1
|
Li YQ, Fu L, Jiang Z, Han E, Li T, Bai Q, Xie TZ, Zhang Z, Wang P, Wu T. Controlling the Chirality of Metallo-Cages by Manipulating the Stereochemistry of the Metal Centers. Angew Chem Int Ed Engl 2025:e202503833. [PMID: 40162992 DOI: 10.1002/anie.202503833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Precise control over the chirality of metallo-cages by manipulating the stereochemistry of metal centers is important in many practical applications, but is extremely challenging. In this study, two isostructural metallo-cuboctahedra (1-ZnII 12L18 and 2-CdII 12L18) have been assembled using ligand L1 and two kinds of metal ions (ZnII and CdII) with similar coordination lability. The chiral-induction by the same guests (D-/L-camphorsulfonate, D-/L-SCS) results in a completely opposing stereochemical output of 1 and 2: D-SCS induced host-guest complex of [D-SCS⊂Δ12-1] and [D-SCS⊂Λ12-2], respectively, with reverse handedness. The distinct stereochemical configuration of metallo-cuboctahedra can be manipulated by participant metal ions that exhibit similar dynamics. Furthermore, a subtle variation of the ligand peripheral substituent group facilitates spontaneous resolution of metallo-cuboctahedra 3-ZnII 12L28 from a racemic mixture as (R24, Λ12)-3/(S24, Δ12)-3 enantiopure entities. The dynamic stereochemistry of MII 12L8 cuboctahedra described in this work allows a chiral manipulation based on the nature of metal centers and ligands, enabling the design and control of the chirality of metallo-cages.
Collapse
Affiliation(s)
- Yu-Qing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Fu
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Zhiyuan Jiang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tian Li
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Qixia Bai
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Zhe Zhang
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tun Wu
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Liu SH, Zhao K, Zhou JH, Dong K, Ai H, Liu P, Cui JW, Zhang YH, Puigmartí-Luis J, Sun JK. Cooperative Multiscale-Assembly for Directional and Hierarchical Growth of Highly Oriented Porous Organic Cage Single-Crystal Microtubes and Arrays. Angew Chem Int Ed Engl 2025; 64:e202421523. [PMID: 39688886 DOI: 10.1002/anie.202421523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation. Concurrently, at the mesoscopic level, convective flow in the double-solvent system directed the spatial distribution of nuclei species, followed by diffusion limited growth, leading to the directional formation of single-crystal microtubes. By precisely controlling the direction of convective flow, the nanocages were successfully organized into 2D and 3D single-crystal microtube arrays while maintaining oriented micropores. This hierarchical porous architecture enhanced mass transfer, as confirmed by adsorption measurements. Interestingly, such 3D hierarchical microtube arrays can be utilized to immobilize Pd clusters and enzymes (lipase or Glucose oxidase) within the micro- and macropores, respectively, showing a 3.8- to 4-fold enhancement in one-pot tandem reaction activity compared to physical mixtures of individual analogues.
Collapse
Affiliation(s)
- Si-Hua Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Ke Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Kang Dong
- Multi-Disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Ai
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pai Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jing-Wang Cui
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yun-Hong Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
3
|
Chen C, Zhang S. Symmetry Breaking: Case Studies with Organic Cage-Racemates. Acc Chem Res 2025; 58:583-598. [PMID: 39873624 DOI: 10.1021/acs.accounts.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology. Chemistry is particularly rich in symmetry breaking studies, encompassing areas such as asymmetric synthesis, chiral resolution, chiral structure assembly, and so on. Across different disciplines, a well-defined methodology is fundamental and necessary to analyze the symmetry or symmetry breaking nature behind the phenomenon, enabling researchers to uncover the underlying principles and mechanisms. Basically, three key points underpin symmetry-related research: the scale-dependency of symmetry/symmetry breaking, the driving force behind symmetry breaking phenomena, and the properties arising from symmetry breaking.This Account will focus on the three aforementioned key points elucidated with organic cages as proof-of-concept models, as organic cages exhibit shape-persistent 3D molecular frameworks, well-defined molecular motion, and a high propensity for crystallization.First, we examine racemization processes of organic cages with dynamic molecular motions to illustrate that symmetry and symmetry breaking are time-scale-dependent. Specifically, the racemization, driven by molecular motion, is influenced by hydrogen bonding and the rigidity of the cage framework, which