1
|
Zhang Y, Ye Y, Sun Y, Wang Y, Du H, Hao H, Xie C. Quadruple Stimuli-Responsive Behaviour of Acylhydrazone Crystals: Mechanical, Photomechanical, Thermomechanical, and Optical Waveguide Properties. Chemistry 2025; 31:e202403283. [PMID: 39573945 DOI: 10.1002/chem.202403283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 12/06/2024]
Abstract
As society advances, the demand for high-performance crystal materials with versatile stimuli-responsive capabilities has increased. However, there remains a notable shortage of simple molecular crystals that exhibit stable and swift responses to various stimuli. In this study, we synthesized a novel acylhydrazone crystal by integrating benzene-fused heterocycles and halogens, achieving a crystal material with multiple stimuli-responsive behaviours. The crystal demonstrates good mechanical flexibility, capable of with standing a strain of 2.3 % under applying mechanical force and recovering its original shape after force removal. Crystal structure analysis reveals this property is due to the strong and flexible intermolecular interactions. It also exhibits rapid photomechanical bending away from light source under UV irradiation, which could be attributed to the facile photoisomerization. Moreover, the crystal undergoes significant thermomechanical transitions, including cracking and jumping, upon heating. Additionally, the prepared crystal exhibits passive optical waveguide of red light at 640 nm, which, combining the photomechanical bending, can achieve controllable light output direction. These multi-stimuli-responsive behaviors make the acylhydrazone crystal a promising candidate for applications in multifunctional sensors, optoelectronic devices, and thermal switches. This work provides a helpful reference for the study of potential crystal material design and functionality of advanced responsive systems.
Collapse
Affiliation(s)
- Yaru Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yang Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ying Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yuanhang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Haowen Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Hongxun Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- National Engineering Research Center of Industrial Crystallization Technology, Tianjin, 300072, PR China
| | - Chuang Xie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- National Engineering Research Center of Industrial Crystallization Technology, Tianjin, 300072, PR China
| |
Collapse
|
2
|
Wu SD, Chen ZZ, Sun WJ, Shi LYY, Shen AK, Cao JJ, Liu Z, Lambert CJ, Zhang HL. Boosting the Photoresponse of Azobenzene Single-Molecule Junctions via Mechanical Interlock and Dynamic Anchor. ACS NANO 2024; 18:31547-31558. [PMID: 39476419 DOI: 10.1021/acsnano.4c13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
As the most classic photoisomerization system, azobenzene has been widely utilized as a building unit in various photoswitching applications. However, attempts to build azobenzene-based single-molecule photoswitches have met with limited success, giving low on/off ratios. Herein, we demonstrate two designs of azobenzene-based photoresponsive single-molecule junctions, based on mechanically interlocked diazocine and azobenzene-based dynamic anchors, respectively. Molecular conductance measurements using the scanning tunneling microscope breaking junction (STMBJ) technique revealed dramatic conductance changes upon photoillumination, achieving a high on/off ratio of ∼3.7. Using density functional theory (DFT), we revealed peculiar quantum interference (QI) effects in the diazocine molecular switch, indicating that diazocine is an excellent candidate for molecular photoswitches. The asymmetric azobenzene devices with a dynamic anchor exhibit switching behavior between a fully off state and a highly conductive state associated with the trans/cis conformation transition. The findings of this work not only present the design and development of functional molecular devices based on azobenzene units but also provide insight into the fundamental properties of light-induced quantum interference in azobenzene-based molecular devices.
Collapse
Affiliation(s)
- Shun-Da Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zi-Zhen Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wen-Jing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Li-Yu-Yang Shi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - An-Kang Shen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jing-Jing Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
3
|
Li Y, Shen L, Li S, Liu X, Wang W, Hong W, Pang X, Li M. Two-Dimensional Nanoarchitectonics of End-on Oligomers with Versatile Structures and Tunable Negative Differential Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58973-58979. [PMID: 39422517 DOI: 10.1021/acsami.4c13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Maximizing the molecular information density requires simultaneously functionalizing distinct monomers and their coupling connections. However, current synthesis generally focuses on distinct monomers rather than coupling reactions because the multistep reactions significantly escalate the synthetic complexity in an exponential increase. Here, we report the two-dimensional nanoarchitectures (2DNs) of end-on oligomers, with versatile molecular structures and negative differential resistance (NDR), synthesized by programmed and surface-initiated step electrosynthesis based on the simultaneous utilization of six reactions including cross- and homocouplings. The resulting vertically end-on oligomers, with similar values in thickness and molecular length, as crystalline 2DNs, exhibit subnanometer uniformity, ultrahigh compressive modulus of 40 GPa, and low-bias NDR at 0.13 V with an ultralow power consumption of down to 0.05 nW/μm2. This highly controlled electrosynthesis provides a unique dimension to enhance the structural diversity of molecular 2D nanomaterials for high-density and low-power consumption electronics.
