1
|
Zhang Y, Pang S, Fu J, Li X, MoZeng Y, He G, Fang Z, Li W, Peng D, Zhang X, Jiang L. Enzyme-Mimic Photoinitiated Flow-Polymerization with High Stereoselectivity under Mild Conditions. J Am Chem Soc 2025; 147:12150-12161. [PMID: 40165479 DOI: 10.1021/jacs.5c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Enzymatic reactions can achieve efficient flow-polymerization with specificity and high stereoselectivity. However, current enzyme-mimic polymerization systems cannot achieve high stereoregularity in flow reactions under mild conditions. This inefficient chain control may be due to the absence of a specific catalyst structure for the target monomer. This study reports a model of enzyme-mimic catalytic material for the polymerization of a specific monomer. In particular, the specific enzyme-mimic photoinitiated flow-polymerization of benzyl acrylate was realized at 22 °C using zinc porphyrin metal-organic framework (Zn-PMOF) membranes with one-dimensional nanochannels, achieving the efficient synthesis of highly heterotactic polymers. Under visible light irradiation, the zinc porphyrin core on the membrane surface could initiate polymerization, while copper porphyrin MOF with similar structures could not. The specific channel structure of the Zn-PMOF membrane provided space for stereochemical control. Control experiments, density functional theory simulations, and spectroscopic characterizations show that the combination of size effect and channel-monomer interactions realized higher monomer conversion and polymer stereoregularity in the flow reaction. Furthermore, the crystallinity, shear stress, and ionic conductivity of enzyme-mimic polymers were considerably better than those of bulk polymerization products. Thus, this study provides a method for enzyme-mimic polymerization with high stereoselectivity under mild conditions.
Collapse
Affiliation(s)
- Yuhui Zhang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Shuai Pang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Jiangwei Fu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiang Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinting MoZeng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Guandi He
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenyuan Fang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Wei Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Daoling Peng
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Xiqi Zhang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
2
|
Sobieski J, Gorczyński A, Jazani AM, Yilmaz G, Matyjaszewski K. Better Together: Photoredox/Copper Dual Catalysis in Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2025; 64:e202415785. [PMID: 39611372 DOI: 10.1002/anie.202415785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Indexed: 11/30/2024]
Abstract
Photomediated Atom Transfer Radical Polymerization (photoATRP) is an activator regeneration method, which allows for the controlled synthesis of well-defined polymers via light irradiation. Traditional photoATRP is often limited by the need for high-energy ultraviolet or violet light. These could negatively affect the control and selectivity of the polymerization, promote side reactions, and may not be applicable to biologically relevant systems. This drawback can be circumvented by an introduction of the catalytic amount of photocatalysts, which absorb visible and/or NIR light and, therefore, controlled, regenerative ATRP can be performed with the dual-catalytic cycle. Herein, a critical summary of recent developments in the field of dual-catalysis concerning Cu-catalyzed ATRP is provided. Contributions of involved species are examined mechanistically, followed by challenges and future directions towards the next generation of advanced functional macromolecular materials.
Collapse
Affiliation(s)
- Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| |
Collapse
|
3
|
Zhang X, Liu Z, Shao B, Liang Q, Wu T, Pan Y, He Q, He M, Ge L, Huang J. Porphyrin-Based Metal-Organic Framework Photocatalysts: Structure, Mechanism and Applications. SMALL METHODS 2025:e2402096. [PMID: 39757519 DOI: 10.1002/smtd.202402096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/24/2024] [Indexed: 01/07/2025]
Abstract
In recent years, porphyrins have been frequently reported as photocatalysts due to their fascinating photochemical properties. However, porphyrins have the same shortcomings as other homogeneous photocatalysts, such as poor stability and difficulty in recovering. To solve this problem, it is a good strategy to form a porphyrin-based metal-organic framework (PMOF) by modifying porphyrin functional groups and adding metals as nodes to connect and control the arrangement of porphyrins. The metal nodes control the rigidity and connectivity of the porphyrin modules to order them in the MOF, which improves the stability of the porphyrins, avoids porphyrin aggregation and folding, and increases the active sites for photocatalytic reactions. This review summarized the research progress of PMOF photocatalysts in the last ten years and analyzed the effects of the spatial structure, porphyrin ligands, porphyrin central metals, and metal nodes of PMOF on the photocatalytic performance. The applications of PMOF-based photocatalysts in H2 production, CO2 reduction, pollutant degradation, and sterilization are reviewed. In addition, the mechanism of these processes is described in detail. Finally, some suggestions on the development of PMOF photocatalysts are put forward.
Collapse
Affiliation(s)
- Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Miao He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
4
|
Lu H, Wu X, Zhu P, Liu M, Li X, Xin X. A novel Bi 12O 17Cl 2/GO/Co 3O 4 Z-type heterojunction photocatalyst with ZIF-67 derivative modified for highly efficient degradation of antibiotics under visible light. J Colloid Interface Sci 2025; 677:1052-1068. [PMID: 39134080 DOI: 10.1016/j.jcis.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 10/09/2024]
Abstract
Levofloxacin (LVX) is difficult to be naturally degraded by microorganisms in water, and its residues in water will pose significant risks to human health and ecological environment. In this study, Bi12O17Cl2 was used as the main body, Bi12O17Cl2/GO/Co3O4 composite photocatalyst was prepared by pyrolysis of zeolitic imidazolate framework-67 (ZIF-67) combined with in-situ precipitation method and used to degrade LVX. A sequence of characterizations shows that addition of Co3O4 and graphene oxide (GO) increases the visible light response range, improves the separation efficiency of photogenerated electrons and holes (e--h+) of photocatalyst, and thus improves the degradation efficiency of LVX. Under the optimal reaction conditions, the LVX degradation rate of Bi12O17Cl2/1.5GO/7.5Co3O4 can reach 91.2 % at 120 min, and its reaction rate constant is the largest (0.0151 min-1), which is 2.17, 13.14 and 1.53 times that of Bi12O17Cl2, Co3O4 and Bi12O17Cl2/7.5Co3O4, respectively, showing better photocatalytic performance. Simultaneously, the recycling stability of Bi12O17Cl2/1.5GO/7.5Co3O4 was also verified. The capture experiments and electron EPR test results showed that superoxide radicals (•O2-) and photogenerated holes (h+) were the primary active substances in the reaction process. Finally, combined with HPLC-MS results, the photocatalytic degradation pathway of LVX was derived. This work will provide a theoretical basis for the design of Metal Organic Frameworks (MOFs)-derivative modified Bi12O17Cl2-based photocatalysts.