may or may not be observable within the experimental temporal scale. This determines whether the enantiomeric excess system, namely, the symmetry broken system, can be detected experimentally. We also investigate the hierarchical structures self-assembled by racemic organic cages, demonstrating that symmetry and asymmetry manifest differently across spatial scales, from molecular to supramolecular and macroscopic levels. Second, we discuss the driving force behind spontaneous chiral resolution─a classic symmetry-breaking event during crystallization─from a thermodynamic perspective. We suggest that racemic compounds, compared to conglomerates, are more entropy-favored, explaining their greater prevalence in nature. Spontaneous chiral resolution can take place only when a favorable enthalpy compensates for unfavorable entropy. In conglomerates composed of organic cages, strong intermolecular interactions along the screw axes provide the necessary compensation. Finally, we explore the unique properties that emerge from symmetry-broken molecular packing within crystals of cage racemates, such as second-harmonic generation and piezoelectricity. It turns out that the symmetry operation in molecular packing plays a critical role in determining material properties. By comprehensively analyzing symmetry and symmetry-breaking in organic cage racemates, this Account provides insights into symmetry-related phenomena across scientific disciplines. It also paves the way for designing novel materials with tailored properties for applications in optics, electronics, and beyond.
Collapse
Affiliation(s)
- Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Wang L, Wang Y, Chu C, Hu J, Wu S, Ma Y. Chirality Determination of Nanocrystals by Electron Crystallography. J Phys Chem Lett 2024; 15:6896-6908. [PMID: 38935349 DOI: 10.1021/acs.jpclett.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Chirality is a common phenomenon in nature and plays an important role in the properties of matter. The rational synthesis of chiral compounds and exploration of their applications in various fields require an unambiguous determination of their handedness. However, in many cases, determinations of the chiral crystal structure and chiral morphology have been a challenging task due to the lack of proper characterization methods, especially for nanosized crystals. Therefore, it is crucial to develop novel and efficient characterization methods. Owing to the strong interactions between matter and electrons, electron crystallography has become a powerful tool for structural analysis of nanomaterials. In recent years, methods based on electron crystallography, such as high-resolution electron microscopy imaging and electron diffraction, have been developed to unravel the chirality of nanomaterials. This brings new opportunities to the design, synthesis, and applications of versatile chiral nanomaterials. In this perspective, we summarize the recent methodology developments and ongoing research of electron crystallography for chiral structure and morphology determination of nanocrystals, including inorganic and organic materials, as well as highlight the potential and further improvement of these methods in the future.
Collapse
Affiliation(s)
- Lijin Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yao Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Chaoyang Chu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Junyi Hu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Shitao Wu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
5
|
Bai Q, Guan YM, Wu T, Liu Y, Zhai Z, Long Q, Jiang Z, Su P, Xie TZ, Wang P, Zhang Z. Anion-Regulated Hierarchical Self-Assembly and Chiral Induction of Metallo-Tetrahedra. Angew Chem Int Ed Engl 2023; 62:e202309027. [PMID: 37552154 DOI: 10.1002/anie.202309027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The precise control over hierarchical self-assembly of superstructures relying on the elaboration of multiple noncovalent interactions between basic building blocks is both elusive and highly desirable. We herein report a terpyridine-based metallo-cage T with a tetrahedral motif and utilized it as an efficient building block for the controlled hierarchical self-assembly of superstructures in response to different halide ions. Initially, the hierarchical superstructure of metallo-cage T adopted a hexagonal close-packed structure. By adding Cl- /Br- or I- , drastically different hierarchical superstructures with highly-tight hexagonal packing or graphite-like packing arrangements, respectively, have been achieved. These unusual halide-ion-triggered hierarchical structural changes resulted in quite distinct intermolecular channels, which provided new insights into the mechanism of three-dimensional supramolecular aggregation and crystal growth based on macromolecular construction. In addition, the chiral induction of the metallo-cage T can be realized with the addition of chiral anions, which stereoselectively generated either PPPP- or MMMM-type enantiomers.