Collapse
Affiliation(s)
- Yongfang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lingyun Shen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shumu Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Weiwei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xuan Pang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Mao Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Xu X, Gao C, Emusani R, Jia C, Xiang D. Toward Practical Single-Molecule/Atom Switches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400877. [PMID: 38810145 PMCID: PMC11304318 DOI: 10.1002/advs.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Electronic switches have been considered to be one of the most important components of contemporary electronic circuits for processing and storing digital information. Fabricating functional devices with building blocks of atomic/molecular switches can greatly promote the minimization of the devices and meet the requirement of high integration. This review highlights key developments in the fabrication and application of molecular switching devices. This overview offers valuable insights into the switching mechanisms under various stimuli, emphasizing structural and energy state changes in the core molecules. Beyond the molecular switches, typical individual metal atomic switches are further introduced. A critical discussion of the main challenges for realizing and developing practical molecular/atomic switches is provided. These analyses and summaries will contribute to a comprehensive understanding of the switch mechanisms, providing guidance for the rational design of functional nanoswitch devices toward practical applications.
Collapse
Affiliation(s)
- Xiaona Xu
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chunyan Gao
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Ramya Emusani
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chuancheng Jia
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| |
Collapse
|
5
|
Zheng W, Wang Y, Chen F, Bai B, Wang H, Li M. Solvatochromic and Proton-Responsive characteristics of Bi-1,3,4-Oxadiazole derivatives with symmetric dimethylamino substitution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123800. [PMID: 38145583 DOI: 10.1016/j.saa.2023.123800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
D-A molecules find extensive use in intelligent stimulus-response systems due to their exceptional attributes, including high sensitivity, rapid response, wide compatibility, and structural adaptability. The strength of Intramolecular Charge Transfer (ICT) plays a pivotal role in determining the performance of these devices. To enhance the ICT strength and explore new applications for D-A molecules, we meticulously designed a pair of symmetric dimethylamino-substituted bi-1,3,4-oxadiazole derivatives (DMAOXD and DMAOXDBEN). These symmetric D-A-A-D molecules, with strong electron donor terminals, displayed a modest redshift of less than 25 nm in the UV-vis absorption spectra. However, there was a significant redshift in the emission spectra (140 nm for DMAOXD and 170 nm for DMAOXDBEN) when transitioning from cyclohexane to dimethyl sulfoxide, indicating a pronounced ICT characteristic. Theoretical calculations support the idea that the dimethylaminophenyl unit serves as an electron donor in both DMAOXD and DMAOXDBEN, while the 1,3,4-oxadiazole and central benzene ring act as acceptors. The pronounced ICT characteristic observed in DMAOXD and DMAOXDBEN can be attributed to long-distance electron transfer. Additionally, it's noteworthy that the emission of DMAOXD and DMAOXDBEN solution samples can be quenched by adding trifluoroacetic acid (TFA) and restored by the addition of triethylamine (TEA). Inspired by this, a pattern created with ink samples containing DMAOXD and DMAOXDBEN can be concealed through fumigation with TFA and subsequently revealed by treating them with TEA, suggesting their potential use in data encryption.
Collapse
Affiliation(s)
- Weitao Zheng
- Key Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yuhan Wang
- Key Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Fangyi Chen
- Chongqing College of Electronic Engineering, No.76 University Town East Road, Shapingba District, Chongqing 401331, China
| | - Binglian Bai
- College of Physics, Jilin University, Changchun 130012, China
| | - Haitao Wang
- Key Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Min Li
- Key Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Liu X, Hu J, Yang J, Peng L, Tang J, Wang X, Huang R, Liu J, Liu K, Wang T, Liu X, Ding L, Fang Y. Fully Reversible and Super-Fast Photo-Induced Morphological Transformation of Nanofilms for High-Performance UV Detection and Light-Driven Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307165. [PMID: 38225747 PMCID: PMC10966555 DOI: 10.1002/advs.202307165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Flexible and highly ultraviolet (UV) sensitive materials garner considerable attention in wearable devices, adaptive sensors, and light-driven actuators. Herein, a type of nanofilms with unprecedented fully reversible UV responsiveness are successfully constructed. Building upon this discovery, a new system for ultra-fast, sensitive, and reliable UV detection is developed. The system operates by monitoring the displacement of photoinduced macroscopic motions of the nanofilms based composite membranes. The system exhibits exceptional responsiveness to UV light at 375 nm, achieving remarkable response and recovery times of < 0.3 s. Furthermore, it boasts a wide detection range from 2.85 µW cm-2 to 8.30 mW cm-2, along with robust durability. Qualitative UV sensing is accomplished by observing the shape changes of the composite membranes. Moreover, the composite membrane can serve as sunlight-responsive actuators for artificial flowers and smart switches in practical scenarios. The photo-induced motion is ascribed to the cis-trans isomerization of the acylhydrazone bonds, and the rapid and fully reversible shape transformation is supposed to be a synergistic result of the instability of the cis-isomers acylhydrazone bonds and the rebounding property of the networked nanofilms. These findings present a novel strategy for both quantitative and qualitative UV detection.