Collapse
Affiliation(s)
- Han Lu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xiaolong Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Mei Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xinling Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xiya Xin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
5
|
Hu C, Jiang D, Zhang Y, Gao H, Zeng Y, Khaorapapong N, Liu Z, Yamauchi Y, Pan M. Porphyrins-based multidimensional nanomaterials: Structural design, modification and applications. Coord Chem Rev 2025; 523:216264. [DOI: 10.1016/j.ccr.2024.216264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Li J, Lei D, Cao Y, Xin F, Zhang Z, Liu X, Wu M, Yao C. Nanozyme Decorated Metal-Organic Framework Nanosheet for Enhanced Photodynamic Therapy Against Hypoxic Tumor. Int J Nanomedicine 2024; 19:9727-9739. [PMID: 39315364 PMCID: PMC11418915 DOI: 10.2147/ijn.s466011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Photodynamic therapy (PDT) has attracted increasing attention in the clinical treatment of epidermal and luminal tumors. However, the PDT efficacy in practice is severely impeded by tumor hypoxia and the adverse factors associated with hydrophobic photosensitizers (PSs), including low delivery capacity, poor photoactivity and limited ROS diffusion. In this study, Pt nanozymes decorated two-dimensional (2D) porphyrin metal-organic framework (MOF) nanosheets (PMOF@HA) were fabricated and investigated to conquer the obstacles of PDT against hypoxic tumors. MATERIALS AND METHODS PMOF@HA was synthesized by the coordination of transition metal iron (Zr4+) and PS (TCPP), in situ generation of Pt nanozyme and surface modification with hyaluronic acid (HA). The abilities of hypoxic relief and ROS generation were evaluated by detecting the changes of O2 and 1O2 concentration. The cellular uptake was investigated using flow cytometry and confocal laser scanning microscopy. The SMMC-7721 cells and the subcutaneous tumor-bearing mice were used to demonstrate the PDT efficacy of PMOF@HA in vitro and in vivo, respectively. RESULTS Benefiting from the 2D structure and inherent properties of MOF materials, the prepared PMOF@HA could not only serve as nano-PS with high PS loading but also ensure the rational distance between PS molecules to avoid aggregation-induced quenching, enhance the photosensitive activity and promote the rapid diffusion of generated radical oxide species (ROS). Meanwhile, Pt nanozymes with catalase-like activity effectively catalyzed intratumoral overproduced H2O2 into O2 to alleviate tumor hypoxia. Additionally, PMOF@HA, with the help of externally coated HA, significantly improved the stability and increased the cell uptake by CD44 overexpressed tumor cells to strengthen O2 self-supply and PDT efficacy. CONCLUSION This study provided a new strategy of integrating 2D porphyrin MOF nanosheets with nanozymes to conquer the obstacles of PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Jiong Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Yanbing Cao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People’s Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People’s Republic of China
| | - Fuli Xin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People’s Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People’s Republic of China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People’s Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People’s Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People’s Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People’s Republic of China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| |
Collapse
|
7
|
Wen B, Huang Y, Jiang Z, Wang Y, Hua W, Indris S, Li F. Exciton Dissociation into Charge Carriers in Porphyrinic Metal-Organic Frameworks for Light-Assisted Li-O 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405440. [PMID: 38801657 DOI: 10.1002/adma.202405440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Light-assisted Li-O2 batteries exhibit a high round-trip efficiency attributable to the assistance of light-generated electrons and holes in oxygen reduction and evolution reactions. Nonetheless, the excitonic effect arising from Coulomb interaction between electrons and holes impedes carrier separation, thus hindering efficient utilization of photo-energy. Herein, porphyrinic metal-organic frameworks with (Fe2Ni)O(COO)6 clusters are used as photocathodes to accelerate exciton dissociation into charge carriers for light-assisted Li-O2 batteries. The coupling of Ni 3d and Fe 3d orbitals boosts ligand-to-metal cluster charge transfer, and hence drives exciton dissociation and activates O2 for superoxide (•O2 -) radicals, rather than singlet oxygen (1O2) under photoexcitation. These enable the light-assisted Li-O2 batteries with a low total overvoltage of 0.28 V and round-trip efficiency of 92% under light irradiation of 100 mW cm-2. This work highlights the excitonic effect in photoelectrochemical processes and provides insights into photocathode design for light-assisted Li-O2 batteries.
