1
|
Hossain MS, Alam MM, Huang Z, Mousazadeh F, Sarangi R, de Jong E, Kolamunna KC, Adhya AL, Hougland JL, Acharya A, Mozhdehi D. Scalable One-Pot Production of Geranylgeranylated Proteins in Engineered Prokaryotes. Bioconjug Chem 2025; 36:415-423. [PMID: 40029010 PMCID: PMC11926785 DOI: 10.1021/acs.bioconjchem.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Geranylgeranylation is a critical post-translational modification essential for various cellular functions. However, current methods for synthesizing geranylgeranylated proteins are complex and costly, which hinders access to these proteins for both biophysical and biomaterials applications. Here, we present a method for the one-pot production of geranylgeranylated proteins in Escherichia coli. We engineered E. coli to express geranylgeranyl pyrophosphate synthase (GGS), an enzyme that catalyzes the production of geranylgeranyl pyrophosphate. By coexpressing GGS with a geranylgeranyltransferase, we achieved efficient geranylgeranylation of model protein substrates, including intrinsically disordered elastin-like polypeptides (ELPs) and globular proteins such as mCherry and the small GTPases RhoA and Rap1B. We examined the biophysical behavior of the resulting geranylgeranylated proteins and observed that this modification affects the phase-separation and nanoassembly of ELPs and lipid bilayer engagement of mCherry. Taken together, our method offers a scalable, versatile, and cost-effective strategy for producing geranylgeranylated proteins, paving the way for advances in biochemical research, therapeutic development, and biomaterial engineering.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Md Mahbubul Alam
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Zhiwei Huang
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Faeze Mousazadeh
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Ronit Sarangi
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Ebbing de Jong
- Upstate
Medical University, Proteomics and Mass
Spectrometry, Weiskotten
Hall 4307 WHA, 766 Irving Avenue, Syracuse, New York 13210, United States
| | - Kavindu C. Kolamunna
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Albert L. Adhya
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Atanu Acharya
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Chen S, Liu M, Yi W, Li H, Yu Q. Micropeptides derived from long non-coding RNAs: Computational analysis and functional roles in breast cancer and other diseases. Gene 2025; 935:149019. [PMID: 39461573 DOI: 10.1016/j.gene.2024.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Long non-coding RNAs (lncRNAs), once thought to be mere transcriptional noise, are now revealing a hidden code. Recent advancements like ribosome sequencing have unveiled that many lncRNAs harbor small open reading frames and can potentially encode functional micropeptides. Emerging research suggests these micropeptides, not the lncRNAs themselves, play crucial roles in regulating homeostasis, inflammation, metabolism, and especially in breast cancer progression. This review delves into the rapidly evolving computational tools used to predict and validate lncRNA-encoded micropeptides. We then explore the diverse functions and mechanisms of action of these micropeptides in breast cancer pathogenesis, with a focus on their roles in various species. Ultimately, this review aims to illuminate the functional landscape of lncRNA-encoded micropeptides and their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Mengru Liu
- Department of Infection, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Weizhen Yi
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Huagang Li
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Qingsheng Yu
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
3
|
Hong ZZ. Review on the o-Aminoaniline Moiety in Peptide and Protein Chemistry. Chembiochem 2025:e202401011. [PMID: 39854053 DOI: 10.1002/cbic.202401011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Peptides and proteins are important functional biomolecules both inside and outside of living organisms. The ability to prepare various types of functionalized peptides and proteins is essential for understanding fundamental biological processes, such as protein folding and post-translational modifications (PTMs), and for developing new therapeutics for many diseases, such as cancers and neurodegenerative diseases. The o-aminoaniline moiety was first proposed for activation to a thioester precursor and used for native chemical ligation to prepare large peptides and proteins. In the past decade, the function of o-aminoaniline has been greatly expanded to facilitate the preparation of homogeneously modified peptide and protein samples, where the modifications can include cyclization, C-terminus diversification, etc. Many o-aminoaniline derivatives have also been developed to overcome the inherent limitations of previous versions. In this review, we attempt to summarize the recent developments of different o-aminoaniline derivatives, focusing on their application to the preparation of functional peptide and protein molecules.
