method, two organic reactions were conducted, namely the photooxidation reaction of thioanisole and oxidative hydroxylation of arylboronic acids, both of which display a high level of efficiency and exhibit significant catalytic performance. This work provides an efficient method for turning type II photosensitizers into type I photosensitizers by a two-step sequential energy transfer procedure.
Collapse
Affiliation(s)
- Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Rong-Xin Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven Leuven 3001 Belgium
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| |
Collapse
|
15
|
Li YJ, Liu DG, Ren JH, Gong TJ, Fu Y. Photocatalytic Alkyl Radical Addition Tandem Oxidation of Alkenyl Borates. J Org Chem 2023; 88:4325-4333. [PMID: 36940141 DOI: 10.1021/acs.joc.2c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Photocatalytic oxidation is a popular transformation way for organic synthesis and is widely applied in academia and industry. Herein, we report a blue light-induced alkylation-oxidation tandem reaction for the synthesis of diverse ketones by combining alkyl radical addition and oxidation of alkenyl borates. This reaction shows excellent functional group compatibility in acceptable yields, and diversity of radical precursors is applicable.
Collapse
Affiliation(s)
- Yu-Jie Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - De-Guang Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Jin-Hu Ren
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Tian-Jun Gong
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
16
|
Wang J, Li H, Zhu Y, Yang M, Huang J, Zhu X, Yu ZP, Lu Z, Zhou H. Unveiling upsurge of photogenerated ROS: control of intersystem crossing through tuning aggregation patterns. Chem Sci 2023; 14:323-330. [PMID: 36687347 PMCID: PMC9811492 DOI: 10.1039/d2sc06445f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Photo-induced reactive oxygen species (ROS) generation by organic photosensitizers (PSs), which show potential in significant fields such as photodynamic therapy (PDT), are highly dependent on the formation of the excited triplet state through intersystem crossing (ISC). The current research on ISC of organic PSs generally focuses on molecular structure optimization. In this manuscript, the influence of aggregation patterns on ISC was investigated by constructing homologous monomers (S-TPA-PI and L-TPA-PI) and their homologous dimers (S-2TPA-2PI and L-2TPA-2PI). In contrast to J-aggregated S-TPA-PI, S-2TPA-2PI-aggregate forming "end-to-end" stacking through π-π interaction could generate ROS more efficiently, due to a prolonged exciton lifetime and enhanced ISC rate constant (k ISC), which were revealed by femtosecond transient absorption spectroscopy and theoretical calculations. This finding was further validated by the regulation of aggregation patterns induced by host-guest interaction. Moreover, S-2TPA-2PI could target mitochondria and achieve rapid mitophagy to cause more significant cancer cell suppression. Overall, the delicate supramolecular dimerization tactics not only revealed the structure-property relationship of organic PSs but also shed light on the development of a universal strategy in future PDT and photocatalysis fields.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Mingdi Yang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Jing Huang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| |
Collapse
|
17
|
Xu W, Chao J, Tang B, Li Z, Xu J, Zhang X. Improving Photocatalytic Performance through the Construction of a Supramolecular Organic Framework. Chemistry 2022; 28:e202202200. [DOI: 10.1002/chem.202202200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weiquan Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jin‐Yu Chao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200438 China
| | - Bohan Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhan‐Ting Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200438 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
18
|
Wu G, Li F, Tang B, Zhang X. Molecular Engineering of Noncovalent Dimerization. J Am Chem Soc 2022; 144:14962-14975. [PMID: 35969112 DOI: 10.1021/jacs.2c02434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimers are probably the simplest model to facilitate the understanding of fundamental physical and chemical processes that take place in much-expanded systems like aggregates, crystals, and other solid states. The molecular interplay within a dimer differentiates it from the corresponding monomeric state and determines its features. Molecular engineering of noncovalent dimerization through applied supramolecular restrictions enables additional control over molecular interplay, particularly over its dynamic aspect. This Perspective introduces the recent effort that has been made in the molecular engineering of noncovalent dimerization, including supramolecular dimers, folda-dimers, and macrocyclic dimers. It showcases how the variation in supramolecular restrictions endows molecular-based materials with improved performance and/or functions like enhanced emission, room-temperature phosphorescence, and effective catalysis. We particularly discuss pseudostatic dimers that can sustain molecular interplay for a long period of time, yet are still flexible enough to adapt to variations. The pseudostatic feature allows for active species to decay along an alternate pathway, thereby spinning off emerging features that are not readily accessible from conventional dynamic systems.