Collapse
Affiliation(s)
- Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ying Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Zhiyuan Jiang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Liu X, Liu C, Song X, Ding X, Wang H, Yu B, Liu H, Han B, Li X, Jiang J. Cofacial porphyrin organic cages. Metals regulating excitation electron transfer and CO 2 reduction electrocatalytic properties. Chem Sci 2023; 14:9086-9094. [PMID: 37655043 PMCID: PMC10466316 DOI: 10.1039/d3sc01816d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Herein, we introduce a comprehensive study of the photophysical behaviors and CO2 reduction electrocatalytic properties of a series of cofacial porphyrin organic cages (CPOC-M, M = H2, Co(ii), Ni(ii), Cu(ii), Zn(ii)), which are constructed by the covalent-bonded self-assembly of 5,10,15,20-tetrakis(4-formylphenyl)porphyrin (TFPP) and chiral (2-aminocyclohexyl)-1,4,5,8-naphthalenetetraformyl diimide (ANDI), followed by post-synthetic metalation. Electronic coupling between the TFPP donor and naphthalene-1,4 : 5,8-bis(dicarboximide) (NDI) acceptor in the metal-free cage is revealed to be very weak by UV-vis spectroscopic, electrochemical, and theoretical investigations. Photoexcitation of CPOC-H2, as well as its post-synthetic Zn and Co counterparts, leads to fast energy transfer from the triplet state porphyrin to the NDI unit according to the femtosecond transient absorption spectroscopic results. In addition, CPOC-Co enables much better electrocatalytic activity for CO2 reduction reaction than the other metallic CPOC-M (M = Ni(ii), Cu(ii), Zn(ii)) and monomeric porphyrin cobalt compartment, supplying a partial current density of 18.0 mA cm-2 at -0.90 V with 90% faradaic efficiency of CO.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chenxi Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiaojuan Song
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Heyuan Liu
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiyou Li
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
7
|
Zuo Y, Liu X, Fu E, Zhang S. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angew Chem Int Ed Engl 2023; 62:e202217225. [PMID: 36748582 DOI: 10.1002/anie.202217225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Without chiral induction the emergence of homochirality from achiral molecules is rather serendipitous, as the rationale is somewhat ambiguous. We herein provide a plausible solution. From achiral precursors are formed a pair of interconverting cage conformers that exhibit a C3 -axis as the only symmetry element. When their interconversion is impeded with intramolecular H-bonding, each conformer self-sorts into a homochiral crystal, which is driven by a helical network of multivalent intermolecular interactions during the self-assembly of homochiral cage conformers. As no chiral induction is involved throughout, we believe our study could enlighten the rational design for the emergence of homochirality with several criteria: 1) formation of a molecule without inversion center or mirror plane; 2) suppression of the enantiomeric interconversion, and introduction of multivalent interactions along the helical trajectory of screw symmetry within the resulting superstructure.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoning Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
8
|
Weh M, Shoyama K, Würthner F. Preferential molecular recognition of heterochiral guests within a cyclophane receptor. Nat Commun 2023; 14:243. [PMID: 36646685 PMCID: PMC9842753 DOI: 10.1038/s41467-023-35851-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
The discrimination of enantiomers by natural receptors is a well-established phenomenon. In contrast the number of synthetic receptors with the capability for enantioselective molecular recognition of chiral substrates is scarce and for chiral cyclophanes indicative for a preferential binding of homochiral guests. Here we introduce a cyclophane composed of two homochiral core-twisted perylene bisimide (PBI) units connected by p-xylylene spacers and demonstrate its preference for the complexation of [5]helicene of opposite helicity compared to the PBI units of the host. The pronounced enantio-differentiation of this molecular receptor for heterochiral guests can be utilized for the enrichment of the P-PBI-M-helicene-P-PBI epimeric bimolecular complex. Our experimental results are supported by DFT calculations, which reveal that the sterically demanding bay substituents attached to the PBI chromophores disturb the helical shape match of the perylene core and homochiral substrates and thereby enforce the formation of syndiotactic host-guest complex structures. Hence, the most efficient substrate binding is observed for those aromatic guests, e. g. perylene, [4]helicene, phenanthrene and biphenyl, that can easily adapt in non-planar axially chiral conformations due to their inherent conformational flexibility. In all cases the induced chirality for the guest is opposed to those of the embedding PBI units, leading to heterochiral host-guest structures.