Collapse
Affiliation(s)
- Ziyong Z Hong
- School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Wisconsin, USA
| |
Collapse
|
4
|
Umar M, Afzal H, Murtaza A, Cheng LT. Lipoprotein Signal Peptide as Adjuvants: Leveraging Lipobox-Driven TLR2 Activation in Modern Vaccine Design. Vaccines (Basel) 2025; 13:36. [PMID: 39852815 PMCID: PMC11769378 DOI: 10.3390/vaccines13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Toll-like receptor 2 (TLR2) signaling is a pivotal component of immune system activation, and it is closely linked to the lipidation of bacterial proteins. This lipidation is guided by bacterial signal peptides (SPs), which ensure the precise targeting and membrane anchoring of these proteins. The lipidation process is essential for TLR2 recognition and the activation of robust immune responses, positioning lipidated bacterial proteins as potent immunomodulators and adjuvants for vaccines against bacterial-, viral-, and cancer-related antigens. The structural diversity and cleavage pathways of bacterial SPs are critical in determining lipidation efficiency and protein localization, influencing their immunogenic potential. Recent advances in bioinformatics have significantly improved the prediction of SP structures and cleavage sites, facilitating the rational design of recombinant lipoproteins optimized for immune activation. Moreover, the use of SP-containing lipobox motifs, as adjuvants to lipidate heterologous proteins, has expanded the potential of vaccines targeting a broad range of pathogens. However, challenges persist in expressing lipidated proteins, particularly within heterologous systems. These challenges can be addressed by optimizing expression systems, such as engineering E. coli strains for enhanced lipidation. Thus, lipoprotein signal peptides (SPs) demonstrate remarkable versatility as adjuvants in vaccine development, diagnostics, and immune therapeutics, highlighting their essential role in advancing immune-based strategies to combat diverse pathogens.
Collapse
Affiliation(s)
- Muhammad Umar
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Haroon Afzal
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Asad Murtaza
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT—The Arctic University of Norway, P.O. Box 6050 Tromsø, Norway
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
5
|
Chaturvedi S, Sonawane A. Recapitulating the potential contribution of protein S-palmitoylation in cancer. Cancer Metastasis Rev 2024; 44:20. [PMID: 39725785 DOI: 10.1007/s10555-024-10217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
Protein S-palmitoylation is a reversible form of protein lipidation in which the formation of a thioester bond occurs between a cysteine (Cys) residue of a protein and a 16-carbon fatty acid chain. This modification is catalyzed by a family of palmitoyl acyl transferases, the DHHC enzymes, so called because of their Asp-His-His-Cys (DHHC) catalytic motif. Deregulation of DHHC enzymes has been linked to various diseases, including cancer and infections. Cancer, a major cause of global mortality, is characterized by features like uncontrolled cell growth, resistance to cell death, angiogenesis, invasion, and metastasis. Several of these processes are controlled by DHHC-mediated S-palmitoylation of oncogenes or tumor suppressors, including growth factor receptors (e.g., EGFR), kinases (e.g., AKT), and transcription factors (e.g., β-catenin). Dynamic regulation of S-palmitoylation is also governed by protein depalmitoylases. These enzymes balance the cycling of palmitoylation and regulate cellular signaling, cell growth, and its organization. Given the significance of S-palmitoylation in cancer, the DHHCs and protein depalmitoylases are promising targets for cancer therapy. Here we summarize the catalytic mechanisms of DHHC enzymes and depalmitoylases, their role in cancer progression and prevention, as well as the crosstalk of palmitoylation with other post-translational modifications. Additionally, we discuss the methods to detect S-palmitoylation, the limitations of available DHHC-targeting inhibitors, and ongoing research efforts to address these obstacles.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, 453552, Simrol, Madhya Pradesh, India
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, 453552, Simrol, Madhya Pradesh, India.