Collapse
Affiliation(s)
- Bo Wen
- State Key Laboratory of Advanced Chemical Power SourcesFrontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaohui Huang
- State Key Laboratory of Advanced Chemical Power SourcesFrontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhuoliang Jiang
- State Key Laboratory of Advanced Chemical Power SourcesFrontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuzhe Wang
- State Key Laboratory of Advanced Chemical Power SourcesFrontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weibo Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Sylvio Indris
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE), Université Mohammed VI Polytechnic (UM6P), Ben Guerir, 43150, Morocco
| | - Fujun Li
- State Key Laboratory of Advanced Chemical Power SourcesFrontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
8
|
He D, Wang Q, Rong Y, Xin Z, Liu JJ, Li Q, Shen K, Chen Y. Sub-Nanometer Mono-Layered Metal-Organic Frameworks Nanosheets for Simulated Flue Gas Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403920. [PMID: 38635463 DOI: 10.1002/adma.202403920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/09/2024] [Indexed: 04/20/2024]
Abstract
The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of specifically designed Co3 cluster-based metal-organic frameworks (MOFs) is reported. The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co3 sites that can selectively photo-reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85 mmol g-1 h-1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g-1 h-1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo-reduction in potential flue gas treatment.
Collapse
Affiliation(s)
- Dong He
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Qian Wang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Yan Rong
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Zhifeng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Jing-Jing Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qiang Li
- School of Physics, Southeast University, Nanjing, 21189, China
| | - Kejing Shen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
Affiliation(s)
- Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lu Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ke Li
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, 2 Dublin, Ireland
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
10
|
Jeong J, Hu X, Yin R, Fantin M, Das SR, Matyjaszewski K. Nucleic Acid-Binding Dyes as Versatile Photocatalysts for Atom-Transfer Radical Polymerization. J Am Chem Soc 2024; 146:13598-13606. [PMID: 38691811 PMCID: PMC11100002 DOI: 10.1021/jacs.4c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Nucleic acid-binding dyes (NuABDs) are fluorogenic probes that light up after binding to nucleic acids. Taking advantage of their fluorogenicity, NuABDs have been widely utilized in the fields of nanotechnology and biotechnology for diagnostic and analytical applications. We demonstrate the potential of NuABDs together with an appropriate nucleic acid scaffold as an intriguing photocatalyst for precisely controlled atom-transfer radical polymerization (ATRP). Additionally, we systematically investigated the thermodynamic and electrochemical properties of the dyes, providing insights into the mechanism that drives the photopolymerization. The versatility of the NuABD-based platform was also demonstrated through successful polymerizations using several NuABDs in conjunction with diverse nucleic acid scaffolds, such as G-quadruplex DNA or DNA nanoflowers. This study not only extends the horizons of controlled photopolymerization but also broadens opportunities for nucleic acid-based materials and technologies, including nucleic acid-polymer biohybrids and stimuli-responsive ATRP platforms.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marco Fantin
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Wu W, He T, Zhang X, Xie LH, Si GR, Xie Y, Li JR. Rare-Earth Metal-Organic Framework with Nonplanar Porphyrin Groups for High-Efficiency Photocatalysis. Inorg Chem 2024; 63:7412-7421. [PMID: 38600810 DOI: 10.1021/acs.inorgchem.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Nonplanar porphyrins play crucial roles in many biological processes and chemical reactions as catalysts. However, the preparation of artificial nonplanar porphyrins suffers from complicated organic syntheses. Herein, we present a new rare-earth porphyrinic metal-organic framework (RE-PMOF), BUT-233, which is a three-dimensional (3D) framework structure with the flu topology consisting of 4-connected BBCPPP-Ph ligands H4BBCPPP-Ph = 5',5⁗-(10,20-diphenylporphyrin-5,15-diyl)bis([1,1':3',1″-terphenyl]-4,4'' dicarboxylic acid) and 8-connected Eu6 clusters. Noteworthily, the porphyrin cores of the BBCPPP-Ph ligands in BUT-233 are nonplanar with a ruffle-like conformation. In contrast, the porphyrin core in the free ligand H4BBCPPP-Ph is in a nearly ideally planar conformation, as confirmed by its single-crystal structure. BUT-233 is microporous with 6-8 Å pores and a Brunauer-Emmett-Teller (BET) surface area of 649 m2/g, as well as high stability in common solvents. The MOF was used as a photocatalyst for the oxidation degradation of a chemical warfare agent model molecule CEES (CEES = 2-chloroethyl ethyl sulfide) under the light-emitting diode (LED) irradiation and an O2 atmosphere at room temperature. CEES was almost completely converted into its nontoxic light-oxidized product CEESO (CEESO = 2-chloroethyl ethyl sulfoxide) in only 5 min with t1/2 = 2 min (t1/2: half-life). Moreover, the toxic deep-oxidized product 2-chloroethyl ethyl sulfone (CEESO2) was not detected. The catalytic activity of BUT-233 was high in comparison with those of some previously reported MOF catalysts. The results of photo/electrochemical property studies suggested that the high catalytic activity of BUT-233 was benefited from the presence of nonplanar porphyrin rings on its pore surface.
Collapse
Affiliation(s)
- Wei Wu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Guang-Rui Si
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yabo Xie
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
12
|
Liu X, Zhao D, Wang J. Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework. NANO-MICRO LETTERS 2024; 16:157. [PMID: 38512503 PMCID: PMC10957829 DOI: 10.1007/s40820-024-01373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Metal-organic framework (MOF) and covalent organic framework (COF) are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features, such as large surface area, tunable pore size, and functional surfaces, which have significant values in various application areas. The emerging 3D printing technology further provides MOF and COFs (M/COFs) with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths. However, the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs' microstructural features, both during and after 3D printing. It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications. In this overview, the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths. Their differences in the properties, applications, and current research states are discussed. The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF. Throughout the analysis of the current states of 3D-printed M/COFs, the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.