Collapse
Affiliation(s)
- Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jiahui Hu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jinglun Yang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
- Xi'an Rare Matel Materials Institute Co. LtdXi'an710016China
| | - Xiaohui Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jianfei Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
- Northwest Institute for Nonferrous Metal ResearchXi'an710016China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Tingyi Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| |
Collapse
|
7
|
Chen LC, Shi J, Lu ZX, Lin RJ, Lu TG, Zou YL, Liang QM, Huang R, Shi J, Xiao ZY, Zhang Y, Liu J, Yang Y, Hong W. Highly Reversible Molecular Photoswitches with Transition Metal Dichalcogenides Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305607. [PMID: 37817357 DOI: 10.1002/smll.202305607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Indexed: 10/12/2023]
Abstract
The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.
Collapse
Affiliation(s)
- Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zhi-Xing Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Rong-Jian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Tai-Ge Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zong-Yuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
9
|
Peng W, Chen N, Wang C, Xie Y, Qiu S, Li S, Zhang L, Li Y. Fine-Tuning the Molecular Design for High-Performance Molecular Diodes Based on Pyridyl Isomers. Angew Chem Int Ed Engl 2023; 62:e202307733. [PMID: 37401826 DOI: 10.1002/anie.202307733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Better control of molecule-electrode coupling (Γ) to minimize leakage current is an effective method to optimize the functionality of molecular diodes. Herein we embedded 5 isomers of phenypyridyl derivatives, each with an N atom placed at a different position, in two electrodes to fine-tune Γ between self-assembled monolayers (SAMs) and the top electrode of EGaIn (eutectic Ga-In terminating in Ga2 O3 ). Combined with electrical tunnelling results, characterizations of electronic structures, single-level model fittings, and DFT calculations, we found that the values of Γ of SAMs formed by these isomers could be regulated by nearly 10 times, thereby contributing to the leakage current changing over about two orders of magnitude and switching the isomers from resistors to diodes with a rectification ratio (r+ =|J(+1.5 V)/J(-1.5 V)|) exceeding 200. We demonstrated that the N atom placement can be chemically engineered to tune the resistive and rectifying properties of the molecular junctions, making it possible to convert molecular resistors into rectifiers. Our study provides fundamental insights into the role of isomerism in molecular electronics and offers a new avenue for designing functional molecular devices.
Collapse
Affiliation(s)
- Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Caiyun Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shengzhe Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuwei Li
- Center for Combustion Energy, Tsinghua University, Beijing, 100084, China
- School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing, 100084, China
- School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Pabi B, Marek Š, Pal A, Kumari P, Ray SJ, Thakur A, Korytár R, Pal AN. Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond. NANOSCALE 2023; 15:12995-13008. [PMID: 37483089 DOI: 10.1039/d3nr02585c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes via chemical anchors by applying a high source-drain bias (>1 V), the conductance was limited to <0.1G0, G0 being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at ∼0.2G0 in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH2) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (<0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of ∼660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.
Collapse
Affiliation(s)
- Biswajit Pabi
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Štepán Marek
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic
| | - Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Puja Kumari
- Department of Physics, Indian Institute of Technology Patna, Bihar-801106, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar-801106, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Richard Korytár
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic
| | - Atindra Nath Pal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
11
|
Liu H, Chen L, Zhang H, Yang Z, Ye J, Zhou P, Fang C, Xu W, Shi J, Liu J, Yang Y, Hong W. Single-molecule photoelectron tunnelling spectroscopy. NATURE MATERIALS 2023; 22:1007-1012. [PMID: 37349394 DOI: 10.1038/s41563-023-01591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO-LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.