| |
Collapse
|
6
|
Singh AK, Antonenko A, Kocyła A, Krężel A. An efficient and easily obtainable butelase variant for chemoenzymatic ligation and modification of peptides and proteins. Microb Cell Fact 2024; 23:325. [PMID: 39614317 DOI: 10.1186/s12934-024-02598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
The expanding field of site-specific ligation of proteins and peptides has catalyzed the development of novel methods that enhance molecular modification. Among these methods, enzymatic strategies have emerged as dominant due to their specificity and efficiency in modifying proteins under mild conditions. Asparaginyl endopeptidase is a group of cyclotide-producing cysteine proteases from plants. These plant cysteine proteases, known for their specificity, effectively recognize the tripeptide motif (Asx-Xaa-Yaa) and cleave at the C-terminal side of Asx residues, forming acyl-enzyme intermediates that facilitate transpeptidation. Butelase 1 stands out as the most efficient AEP for protein engineering, yet challenges in its expression and purification limit its accessibility for widespread research and industrial use. To address these challenges, we engineered a new, catalytically efficient variant of Butelase 1, Butelase AY, by mutating the gatekeeping residues Val237Ala and Thr238Tyr within the LAD-1 region. These modifications significantly enhanced the stability and yield of Butelase AY, allowing for successful application in various peptide and protein engineering tasks. Butelase AY was tested on the peptide GLGKY, the globular protein GFP, and the intrinsically disordered protein α-synuclein, effectively labeling them with a fluorescent probe. Notably, Butelase AY maintained its efficiency with substrates containing unnatural amino acids, making it a promising candidate for biorthogonal applications. Importantly, the mutations did not compromise the enzyme's specificity, as it continued to process model peptides and native protein substrates with N-term NHV recognition motifs effectively. In conclusion, Butelase AY presents a novel recombinant tool for diverse protein labeling and modifications, particularly in biorthogonal strategies. This innovation has the potential to expand applications in biotechnology and therapeutic development, ultimately revolutionizing protein engineering and its utility in synthetic biology.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland.
| | - Anastasiia Antonenko
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Anna Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland.
| |
Collapse
|
7
|
Hubrich F, Kandy SK, Chepkirui C, Padhi C, Mordhorst S, Moosmann P, Zhu T, Gugger M, Chekan JR, Piel J. Ribosomal peptides with polycyclic isoprenoid moieties. Chem 2024; 10:3224-3242. [PMID: 39429465 PMCID: PMC11484575 DOI: 10.1016/j.chempr.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Isoprenoid modifications of proteins and peptides serve fundamental biological functions and are of therapeutic interest. While C15 (farnesyl) and C20 (geranylgeranyl) moieties are prevalent among proteins, known ribosomal peptide prenylations involve shorter-chain units not exceeding farnesyl in size. To our knowledge, cyclized terpene moieties have not been reported from either biomolecule class. Here we used targeted genome mining and heterologous pathway reconstitution to identify ribosomally synthesized and post-translationally modified peptides (RiPPs) with elaborate, cyclized geranylgeranyl modifications. The installing maturases commonly feature fused prenyltransferase-terpene cyclase architectures. We characterized two bifunctional maturases with distinct prenyltransferase folds and identified the terminal product of a cyanobacterial proteusin as an exceptionally complex pseudosteroid-annelated polycyclic peptide. Bioassays suggest modest anti-cyanobacterial activity with the modification being crucial for activity. Genome data predict cyclic isoprenoid units for various RiPP families including proteusin, Nif11, and lasso peptides and thus broader natural and biotechnological compatibility of the maturase system.