Collapse
Affiliation(s)
- Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, People's Republic of China.
| |
Collapse
|
13
|
Zhu J, Wang R, Ma Z, Zuo W, Zhu M. Unleashing the Power of PET-RAFT Polymerization: Journey from Porphyrin-Based Photocatalysts to Combinatorial Technologies and Advanced Bioapplications. Biomacromolecules 2024; 25:1371-1390. [PMID: 38346318 DOI: 10.1021/acs.biomac.3c01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The emergence of photoinduced energy/electron transfer-reversible addition-fragmentation chain transfer polymerization (PET-RAFT) not only revolutionized the field of photopolymerization but also accelerated the development of porphyrin-based photocatalysts and their analogues. The continual expansion of the monomer family compatible with PET-RAFT polymerization enhances the range of light radiation that can be harnessed, providing increased flexibility in polymerization processes. Furthermore, the versatility of PET-RAFT polymerization extends beyond its inherent capabilities, enabling its integration with various technologies in diverse fields. This integration holds considerable promise for the advancement of biomaterials with satisfactory bioapplications. As researchers delve deeper into the possibilities afforded by PET-RAFT polymerization, the collaborative efforts of individuals from diverse disciplines will prove invaluable in unleashing its full potential. This Review presents a concise introduction to the fundamental principles of PET-RAFT, outlines the progress in photocatalyst development, highlights its primary applications, and offers insights for future advancements in this technique, paving the way for exciting innovations and applications.
Collapse
Affiliation(s)
- Jiaoyang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
14
|
Wang J, Li L, Xu C, Jiang H, Xie QX, Yang XY, Li JC, Xu H, Chen Y, Yi W, Hong XJ, Lan YQ. Hot-Pressing Metal Covalent Organic Frameworks as Personal Protection Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311519. [PMID: 38127976 DOI: 10.1002/adma.202311519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Effective personal protection is crucial for controlling infectious disease spread. However, commonly used personal protective materials such as disposable masks lack antibacterial/antiviral function and may lead to cross infection. Herein, a polyethylene glycol-assisted solvent-free strategy is proposed to rapidly synthesize a series of the donor-acceptor metal-covalent organic frameworks (MCOFs) (i.e., GZHMU-2, JNM-1, and JNM-2) under air atmosphere and henceforth extend it via in situ hot-pressing process to prepare MCOFs based films with photocatalytic disinfect ability. Best of them, the newly designed GZHMU-2 has a wide absorption spectrum (200 to 1500 nm) and can efficiently produce reactive oxygen species under sunlight irradiation, achieving excellent photocatalytic disinfection performance. After in situ hot-pressing as a film material, the obtained GZHMU-2/NMF can effectively kill E. coli (99.99%), S. aureus (99%), and H1N1 (92.5%), meanwhile possessing good reusability. Noteworthy, the long-term use of a GZHMU-2/NWF-based mask has verified no damage to the living body by measuring the expression of mouse blood routine, lung tissue, and inflammatory factors at the in-vivo level.
Collapse
Affiliation(s)
- Jiajia Wang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chuanshan Xu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hong Jiang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin-Xie Xie
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-Yi Yang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Cheng Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Xu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yifa Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wei Yi
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Jia Hong
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
15
|
Zhang L, Huang X, Cole T, Lu H, Hang J, Li W, Tang SY, Boyer C, Davis TP, Qiao R. 3D-printed liquid metal polymer composites as NIR-responsive 4D printing soft robot. Nat Commun 2023; 14:7815. [PMID: 38016940 PMCID: PMC10684855 DOI: 10.1038/s41467-023-43667-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
4D printing combines 3D printing with nanomaterials to create shape-morphing materials that exhibit stimuli-responsive functionalities. In this study, reversible addition-fragmentation chain transfer polymerization agents grafted onto liquid metal nanoparticles are successfully employed in ultraviolet light-mediated stereolithographic 3D printing and near-infrared light-responsive 4D printing. Spherical liquid metal nanoparticles are directly prepared in 3D-printed resins via a one-pot approach, providing a simple and efficient strategy for fabricating liquid metal-polymer composites. Unlike rigid nanoparticles, the soft and liquid nature of nanoparticles reduces glass transition temperature, tensile stress, and modulus of 3D-printed materials. This approach enables the photothermal-induced 4D printing of composites, as demonstrated by the programmed shape memory of 3D-printed composites rapidly recovering to their original shape in 60 s under light irradiation. This work provides a perspective on the use of liquid metal-polymer composites in 4D printing, showcasing their potential for application in the field of soft robots.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tim Cole
- Department of Electronic, Electrical, and Systems Engineering, University of Birmingham, Birmingham, UK
| | - Hongda Lu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jiangyu Hang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
16
|
Zhu W, Xia Z, Shi B, Lü C. Two-Dimensional Cu-Porphyrin Metal-Organic Framework Nanosheet-Supported Flaky TiO 2 as an Efficient Visible-Light-Driven Photocatalyst for Dye Degradation and Cr(VI) Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15665-15675. [PMID: 37898919 DOI: 10.1021/acs.langmuir.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A series of 2D M(Cu, Zn, Co, and Mn)-TCPP MOFs/TiO2 binary nanocomposites (TCPP = tetrakis(4-carboxyphenyl)porphyrin) were constructed by solvothermal in situ loading of flaky TiO2 on the surface of 2D metal-organic frameworks (MOFs). The influence of different coordination metals on the catalytic activity was studied, and it was found that the 2D Cu-TCPP MOFs/TiO2 nanocomposite exhibited the best photo-Fenton performance. The superior property can be attributed to the high absorption coefficient and ultrathin two-dimensional structure of the 2D Cu-TCPP MOFs nanosheets. Meanwhile, the 2D Cu-TCPP MOFs/TiO2 II heterostructure can effectively promote the separation and transfer of photoformed carriers. Moreover, under visible irradiation, the optimized 2D Cu-TCPP MOFs/TiO2 composite can convert 99.9% of Cr(VI) to Cr(III) within 60 min with methanol as the hole scavenger at pH 3.14. Also, the photocatalytic performance of 2D Cu-TCPP MOFs/TiO2 was maintained after five reaction cycles. Furthermore, the proposed visible-light-driven photocatalysis mechanism of the 2D Cu-MOFs/TiO2 composite was reasonably derived according to experimental results. This study demonstrates the potential of building efficient TiO2-based visible light photocatalysts with 2D metal-porphyrin MOFs.