Collapse
Affiliation(s)
- Haojie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Zhangqiang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Jingyao Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Wang J, Zhao Y, Li S, Shen L, Zhang H, Ding C, Wei C, Wang Y, Li Y, Hong W, Li M. Composition and sequence-controlled conductance of crystalline unimolecular monolayers. SCIENCE ADVANCES 2023; 9:eadh0667. [PMID: 37327333 DOI: 10.1126/sciadv.adh0667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Understanding how the charge travels through sequence-controlled molecules has been a formidable challenge because of simultaneous requirements in well-controlled synthesis and well-manipulated orientation. Here, we report electrically driven simultaneous synthesis and crystallization as a general strategy to study the conductance of composition and sequence-controlled unioligomer and unipolymer monolayers. The structural disorder of molecules and conductance variations on random positions can be extremely minimized, by uniform synthesis of monolayers unidirectionally sandwiched between electrodes, as an important prerequisite for the reproducible measurement on the micrometer scale. These monolayers show tunable current density and on/off ratios in four orders of magnitude with controlled multistate and massive negative differential resistance (NDR) effects. The conductance of monolayer mainly depends on the metal species in homo-metal monolayers, while the sequence becomes a matter in hetero-metal monolayers. Our work demonstrates a promising way to release an ultra-rich variety of electrical parameters and optimize the functions and performances of multilevel resistive devices.
Collapse
Affiliation(s)
- Jinxin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yongjie Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shumu Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China
| | - Lingyun Shen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Hao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caijun Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chang Wei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yanfang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongfang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Xu X, Wang J, Blankevoort N, Daaoub A, Sangtarash S, Shi J, Fang C, Yuan S, Chen L, Liu J, Yang Y, Sadeghi H, Hong W. Scaling of quantum interference from single molecules to molecular cages and their monolayers. Proc Natl Acad Sci U S A 2022; 119:e2211786119. [PMID: 36343232 PMCID: PMC9674264 DOI: 10.1073/pnas.2211786119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
The discovery of quantum interference (QI) is widely considered as an important advance in molecular electronics since it provides unique opportunities for achieving single-molecule devices with unprecedented performance. Although some pioneering studies suggested the presence of spin qubit coherence and QI in collective systems such as thin films, it remains unclear whether the QI can be transferred step-by-step from single molecules to different length scales, which hinders the application of QI in fabricating active molecular devices. Here, we found that QI can be transferred from a single molecule to their assemblies. We synthesized and investigated the charge transport through the molecular cages using 1,3-dipyridylbenzene (DPB) as a ligand block with a destructive quantum interference (DQI) effect and 2,5-dipyridylfuran (DPF) as a control building block with a constructive quantum interference (CQI) effect using both single-molecule break junction and large area junction techniques. Combined experiments and calculations revealed that both DQI and CQI had been transferred from the ligand blocks to the molecular cages and the monolayer thin film of the cages. Our work introduced QI effects from a ligand to the molecular cage comprising 732 atoms and even their monolayers, suggesting that the quantum interference could be scaled up within the phase-coherent distance.
Collapse
Affiliation(s)
- Xiaohui Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Juejun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Nickel Blankevoort
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Lei Y, Li Z, Wu G, Zhang L, Tong L, Tong T, Chen Q, Wang L, Ge C, Wei Y, Pan Y, Sue ACH, Wang L, Huang F, Li H. A trefoil knot self-templated through imination in water. Nat Commun 2022; 13:3557. [PMID: 35729153 PMCID: PMC9213439 DOI: 10.1038/s41467-022-31289-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
The preparation of topologically nontrivial molecules is often assisted by covalent, supramolecular or coordinative templates that provide spatial pre-organization for all components. Herein, we report a trefoil knot that can be self-assembled efficiently in water without involving additional templates. The direct condensation of three equivalents of a tetraformyl precursor and six equivalents of a chiral diamine produces successfully a [3 + 6] trefoil knot whose intrinsic handedness is dictated by the stereochemical configuration of the diamine linkers. Contrary to the conventional wisdom that imine condensation is not amenable to use in water, the multivalent cooperativity between all the imine bonds within the framework makes this trefoil knot robust in the aqueous environment. Furthermore, the presence of water is proven to be essential for the trefoil knot formation. A topologically trivial macrocycle composed of two tetraformyl and four diamino building blocks is obtained when a similar reaction is performed in organic media, indicating that hydrophobic effect is a major driving force behind the scene.