Collapse
Affiliation(s)
- Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Wang Y, Wu H, Hu W, Stoddart JF. Color-Tunable Supramolecular Luminescent Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105405. [PMID: 34676928 DOI: 10.1002/adma.202105405] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Constructing multicolor photoluminescent materials with tunable properties is an attractive research objective on account of their abundant applications in materials science and biomedical engineering. By comparison with covalent synthesis, supramolecular chemistry has provided a more competitive and promising strategy for the production of organic materials and the regulation of their photophysical properties. By taking advantage of dynamic and reversible noncovalent bonding interactions, supramolecular strategies can, not only simplify the design and fabrication of organic materials, but can also endow them with dynamic reversibility and stimuli responsiveness, making it much easier to adjust the superstructures and properties of the materials. Occasionally, it is possible to introduce emergent properties into these materials, which are absent in their precursor compounds, broadening their potential applications. In an attempt to highlight the state-of-the-art noncovalent strategies available for the construction of smart luminescent materials, an overview of color-tunable materials is presented in this Review, with the emphasis being placed on the examples drawn from host-guest complexes, supramolecular assemblies and crystalline materials. The noncovalent synthesis of room-temperature phosphorescent materials and the modulation of their luminescent properties are also described. Finally, future directions and scientific challenges in the emergent field of color-tunable supramolecular emissive materials are discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
20
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Li G, Zhou K, Sun Q, Ma W, Liu X, Zhang X, Zhang L, Rao B, He YL, He G. Bacteria-Triggered Solar Hydrogen Production via Platinum(II)-Tethered Chalcogenoviologens. Angew Chem Int Ed Engl 2022; 61:e202115298. [PMID: 34982500 DOI: 10.1002/anie.202115298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Multifunctional solar energy conversion offers a feasible strategy to solve energy, environmental and water crises. Herein, a series of platinum(II)-tethered chalcogenoviologens (PtL+ -EV2+ , E=S, Se, Te) is reported, which integrate the functions of photosensitizer, electron mediator and catalyst. PtL+ -EV2+ (particularly for PtL+ -SeV2+ )-based one-component solar H2 production could be triggered not only by EDTA, but also by facultative anaerobic and aerobic bacteria relying on a simplified mechanism, along with efficient antibacterial activities. In addition, by using real pool water, PtL+ -SeV2+ achieved multiple functions, including H2 production, antibacterial action and acid removal, which supplied a new strategy to solve various problems in real life via a single system.