Collapse
Affiliation(s)
- Wenjing Zhu
- School of Materials Science and Technology, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Bingfeng Shi
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
17
|
Xie P, Yan W, Ji H, He H, Zhang L, Cao H. Emulsion-Directed Synthesis of Poly-Porphyrin Nanoparticles as Heterogeneous Photocatalysts for PET-RAFT Polymerization. Macromol Rapid Commun 2023; 44:e2300336. [PMID: 37571924 DOI: 10.1002/marc.202300336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Heterogeneous photocatalysts have attracted extensive attention in photo-induced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization due to their remarkable advantages such as easy preparation, tunable photoelectric properties, and recyclability. In this study, zinc (II) 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (ZnTAPP)-based poly-porphyrin nanoparticles (PTAPP-Zn) are constructed by an emulsion-directed approach. It is investigated as a heterogeneous photocatalyst for PET-RAFT polymerization of various methacrylate monomers under visible light exposure, and the reactions show refined polymerization control with high monomer conversions. Furthermore, it is demonstrated that the PTAPP-Zn nanoparticles with the larger pore size enhance photocatalytic activity in PET-RAFT polymerization. In addition, the capabilities of oxygen tolerance and temporal control are demonstrated and PTAPP-Zn particles can be easily recycled and reused without an obvious decrease in catalytic efficiency.
Collapse
Affiliation(s)
- Peng Xie
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weifeng Yan
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongyu Ji
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haochen He
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liangshun Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongliang Cao
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
18
|
Bai D, Qiu J, Li J, Zhou S, Cui X, Tang X, Tang Y, Liu W, Chen B. Mesoporous Mixed-Metal-Organic Framework Incorporating a [Ru(Phen) 3] 2+ Photosensitizer for Highly Efficient Aerobic Photocatalytic Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37312235 DOI: 10.1021/acsami.3c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
[Ru(Phen)3]2+ (phen = phenanthroline) as a very classical photosensitizer possesses strong absorption in the visible range and facilitates photoinduced electron transfer, which plays a vital role in regulating photochemical reactions. However, it remains a significant challenge to utilize more adequately and exploit more efficiently the ruthenium-based materials due to the uniqueness, scarcity, and nonrenewal of the noble metal. Here, we integrate the intrinsic advantages of the ruthenium-based photosensitizer and mesoporous metal-organic frameworks (meso-MOFs) into a [Ru(Phen)3]2+ photosensitizer-embedded heterometallic Ni(II)/Ru(II) meso-MOF (LTG-NiRu) via the metalloligand approach. LTG-NiRu, with an extremely robust framework and a large one-dimensional (1D) channel, not only makes ruthenium photosensitizer units anchored in the inner wall of meso-MOF tubes to circumvent the problem of product/catalyst separation and recycling of catalysts in heterogeneous systems but also exhibits exceptional activities for the aerobic photocatalytic oxidative coupling of amine derivatives as a general photocatalyst. The conversion of the light-induced oxidative coupling reaction for various benzylamines is ∼100% in 1 h, and more than 20 chemical products generated by photocatalytic oxidative cycloaddition of N-substituted maleimides and N,N-dimethylaniline can be synthesized easily in the presence of LTG-NiRu upon visible light irradiation. Moreover, recycling experiments demonstrate that LTG-NiRu is an excellent heterogeneous photocatalyst with high stability and excellent reusability. LTG-NiRu represents a great potential photosensitizer-based meso-MOF platform with an efficient aerobic photocatalytic oxidation function that is convenient for gram-scale synthesis.
Collapse
Affiliation(s)
- Dongjie Bai
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinlin Qiu
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jingzhe Li
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shengbin Zhou
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Cui
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Xiaoliang Tang
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Yu Tang
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
19
|
Zhang L, Wang N, Li Y. Design, synthesis, and application of some two-dimensional materials. Chem Sci 2023; 14:5266-5290. [PMID: 37234883 PMCID: PMC10208047 DOI: 10.1039/d3sc00487b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Two-dimensional (2D) materials are widely used as key components in the fields of energy conversion and storage, optoelectronics, catalysis, biomedicine, etc. To meet the practical needs, molecular structure design and aggregation process optimization have been systematically carried out. The intrinsic correlation between preparation methods and the characteristic properties is investigated. This review summarizes the recent research achievements of 2D materials in the aspect of molecular structure modification, aggregation regulation, characteristic properties, and device applications. The design strategies to fabricate functional 2D materials starting from precursor molecules are introduced in detail referring to organic synthetic chemistry and self-assembly technology. It provides important research ideas for the design and synthesis of related materials.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| |
Collapse
|
20
|
Fang WW, Yang GY, Fan ZH, Chen ZC, Hu XL, Zhan Z, Hussain I, Lu Y, He T, Tan BE. Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization. Nat Commun 2023; 14:2891. [PMID: 37210380 DOI: 10.1038/s41467-023-38402-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
The use of light to regulate photocatalyzed reversible deactivation radical polymerization (RDRP) under mild conditions, especially driven by broadband light or sunlight directly, is highly desired. But the development of a suitable photocatalyzed polymerization system for large-scale production of polymers, especially block copolymers, has remained a big challenge. Herein, we report the development of a phosphine-based conjugated hypercrosslinked polymer (PPh3-CHCP) photocatalyst for an efficient large-scale photoinduced copper-catalyzed atom transfer radical polymerization (Cu-ATRP). Monomers including acrylates and methyl acrylates can achieve near-quantitative conversions under a wide range (450-940 nm) of radiations or sunlight directly. The photocatalyst could be easily recycled and reused. The sunlight-driven Cu-ATRP allowed the synthesis of homopolymers at 200 mL from various monomers, and monomer conversions approached 99% in clouds intermittency with good control over polydispersity. In addition, block copolymers at 400 mL scale can also be obtained, which demonstrates its great potential for industrial applications.