Collapse
Affiliation(s)
- Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310027, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Lijie Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, PR China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Tianyi Tong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Lingxiang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310027, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, PR China.
| |
Collapse
|
16
|
Zou Q, Chen X, Zhou Y, Jin X, Zhang Z, Qiu J, Wang R, Hong W, Su J, Qu DH, Tian H. Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions. J Am Chem Soc 2022; 144:10042-10052. [PMID: 35611861 DOI: 10.1021/jacs.2c03671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Single-molecule conductance measurements for 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) may offer unique insight into the bent-to-planar photocycle between the ground and excited states. Herein, we employ DPAC derivative DPAC-SMe as the molecular prototype to fabricate single-molecule junctions using the scanning tunneling microscope break junction technique and explore photoconductance dependence on the excited-state structural/electronic changes. We find up to ∼200% conductance enhancement of DPAC-SMe under continuous 340 nm light irradiation than that without irradiation, while photoconductance disappears in the case where structural evolution of the DPAC-SMe is halted through macrocyclization. The in situ conductance modulation as pulsed 340 nm light irradiation is monitored in the DPAC-SMe-based junctions alone, suggesting that the photoconductance of DPAC-SMe stems from photoinduced intramolecular planarization. Theoretical calculations reveal that the photoinduced structural evolution brings about a significant redistribution of the electron cloud density, which leads to the appearance of Fano resonance, resulting in enhanced conductance through the DPAC-SMe-fabricated junctions. This work provides evidence of bent-to-planar photocycle-induced conductance differences at the single-molecule level, offering a tailored approach for tuning the charge transport characteristics of organic photoelectronic devices.
Collapse
Affiliation(s)
- Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuanying Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Qiu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
|
18
|
Light-Driven Charge Transport and Optical Sensing in Molecular Junctions. NANOMATERIALS 2022; 12:nano12040698. [PMID: 35215024 PMCID: PMC8878161 DOI: 10.3390/nano12040698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Probing charge and energy transport in molecular junctions (MJs) has not only enabled a fundamental understanding of quantum transport at the atomic and molecular scale, but it also holds significant promise for the development of molecular-scale electronic devices. Recent years have witnessed a rapidly growing interest in understanding light-matter interactions in illuminated MJs. These studies have profoundly deepened our knowledge of the structure–property relations of various molecular materials and paved critical pathways towards utilizing single molecules in future optoelectronics applications. In this article, we survey recent progress in investigating light-driven charge transport in MJs, including junctions composed of a single molecule and self-assembled monolayers (SAMs) of molecules, and new opportunities in optical sensing at the single-molecule level. We focus our attention on describing the experimental design, key phenomena, and the underlying mechanisms. Specifically, topics presented include light-assisted charge transport, photoswitch, and photoemission in MJs. Emerging Raman sensing in MJs is also discussed. Finally, outstanding challenges are explored, and future perspectives in the field are provided.
Collapse
|
19
|
Zhu X, Xu Y, Zhao C, Jia C, Guo X. Recent Advances in Photochemical Reactions on Single-Molecule Electrical Platforms. Macromol Rapid Commun 2022; 43:e2200017. [PMID: 35150177 DOI: 10.1002/marc.202200017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/05/2022] [Indexed: 11/08/2022]
Abstract
The photochemical reaction is a very important type of chemical reactions. Visualizing and controlling photo-mediated reactions is a long-standing goal and challenge. In this regard, single-molecule electrical detection with label-free, real-time and in situ characteristics has unique advantages in monitoring the dynamic process of photoreactions at the single-molecule level. In this Review, we provide a valuable summary of the latest process of single-molecule photochemical reactions based on single-molecule electrical platforms. The single-molecule electrical detection platforms for monitoring photoreactions are displayed, including their fundamental principles, construction methods and practical applications. The single-molecule studies of two different types of light-mediated reactions are summarized as below: i) photo-induced reactions, including reversible cyclization, conformational isomerization and other photo-related reactions; ii) plasmon-mediated photoreactions, including reaction mechanisms and concrete examples, such as plasmon-induced photolysis of S-S/O-O bonds and tautomerization of porphycene. In addition, the prospects for future research directions and challenges in this field are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xin Zhu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Yanxia Xu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Cong Zhao
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| |
Collapse
|
20
|
Qu FY, Zhao ZH, Ren XR, Zhang SF, Wang L, Wang D. Multiple heteroatom substitution effect on destructive quantum interference in tripodal single-molecule junctions. Phys Chem Chem Phys 2022; 24:26795-26801. [DOI: 10.1039/d2cp03902h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Destructive quantum interference manipulating the electron transport in tripodal meta-linked phenyl derivatives can be modulated by adjusting the number and the position of the substituted heteroatom(s) inside the molecular core.
Collapse
Affiliation(s)
- Fa-Yu Qu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 10083, China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science (CAS), Beijing, 100190, China
| | - Zhi-Hao Zhao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Rui Ren
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shou-Feng Zhang
- Department of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, P. R. China
| | - Lin Wang
- School of Materials Science and Technology, China University of Geosciences, Beijing, 10083, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|