Collapse
Affiliation(s)
- Florian Hubrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Pharmaceutical Institute, Saarland University; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Campus Saarbrücken C2.3, 66123 Saarbrücken, Germany
| | - Sanath K. Kandy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro; Greensboro, NC 27402-6170, United States of America
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Chandrashekhar Padhi
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Department of Chemistry and Howard Hughes Medical Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Pharmaceutical Institute, University of Tübingen; Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Philipp Moosmann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Tao Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; Shandong Energy Institute; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Muriel Gugger
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, F-75015 Paris, France
| | - Jonathan R. Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro; Greensboro, NC 27402-6170, United States of America
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Lead contact: Jörn Piel
| |
Collapse
|
8
|
Makowska M, Wardowska A, Bauer M, Wyrzykowski D, Małuch I, Sikorska E. Impact of lipidation site on the activity of α-helical antimicrobial peptides. Bioorg Chem 2024; 153:107821. [PMID: 39293303 DOI: 10.1016/j.bioorg.2024.107821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Antimicrobial peptides (AMPs) display advantages over traditional antibiotics due to their broad spectrum of activity against various pathogens, and may even overcome bacterial drug resistance. However, despite their potential therapeutic benefits, widespread application of AMPs is limited by their instability, sensitivity to high salt concentrations, toxicity, and immunogenicity. Lipidation is a promising strategy in overcoming these drawbacks and potential problems for drug candidates. While N-terminal lipidation is a well-studied form of acylation of biologically active peptides, fatty acylation of the lysine side chain has still been poorly explored. In this study, we examined systematic introduction of octanoic (C8) or decanoic (C10) acid into the sequences of three antimicrobial α-helical peptides, namely LL-I, LK6, and ATRA-1, by acylation of subsequent lysine residues, resulting in 17 lipopeptides. Fatty acid lengths optimal for antimicrobial activity were selected based on a previous study on the N-terminal lipidated counterparts of these peptides. Shuffling the position of the fatty acid tails in the sequences of the peptides preserved high activity against Gram-positive bacteria, increased activity against Gram-negative strains and reduced cytotoxicity, compared to the N-terminal acylated counterparts. In the case of the LL-I and LK6 conjugates, the interactions with artificial negatively charged membranes induced formation of an α-helical structure but without a direct correlation between helicity and amphipathicity. Unexpectedly, the ATRA-1 derivatives showed only a small tendency, if any, to adopt a helical structure upon binding to POPG vesicles, which may indicate a non-helical active conformation. A more detailed study of the selected analogues, namely LL-I-4C8, LK6-7C8, and ATRA-1-11C10, provided evidence of a tendency to self-assemble into clumped and/or isolated fibrils, micelles or clusters of micelles, and proved that the lipid bilayer is the main target of action of the tested lipopeptides. In summary, the results of the present study highlight that alternative conjugation sites for lipid modification of AMPs, rather than the commonly applied N-terminal conjugation site, may improve the selectivity of action and be feasible in testing for the development of new lipid-peptide conjugates.
Collapse
Affiliation(s)
- Marta Makowska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdansk, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Izabela Małuch
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
9
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Liu H, Chow HY, Liu J, Shi P, Li X. Prior disulfide bond-mediated Ser/Thr ligation. Chem Sci 2024:d4sc04825c. [PMID: 39170718 PMCID: PMC11333947 DOI: 10.1039/d4sc04825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In this work, we developed a novel strategy, prior disulfide bond-mediated Ser/Thr ligation (PD-STL), for the chemical synthesis of peptides and proteins. This approach combines disulfide bond-forming chemistry with Ser/Thr ligation (STL), converting intermolecular STL into intramolecular STL to effectively proceed regardless of concentrations. We demonstrated the effectiveness of PD-STL under high dilution conditions, even for the relatively inert C-terminal proline at the ligation site. Additionally, we applied this method to synthesize the N-terminal cytoplasmic domain (2-104) of caveolin-1 and its Tyr14 phosphorylated form.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
11
|
Fan X, Wen Y, Chen H, Tian B, Zhang Q. Polypeptide Preparation by β-Lactone-Mediated Chemical Ligation. Org Lett 2024; 26:5436-5440. [PMID: 38900935 PMCID: PMC11232016 DOI: 10.1021/acs.orglett.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Native chemical ligation (NCL) represents a cornerstone strategy in accessing synthetic peptides and proteins, remaining one of the most efficacious methodologies in this domain. The fundamental requisites for achieving a proficient NCL reaction involve chemoselective coupling between a C-terminal thioester peptide and a thiol-bearing N-terminal peptide. However, achieving coupling at sterically congested residues remains challenging. In addition, while most NCLs proceed without epimerization, β-branched (e.g., Ile, Thr, Val) and Pro-derived C-terminal thioesters react slowly and can be susceptible to significant epimerization and hydrolysis. Herein, we report an epimerization-free NCL reaction via β-lactone-mediated native chemical ligation which constructs sterically congested Thr residues. The constrained ring from the β-lactone allows rapid peptide ligation without detectable epimerization. The method has a broad side-chain tolerance and was applied to the preparation of cyclic peptides and polypeptidyl thioester, which could be difficult to obtained otherwise.