Collapse
Affiliation(s)
- Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Gui-Yu Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zi-Hui Fan
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zi-Chao Chen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Xun-Liang Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zhen Zhan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore Cantt, Lahore, 54792, Pakistan
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Bi-En Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
21
|
Yang H, Zhao R, Lu Z, Xiao L, Hou L. Recognition of “Oxygen-/Water-Fueled” PET-RAFT Protocol Matched to Covalent Organic Frameworks. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Rui Zhao
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhen Lu
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
22
|
Chen M, Hao J, Zhang W, Shi G, Zhang X, Cui Z, Fu P, Liu M, Qiao X, He Y, Pang X. Highly Efficient Near-Infrared Photoinduced Electron/Energy Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization via the Energy Transfer Upconversion Mechanism. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meng Chen
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingyi Hao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- College of Materials Engineering; Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
23
|
Yin Y, Wu L, Chen C, Zheng B, Xiong WW. A facile strategy for engineering heterostructures of Pd nanoparticle-loaded metal-organic framework nanosheets as active hydrogenation catalysts. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Zhang Q, Jin Y, Ma L, Zhang Y, Meng C, Duan C. Chromophore‐Inspired Design of Pyridinium‐Based Metal–Organic Polymers for Dual Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204918. [DOI: 10.1002/anie.202204918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Lin Ma
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
25
|
Liang S, Chen Y, Han W, Jiao Y, Li W, Tian G. Hierarchical S-scheme titanium dioxide@cobalt-nickel based metal–organic framework nanotube photocatalyst for selective carbon dioxide photoreduction to methane. J Colloid Interface Sci 2022; 630:11-22. [DOI: 10.1016/j.jcis.2022.09.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
|
26
|
Zhang L, Forgham H, Shen A, Wang J, Zhu J, Huang X, Tang SY, Xu C, Davis TP, Qiao R. Nanomaterial integrated 3D printing for biomedical applications. J Mater Chem B 2022; 10:7473-7490. [PMID: 35993266 DOI: 10.1039/d2tb00931e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D printing technology, otherwise known as additive manufacturing, has provided a promising tool for manufacturing customized biomaterials for tissue engineering and regenerative medicine applications. A vast variety of biomaterials including metals, ceramics, polymers, and composites are currently being used as base materials in 3D printing. In recent years, nanomaterials have been incorporated into 3D printing polymers to fabricate innovative, versatile, multifunctional hybrid materials that can be used in many different applications within the biomedical field. This review focuses on recent advances in novel hybrid biomaterials composed of nanomaterials and 3D printing technologies for biomedical applications. Various nanomaterials including metal-based nanomaterials, metal-organic frameworks, upconversion nanoparticles, and lipid-based nanoparticles used for 3D printing are presented, with a summary of the mechanisms, functional properties, advantages, disadvantages, and applications in biomedical 3D printing. To finish, this review offers a perspective and discusses the challenges facing the further development of nanomaterials in biomedical 3D printing.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Helen Forgham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ao Shen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiafan Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.,Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
27
|
Metalloporphyrin Metal–Organic Frameworks: Eminent Synthetic Strategies and Recent Practical Exploitations. Molecules 2022; 27:molecules27154917. [PMID: 35956867 PMCID: PMC9369971 DOI: 10.3390/molecules27154917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of metal–organic frameworks (MOFs) in recent years has stimulated the interest of scientists working in this area as one of the most applicable archetypes of three-dimensional structures that can be used as promising materials in several applications including but not limited to (photo-)catalysis, sensing, separation, adsorption, biological and electrochemical efficiencies and so on. Not only do MOFs have their own specific versatile structures, tunable cavities, and remarkably high surface areas, but they also present many alternative procedures to overcome emerging obstacles. Since the discovery of such highly effective materials, they have been employed for multiple uses; additionally, the efforts towards the synthesis of MOFs with specific properties based on planned (template) synthesis have led to the construction of several promising types of MOFs possessing large biological or bioinspired ligands. Specifically, metalloporphyrin-based MOFs have been created where the porphyrin moieties are either incorporated as struts within the framework to form porphyrinic MOFs or encapsulated inside the cavities to construct porphyrin@MOFs which can combine the peerless properties of porphyrins and porous MOFs simultaneously. In this context, the main aim of this review was to highlight their structure, characteristics, and some of their prominent present-day applications.