Collapse
Affiliation(s)
- Manuel Weh
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany.
| |
Collapse
|
9
|
Chen J, Yang Z, Zhu G, Fu E, Li P, Chen F, Yu C, Wang S, Zhang S. Heterochiral Diastereomer-Discriminative Diphanes That Form Hierarchical Superstructures with Nonlinear Optical Properties. JACS AU 2022; 2:1661-1668. [PMID: 35911451 PMCID: PMC9327085 DOI: 10.1021/jacsau.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to study the emergence of homochirality during complex molecular systems, most works mainly concentrated on the resolution of a pair of enantiomers. However, the preference of homochiral over heterochiral isomers has been overlooked, with very limited examples focusing only on noncovalent interactions. We herein report on diastereomeric discrimination of twin-cavity cages (denoted as diphanes) against heterochiral tris-(2-aminopropyl)amine (TRPN) bearing triple stereocenters. This diastereomeric selectivity results from distinct spatial orientation of reactive secondary amines on TRPN. Homochiral TRPNs with all reactive moieties rotating in the same way facilitate the formation of homochiral and achiral meso diphanes with low strain energy, while heterochiral TRPNs with uneven orientation of secondary amines preclude the formation of cage-like entity, since the virtual diphanes exhibit considerably high strain. Moreover, homochiral diphanes self-assemble into an acentric superstructure composed of single-handed helices, which exhibits interesting nonlinear optical behavior. Such a property is a unique occurrence for organic cages, which thus showcases their potential to spawn novel materials with interesting properties and functions.
Collapse
Affiliation(s)
- Jiaolong Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenyu Yang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gucheng Zhu
- Key
Laboratory of Artificial Structures and Quantum Control (Ministry
of Education), Shenyang National Laboratory for Materials Science,
School of Physics and Astronomy, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Enguang Fu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pan Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fangyi Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shiyong Wang
- Key
Laboratory of Artificial Structures and Quantum Control (Ministry
of Education), Shenyang National Laboratory for Materials Science,
School of Physics and Astronomy, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaodong Zhang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
10
|
Liu C, Jin Y, Qi D, Ding X, Ren H, Wang H, Jiang J. Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chem Sci 2022; 13:7014-7020. [PMID: 35774155 PMCID: PMC9200113 DOI: 10.1039/d2sc01876d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Chiral recognition and discrimination is not only of significance in biological processes but also a powerful method to fabricate functional supramolecular materials. Herein, a pair of heterochiral porous organic cages (HPOC-1), out of four possible enantiomeric products, with mirror stereoisomeric crystal structures were cleanly prepared by condensation occurring in the exclusive combination of cyclohexanediamine and binaphthol-based tetraaldehyde enantiomers. Nuclear magnetic resonance and luminescence spectroscopy have been employed to monitor the assembly process of HPOC-1, revealing the clean formation of heterochiral organic cages due to the enantioselective recognition of (S,S)-binaphthol towards (R,R)-cyclohexanediamine derivatives and vice versa. Interestingly, HPOC-1 exhibits circularly polarized luminescence and enantioselective recognition of chiral substrates according to the circular dichroism spectral change. Theoretical simulations have been carried out, rationalizing both the enantioselective assembly and recognition of HPOC-1.
Collapse
Affiliation(s)
- Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Huimin Ren
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
11
|
Abstract
A variety of organic cages with different geometries have been developed during the last decade, most of them exhibiting a single cavity. In contrast, the number of organic cages featuring a pair of cavities remains scarce. These structures may pave the way towards novel porous materials with emergent properties and functions.We herein report on rational design of a three-dimensional hexaformyl precursor 1, which exhibits two types of conformers, i.e. Conformer-1 and -2, with different cleft positions and sizes. Aided by molecular dynamics simulations, we select two triamino conformation capturers (denoted CC). Small-sized CC-1 selectively capture Conformer-1 by matching its cleft size, while the large-sized CC-2 is able to match and capture both conformers. This strategy allows the formation of three compounds with twin cavities, which we coin diphane. The self-assembly of diphane units results in superstructures with tunable proton conductivity, which reaches up to 1.37×10-5 S cm-1. The preparation of nanocages with unprecedented architectures may lead to new functions. Here the authors report the self-assembly of organic cages featuring twin cavities; the geometry and pocket size determine the molecular packing and the proton conductivity performance.
Collapse
|