Collapse
Affiliation(s)
- Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China.,Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Kun Zhou
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Qi Sun
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xu Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xuri Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Lei Zhang
- School of Physics and Optoelectronic Engineering, Xidian University, China
| | - Bin Rao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Ya-Ling He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China.,Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
22
|
Li G, Zhou K, Sun Q, Ma W, Liu X, Zhang X, Zhang L, Rao B, He Y, He G. Bacteria‐Triggered Solar Hydrogen Production via Platinum(II)‐Tethered Chalcogenoviologens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Kun Zhou
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Qi Sun
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xu Liu
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xuri Zhang
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Lei Zhang
- School of Physics and Optoelectronic Engineering Xidian University China
| | - Bin Rao
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ya‐Ling He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
23
|
Xu W, Jiao Y, Tang B, Xu JF, Zhang X. Cucurbit[7]uril-Modulated H/D Exchange of α-Carbonyl Hydrogen: Deceleration in Alkali and Acceleration in Acid Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:541-546. [PMID: 34930007 DOI: 10.1021/acs.langmuir.1c02951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular catalysis based on host-guest interactions has aroused much attention in past decades. Among the various strategies, modulation of the reactivity of key intermediates is an effective strategy to achieve high-efficiency supramolecular catalysis. Here, we report that by utilizing the host-guest interaction of cucurbit[7]uril (CB[7]), the reactivity of anionic enolate and cationic oxonium, the intermediates of H/D exchange of the α-carbonyl hydrogen in alkali and acid conditions, respectively, could be modulated effectively. On one hand, in alkaline conditions, both the electrostatic effect and the steric hindrance effect of CB[7] disfavored formation of the enolate anion intermediate. On the other hand, in acidic conditions, the oxonium was stabilized and the solvent effect was weakened by the electrostatic effect of CB[7]. As a result, the H/D exchange of 1-(4-acetylphenyl)-N,N,N-trimethylmethanaminium bromide is decelerated in alkaline and accelerated in acidic conditions. It is promising that the highly polar portals of CB[n] molecules together with their well-defined host-guest chemistry may be applied to modulate the reactivity of other kinds of ionic intermediates in an effective and convenient way, thus enriching the toolkit of supramolecular catalysis.
Collapse
Affiliation(s)
- Weiquan Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yang Jiao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Huo M, Dai XY, Liu Y. Uncommon Supramolecular Phosphorescence-Capturing Assembly Based on Cucurbit[8]uril-Mediated Molecular Folding for Near-Infrared Lysosome Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104514. [PMID: 34741495 DOI: 10.1002/smll.202104514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The construction of highly effective phosphorescence energy transfer capturing system still remains great challenge in aqueous phase. Herein, a high-efficiency supramolecular purely organic room temperature phosphorescence (RTP)-capturing system via a secondary assembly strategy by taking advantage of cucurbit[8]uril (CB[8]) and amphiphilic calixarene (SC4AH) is reported. Comparing with free bromonaphthalene-connected methoxyphenyl pyridinium salt (G), G⊂CB[8] exhibits an emerging RTP emission peak at 530 nm. Moreover, G⊂CB[8] further interacts with SC4AH to form the ternary assembly G⊂CB[8] @ SC4AH accompanied by remarkably enhanced RTP emission. Interestingly, RTP-capturing systems with delayed near-infrared (NIR) emissive performance (635, 675 nm) are feasibly acquired by introducing Nile Red (NiR) or Nile Blue (NiB) as the acceptor into hydrophobic layer of G⊂CB[8] @ SC4AH, possessing ultrahigh antenna effects (352.9, 123.5) at a high donor/acceptor ratio (150:1, 300:1). More importantly, cell experiments indicate that G⊂CB[8] @ SC4AH/NiB not only hold low cytotoxicity but also can successfully realize NIR lysosome-targeted imaging of A549 cancer cells. This RTP-capturing system of delayed NIR emission via multistage assembly strategy offers a new approach for NIR imaging in living cells.
Collapse
Affiliation(s)
- Man Huo
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
25
|
Synthesis and characterization of a sensitive and selective Fe3+ fluorescent sensor based on novel sulfonated calix[4]arene‐based host‐guest complex. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Wan J, Zhang Z, Wang Y, Zhao J, Qi Y, Zhang X, Liu K, Yu C, Yan X. Synergistic covalent-and-supramolecular polymers connected by [2]pseudorotaxane moieties. Chem Commun (Camb) 2021; 57:7374-7377. [PMID: 34231574 DOI: 10.1039/d1cc02873a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synergistic covalent-and-supramolecular polymers, in which covalent polymers and supramolecular polymers connect with each other through [2]pseudorotaxane moieties, are designed and synthesized. The unique topological structure effectively enhances the synergistic effect between these two polymers, thereby generating a novel class of mechanically adaptive materials.
Collapse
Affiliation(s)
- Junjun Wan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yumeng Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|