Collapse
|
28
|
Cheng H, Wang J, Yang Y, Shi H, Shi J, Jiao X, Han P, Yao X, Chen W, Wei X, Chu PK, Zhang X. Ti 3 C 2 T X MXene Modified with ZnTCPP with Bacteria Capturing Capability and Enhanced Visible Light Photocatalytic Antibacterial Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200857. [PMID: 35657068 DOI: 10.1002/smll.202200857] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Light-assisted antibacterial therapy is a promising alternative to antibiotic therapy due to the high antibacterial efficacy without bacterial resistance. Recent research has mainly focused on the use of near-infrared light irradiation to kill bacteria by taking advantage of the synergistic effects rendered by hyperthermia and radical oxygen species. However, photocatalytic antibacterial therapy excited by visible light is more convenient and practical, especially for wounds. Herein, a visible light responsive organic-inorganic hybrid of ZnTCPP/Ti3 C2 TX is designed and fabricated to treat bacterial infection with antibacterial efficiency of 99.86% and 99.92% within 10 min against Staphylococcus aureus and Escherichia coli, respectively. The porphyrin-metal complex, ZnTCPP, is assembled on the surface of Ti3 C2 TX MXene to capture bacteria electrostatically and the Schottky junction formed between Ti3 C2 TX and ZnTCPP promotes visible light utilization, accelerates charge separation, and enhances the mobility of photogenerated charges, and finally increases the photocatalytic activity. As a result of the excellent bacteria capturing ability and photocatalytic antibacterial effects, ZnTCPP/Ti3 C2 TX exposed to visible light has excellent antibacterial properties in vitro and in vivo. Therefore, organic-inorganic materials that have been demonstrated to possess good biocompatibility and enhance wound healing have large potential in bio-photocatalysis, antibacterial therapy, as well as antibiotics-free treatment of wounds.
Collapse
Affiliation(s)
- Hao Cheng
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jiameng Wang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yongqiang Yang
- National Graphene Products Quality Inspection and Testing Center (Jiangsu), Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Yanxin Road 330, Wuxi, 214174, P. R. China
| | - Huixian Shi
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jing Shi
- Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of coal chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Xiong Jiao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Peide Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Xiangyu Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
| |
Collapse
|
29
|
Chromophore‐inspired Design of Pyridinium‐based Metal‐Organic Polymers for Dual Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Visible light-triggered PET-RAFT polymerization by heterogeneous 2D porphyrin-based COF photocatalyst under aqueous condition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Transforming Dyes into Fluorophores: Exciton-Induced Emission with Chain-like Oligo-BODIPY Superstructures. Angew Chem Int Ed Engl 2022; 61:e202116834. [PMID: 35244983 PMCID: PMC9310714 DOI: 10.1002/anie.202116834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Herein we present a systematic study demonstrating to which extent exciton formation can amplify fluorescence based on a series of ethylene-bridged oligo-BODIPYs. A set of non- and weakly fluorescent BODIPY motifs was selected and transformed into discrete, chain-like oligomers by linkage via a flexible ethylene tether. The prepared superstructures constitute excitonically active entities with non-conjugated, Coulomb-coupled oscillators. The non-radiative deactivation channels of Internal Conversion (IC), also combined with an upstream reductive Photoelectron Transfer (rPET) and Intersystem Crossing (ISC) were addressed at the monomeric state and the evolution of fluorescence and (non-)radiative decay rates studied along the oligomeric series. We demonstrate that a "masked" fluorescence can be fully reactivated irrespective of the imposed conformational rigidity. This work challenges the paradigm that a collective fluorescence enhancement is limited to sterically induced motional restrictions.
Collapse
Affiliation(s)
- Lukas J. Patalag
- University of GroningenStratingh Institute for ChemistryNijenborgh 49747 AGGroningenThe Netherlands
| | - Joscha Hoche
- Universität WürzburgInstitute of Physical and Theoretical ChemistryAm Hubland97074WürzburgGermany
| | - Roland Mitric
- Universität WürzburgInstitute of Physical and Theoretical ChemistryAm Hubland97074WürzburgGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Ben L. Feringa
- University of GroningenStratingh Institute for ChemistryNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
32
|
Zhang D, Zou XN, Wang XG, Su J, Luan TX, Fan W, Li PZ, Zhao Y. Highly Effective Photocatalytic Radical Reactions Triggered by a Photoactive Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23518-23526. [PMID: 35537034 DOI: 10.1021/acsami.2c04331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On account of their inherent reactive properties, radical reactions play an important role in organic syntheses. The booming photochemistry provides a feasible approach to trigger the generation of radical intermediates in organic reaction processes. Thus, developing effective photocatalysts becomes the key step in radical reactions. In this work, the triphenylamine moiety with photoactivity is successfully embedded in a highly porous and stable metal-organic framework (MOF), and the obtained MOF, namely, Zr-TCA, naturally displays a photoactive property derived from the triphenylamine-based ligand. In photocatalytic studies, the triphenylamine-based Zr-TCA not only exhibits a high catalytic activity on the aerobic oxidation of sulfides via the generation of the superoxide radical anion (O2•-) under light irradiation but also shows good efficiency in the trifluoromethylation of arenes and heteroarenes by the formation of the trifluoromethyl radical (CF3•) as an intermediate. Moreover, the high performance of Zr-TCA can be well maintained over a wide range of substrates in these radical reactions, and the recycled Zr-TCA still retains its excellent photocatalytic activity. The high recyclability and catalytic efficiency to various substrates make the constructed triphenylamine-based Zr-TCA a promising photocatalyst in diverse radical reactions.