Collapse
Affiliation(s)
- Xinhao Fan
- Department
of Chemistry, School of Pharmacy, North
Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Yuming Wen
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Huan Chen
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Baotong Tian
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Qiang Zhang
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
12
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
13
|
Miyata A, Ito S, Fujinami D. Structure Prediction and Genome Mining-Aided Discovery of the Bacterial C-Terminal Tryptophan Prenyltransferase PalQ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307372. [PMID: 38059776 PMCID: PMC10853753 DOI: 10.1002/advs.202307372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Post-translational prenylations, found in eukaryotic primary metabolites and bacterial secondary metabolites, play crucial roles in biomolecular interactions. Employing genome mining methods combined with AlphaFold2-based predictions of protein interactions, PalQ , a prenyltransferase responsible for the tryptophan prenylation of RiPPs produced by Paenibacillus alvei, is identified. PalQ differs from cyanobactin prenyltransferases because of its evolutionary relationship to isoprene synthases, which enables PalQ to transfer extended prenyl chains to the indole C3 position. This prenylation introduces structural diversity to the tryptophan side chain and also leads to conformational dynamics in the peptide backbone, attributed to the cis/trans isomerization that arises from the formation of a pyrrolidine ring. Additionally, PalQ exhibited pronounced positional selectivity for the C-terminal tryptophan. Such enzymatic characteristics offer a toolkit for peptide therapeutic lipidation.
Collapse
Affiliation(s)
- Azusa Miyata
- Graduate Division of Nutritional and Environmental SciencesUniversity of Shizuoka52‐1 Yada, Suruga‐kuShizuoka422‐8526Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental SciencesUniversity of Shizuoka52‐1 Yada, Suruga‐kuShizuoka422‐8526Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental SciencesUniversity of Shizuoka52‐1 Yada, Suruga‐kuShizuoka422‐8526Japan
| |
Collapse
|
14
|
Peng J, Hughes GR, Müller MM, Seebeck FP. Enzymatic Fluoromethylation as a Tool for ATP-Independent Ligation. Angew Chem Int Ed Engl 2024; 63:e202312104. [PMID: 37955592 PMCID: PMC10952888 DOI: 10.1002/anie.202312104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.
Collapse
Affiliation(s)
- Jiaming Peng
- Department of ChemistryUniversity of BaselMattenstrasse 24a4002BaselSwitzerland
| | - Gregory R. Hughes
- Department of ChemistryKing's College LondonBritannia House7 Trinity StreetSE1 1DBLondonUK
| | - Manuel M. Müller
- Department of ChemistryKing's College LondonBritannia House7 Trinity StreetSE1 1DBLondonUK
| | - Florian P. Seebeck
- Department of ChemistryUniversity of BaselMattenstrasse 24a4002BaselSwitzerland
| |
Collapse
|
15
|
Peng J, Hughes GR, Müller MM, Seebeck FP. Enzymatic Fluoromethylation as a Tool for ATP-Independent Ligation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 136:e202312104. [PMID: 38516647 PMCID: PMC10952241 DOI: 10.1002/ange.202312104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 03/23/2024]
Abstract
S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.
Collapse
Affiliation(s)
- Jiaming Peng
- Department of ChemistryUniversity of BaselMattenstrasse 24a4002BaselSwitzerland
| | - Gregory R. Hughes
- Department of ChemistryKing's College LondonBritannia House7 Trinity StreetSE1 1DBLondonUK
| | - Manuel M. Müller
- Department of ChemistryKing's College LondonBritannia House7 Trinity StreetSE1 1DBLondonUK
| | - Florian P. Seebeck
- Department of ChemistryUniversity of BaselMattenstrasse 24a4002BaselSwitzerland
| |
Collapse
|
16
|
Myšková A, Sýkora D, Kuneš J, Maletínská L. Lipidization as a tool toward peptide therapeutics. Drug Deliv 2023; 30:2284685. [PMID: 38010881 PMCID: PMC10987053 DOI: 10.1080/10717544.2023.2284685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
Collapse
Affiliation(s)
- Aneta Myšková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
17
|
Wu H, Sun Z, Li X. N,O-Benzylidene Acetal Dipeptides (NBDs) Enable the Synthesis of Difficult Peptides via a Kinked Backbone Strategy. Angew Chem Int Ed Engl 2023; 62:e202310624. [PMID: 37694822 DOI: 10.1002/anie.202310624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Proteins with highly hydrophobic regions or aggregation-prone sequences are typically difficult targets for chemical synthesis at the current stage, as obtaining such type of peptides via solid-phase peptide synthesis requires sophisticated operations. Herein, we report N,O-benzylidene acetal dipeptides (NBDs) as robust and effective building blocks to allow the direct synthesis of difficult peptides and proteins via a kinked backbone strategy. The effectiveness and easy accessibility of NBDs have been well demonstrated in our chemical syntheses of various challenging peptides and proteins, including chemokine, therapeutic hormones, histone, and glycosylated erythropoietin.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
18
|
Ma W, Liu H, Li X. Chemical Synthesis of Peptides and Proteins Bearing Base-Labile Post-Translational Modifications: Evolution of the Methods in Four Decades. Chembiochem 2023; 24:e202300348. [PMID: 37380612 DOI: 10.1002/cbic.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
The S-palmitoylation on Cys residue and O-acetylation on Ser/Thr residues are two types of base-labile post-translational modifications (PTMs) in cells. The lability of these PTMs to bases and nucleophiles makes the peptides/proteins bearing S-palmitoyl or O-acetyl groups challenging synthetic targets, which cannot be prepared via the standard Fmoc-SPPS and native chemical ligation. In this review, we summarized the efforts towards their preparation in the past 40 years, with the focus on the evolution of synthetic methods.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
19
|
Maxwell JWC, Hawkins PME, Watson EE, Payne RJ. Exploiting Chemical Protein Synthesis to Study the Role of Tyrosine Sulfation on Anticoagulants from Hematophagous Organisms. Acc Chem Res 2023; 56:2688-2699. [PMID: 37708351 DOI: 10.1021/acs.accounts.3c00388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Tyrosine sulfation is a post-translational modification (PTM) that modulates function by mediating key protein-protein interactions. One of the early proteins shown to possess this PTM was hirudin, produced in the salivary glands of the medicinal leech Hirudo medicinalis, whereby tyrosine sulfation led to a ∼10-fold improvement in α-thrombin inhibitory activity. Outside of this pioneering discovery, the involvement of tyrosine sulfation in modulating the activity of salivary proteins from other hematophagous organisms was unknown. We hypothesized that the intrinsic instability of the tyrosine sulfate functionality, particularly under the acidic conditions used to isolate and analyze peptides and proteins, has led to poor detection during the isolation and/or expression of these molecules.Herein, we summarize our efforts to interrogate the functional role of tyrosine sulfation in the thrombin inhibitory and anticoagulant activity of salivary peptides and proteins from a range of different blood feeding organisms, including leeches, ticks, mosquitoes, and flies. Specifically, we have harnessed synthetic chemistry to efficiently generate homogeneously sulfated peptides and proteins for detailed structure-function studies both in vitro and in vivo.Our studies began with the leech protein hirudin P6 (from Hirudinaria manillensis), which is both sulfated on tyrosine and O-glycosylated at a nearby threonine residue. Synthetically, this was achieved through solid-phase peptide synthesis (SPPS) with a late-stage on-resin sulfation, followed by native chemical ligation and a folding step to generate six differentially modified variants of hirudin P6 to assess the functional interplay between O-glycosylation and tyrosine sulfation. A one-pot, kinetically controlled ligation of three peptide fragments was used to assemble homogeneously sulfoforms of madanin-1 and chimadanin from the tick Haemaphysalis longicornis. Dual tyrosine sulfation at two distinct sites was shown to increase the thrombin inhibitory