Collapse
Affiliation(s)
- Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xiao-Ge Wang
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237 Shandong Province, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
33
|
Behera P, Subudhi S, Tripathy SP, Parida K. MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214392] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Transforming Dyes Into Fluorophores: Exciton‐Induced Emission with Chain‐like Oligo‐BODIPY Superstructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas J. Patalag
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Joscha Hoche
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institute of Physical and Theoretical Chemistry GERMANY
| | - Roland Mitric
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institute of Theoretical and Physical Chemistry GERMANY
| | - Daniel B. Werz
- TU Braunschweig: Technische Universitat Braunschweig Institute for Organic Chemistry GERMANY
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
35
|
Huang Y, Guo WL, He JC, Li X, Cai T. Development of High Throughput Photopolymerizations Using Micron-Sized Ultrathin Metal-Organic Framework Nanosheets. Macromol Rapid Commun 2022; 43:e2200020. [PMID: 35182089 DOI: 10.1002/marc.202200020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Indexed: 11/12/2022]
Abstract
Polymer syntheses in a high throughput format are still challenging due to the tedious procedures for prior deoxygenation and catalyst removal. Two-dimensional (2D) metal-organic framework (MOF) nanosheets are advantageous for elevating the catalytic efficiency and catalyst recyclability. Polymerization of a wide variety of monomers, including hydrophilic acrylamides and hydrophobic acrylates, was attempted directly in a multi-well plate by employing Zn-ZnPPF-2D nanosheets (PPF = porphyrin paddlewheel framework) as a heterogeneous photocatalyst. Various parameters such as monomer concentration, catalyst concentration and light wavelength were investigated with respect to their effects on polymerization rate and the degree of control over the molecular weight and molecular weight distribution. Due to the larger surface area and more accessible catalytic sites, the top-performing Zn-ZnPPF-2D exhibited fast polymerization kinetics over the Zn-ZnPPF-3D bulk crystals. In addition, the synthesis of triblock copolymers with a single loading of catalysts confirmed the outstanding catalytic performance of these 2D MOF catalysts. Finally, PET-RAFT polymerization was demonstrated to be achievable entirely in a microliter-scale human cell culture medium. As such, this strategy provides high levels of control and precision over macromolecular synthesis outcomes that best align with the requirements of high throughput approaches towards biological applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ya Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, P. R. China.,Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Wan Lin Guo
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, P. R. China.,Wuhan University Suzhou Research Institute, Suzhou, Jiangsu, 215213, P. R. China
| | - Jin Cheng He
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, P. R. China.,Wuhan University Suzhou Research Institute, Suzhou, Jiangsu, 215213, P. R. China
| | - Tao Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, P. R. China.,Wuhan University Suzhou Research Institute, Suzhou, Jiangsu, 215213, P. R. China
| |
Collapse
|
36
|
Shi X, Zhang J, Corrigan N, Boyer C. Controlling mechanical properties of 3D printed polymer composites through photoinduced reversible addition–fragmentation chain transfer (RAFT) polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01283e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization has been exploited to design silica-nanoparticle-incorporated photocurable resins for 3D printing of materials with enhanced mechanical properties and complex structures.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
37
|
Cai C, Fan G, Du B, Chen Z, Lin J, Yang S, Lin X, Li X. Metal–organic-framework-based photocatalysts for microorganism inactivation: a review. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00393g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A metal–organic framework (MOF) is a porous coordination material composed of multidentate organic ligands and metal ions or metal clusters.
Collapse
Affiliation(s)
- Chenjian Cai
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002 Fujian, China
| | - Banghao Du
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | - Zhuoyi Chen
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | - JiuHong Lin
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | - Shangwu Yang
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | - Xin Lin
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | - Xia Li
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| |
Collapse
|
38
|
Zhu Y, Zhu D, Chen Y, Yan Q, Liu CY, Ling K, Liu Y, Lee D, Wu X, Senftle TP, Verduzco R. Porphyrin-based donor-acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation. Chem Sci 2021; 12:16092-16099. [PMID: 35024131 PMCID: PMC8672717 DOI: 10.1039/d1sc05379e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
Covalent organic frameworks (COFs) are crystalline and porous organic materials attractive for photocatalysis applications due to their structural versatility and tunable optical and electronic properties. The use of photocatalysts (PCs) for polymerizations enables the preparation of well-defined polymeric materials under mild reaction conditions. Herein, we report two porphyrin-based donor-acceptor COFs that are effective heterogeneous PCs for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT). Using density functional theory (DFT) calculations, we designed porphyrin COFs with strong donor-acceptor characteristics and delocalized conduction bands. The COFs were effective PCs for PET-RAFT, successfully polymerizing a variety of monomers in both organic and aqueous media using visible light (λ max from 460 to 635 nm) to produce polymers with tunable molecular weights (MWs), low molecular weight dispersity, and good chain-end fidelity. The heterogeneous COF PCs could also be reused for PET-RAFT polymerization at least 5 times without losing photocatalytic performance. This work demonstrates porphyrin-based COFs that are effective catalysts for photo-RDRP and establishes design principles for the development of highly active COF PCs for a variety of applications.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Yu Chen
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Qianqian Yan
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Chun-Yen Liu
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Kexin Ling
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Yifeng Liu
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Dongjoo Lee
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Xiaowei Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences Fuzhou 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials (XMIREM), Haixi Institutes, Chinese Academy of Sciences Xiamen 361021 China
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Rafael Verduzco
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| |
Collapse
|
39
|
Versace DL, Breloy L, Palierse E, Coradin T. Contributions of photochemistry to bio-based antibacterial polymer materials. J Mater Chem B 2021; 9:9624-9641. [PMID: 34807217 DOI: 10.1039/d1tb01801a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices via functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials. Photo-generation and photo-activation of bactericidal materials are illustrated. Recent efforts and current challenges to optimize the sustainability of the process, improve the safety of the materials and extend these strategies to 3D biomaterials are also emphasized.
Collapse
Affiliation(s)
- Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France. .,Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), UMR 7197, 4 place Jussieu, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
40
|
Ng G, Jung K, Li J, Wu C, Zhang L, Boyer C. Screening RAFT agents and photocatalysts to mediate PET-RAFT polymerization using a high throughput approach. Polym Chem 2021. [DOI: 10.1039/d1py01258d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a high throughput approach for the screening of RAFT agents and photocatalysts to mediate photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization.
Collapse
Affiliation(s)
- Gervase Ng
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kenward Jung
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chenyu Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Liwen Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|