activity by up to 3 orders of magnitude through a novel interaction with exosite II of thrombin. The diselenide-selenoester ligation developed by our lab provided us with a means to rapidly assemble a library of different sulfated tick anticoagulant proteins: the andersonins, hyalomins, madanin-like proteins, and hemeathrins, thus enabling the generation of key structure-activity data on this family of proteins. We have also confirmed the presence of tyrosine sulfation in the anticoagulant proteins of Anopheles mosquitoes (anophelins) and the Tsetse fly (TTI) via insect expression and mass spectrometric analysis. These molecules were subsequently synthesized and assessed for thrombin inhibitory and anticoagulant activity. Activity was significantly improved by the addition of tyrosine sulfate modifications and led to molecules with potent antithrombotic activity in an in vivo murine thrombosis model.The Account concludes with our most recent work on the design of trivalent hybrids that tandemly occupy the active site and both exosites (I and II) of α-thrombin, with a TTI-anophelin hybrid (Ki = 20 fM against α-thrombin) being one of the most potent protease inhibitors and anticoagulants ever generated. Taken together, this Account highlights the importance of the tyrosine sulfate post-translational modification within salivary proteins from blood feeding organisms for enhancing anticoagulant activity. This work lays the foundation for exploiting native or engineered variants as therapeutic leads for thrombotic disorders in the future.
Collapse
Affiliation(s)
- Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| | - Paige M E Hawkins
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| | - Emma E Watson
- School of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Wei T, Liu J, Li C, Tan Y, Wei R, Wang J, Wu H, Li Q, Liu H, Tang Y, Li X. Revealing the extracellular function of HMGB1 N-terminal region acetylation assisted by a protein semi-synthesis approach. Chem Sci 2023; 14:10297-10307. [PMID: 37772093 PMCID: PMC10530822 DOI: 10.1039/d3sc01109g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
HMGB1 (high-mobility group box 1) is a non-histone chromatin-associated protein that has been widely reported as a representative damage-associated molecular pattern (DAMP) and to play a pivotal role in the proinflammatory process once it is in an extracellular location. Accumulating evidence has shown that HMGB1 undergoes extensive post-translational modifications (PTMs) that actively regulate its conformation, localization, and intermolecular interactions. However, fully characterizing the functional implications of these PTMs has been challenging due to the difficulty in accessing homogeneous HMGB1 with site-specific PTMs of interest. In this study, we developed a streamlined protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation, STL/CPL). This methodology enabled us to generate a series of N-terminal region acetylated HMGB1 proteins. Further studies revealed that acetylation regulates HMGB1-heparin interaction and modulates HMGB1's stability against thrombin, representing a regulatory switch to control HMGB1's extracellular activity.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Can Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruohan Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jinzheng Wang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongxiang Wu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Qingrong Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
21
|
Abstract
A wide range of biomaterials and engineered cell surfaces are composed of bioconjugates embedded in liposome membranes, surface-immobilized bilayers, or the plasma membranes of living cells. This review article summarizes the various ways that Nature anchors integral and peripheral proteins in a cell membrane and describes the strategies devised by chemical biologists to label a membrane protein in living cells. Also discussed are modern synthetic and semisynthetic methods to produce lipidated proteins. Subsequent sections describe methods to anchor a three-component synthetic construct that is composed of a lipophilic membrane anchor, hydrophilic linker, and exposed functional component. The surface exposed payload can be a fluorophore, aptamer, oligonucleotide, polypeptide, peptide nucleic acid, polysaccharide, branched dendrimer, or linear polymer. Hydrocarbon chains are commonly used as the membrane anchor, and a general experimental trend is that a two chain lipid anchor has higher membrane affinity than a cholesteryl or single chain lipid anchor. Amphiphilic fluorescent dyes are effective molecular probes for cell membrane imaging and a zwitterionic linker between the fluorophore and the lipid anchor promotes high persistence in the plasma membrane of living cells. A relatively new advance is the development of switchable membrane anchors as molecular tools for fundamental studies or as technology platforms for applied biomaterials.
Collapse
Affiliation(s)
- Rananjaya S Gamage
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan L Chasteen
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
22
|
Wu H, Tan Y, Ngai WL, Li X. Total synthesis of interleukin-2 via a tunable backbone modification strategy. Chem Sci 2023; 14:1582-1589. [PMID: 36794182 PMCID: PMC9906654 DOI: 10.1039/d2sc05660g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
Chemical synthesis of hydrophobic proteins presents a formidable task as they are often difficultly achieved via peptide synthesis, purification, and peptide ligation. Thus, peptide solubilizing strategies are needed to integrate with peptide ligation to achieve protein total synthesis. Herein, we report a tunable backbone modification strategy, taking advantage of the tunable stability of the Cys/Pen ligation intermediate, which allows for readily introducing a solubilizing tag for both peptide purification and ligation processes. The effectiveness of this strategy was demonstrated by the chemical synthesis of interleukin-2.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
23
|
Uchida K, Obayashi H, Minamihata K, Wakabayashi R, Goto M, Shimokawa N, Takagi M, Kamiya N. Artificial Palmitoylation of Proteins Controls the Lipid Domain-Selective Anchoring on Biomembranes and the Raft-Dependent Cellular Internalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9640-9648. [PMID: 35882009 DOI: 10.1021/acs.langmuir.2c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein palmitoylation, a post-translational modification, is universally observed in eukaryotic cells. The localization of palmitoylated proteins to highly dynamic, sphingolipid- and cholesterol-rich microdomains (called lipid rafts) on the plasma membrane has been shown to play an important role in signal transduction in cells. However, this complex biological system is not yet completely understood. Here, we used a combined approach where an artificial lipidated protein was applied to biomimetic model membranes and plasma membranes in cells to illuminate chemical and physiological properties of the rafts. Using cell-sized giant unilamellar vesicles, we demonstrated the selective partitioning of enhanced green fluorescent protein modified with a C-terminal palmitoyl moiety (EGFP-Pal) into the liquid-ordered phase consisting of saturated phospholipids and cholesterol. Using Jurkat T cells treated with an immunostimulant (concanavalin A), we observed the vesicular transport of EGFP-Pal. Further cellular studies with the treatment of methyl β-cyclodextrin revealed the cholesterol-dependent internalization of EGFP-Pal, which can be explained by a raft-dependent, caveolae-mediated endocytic pathway. The present synthetic approach using artificial and natural membrane systems can be further extended to explore the potential utility of artificially lipidated proteins at biological and artificial interfaces.
Collapse
Affiliation(s)
- Kazuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Obayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Hossain MS, Zhang Z, Ashok S, Jenks AR, Lynch CJ, Hougland JL, Mozhdehi D. Temperature-Responsive Nano-Biomaterials from Genetically Encoded Farnesylated Disordered Proteins. ACS APPLIED BIO MATERIALS 2022; 5:1846-1856. [PMID: 35044146 PMCID: PMC9115796 DOI: 10.1021/acsabm.1c01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Despite broad interest in understanding the biological implications of protein farnesylation in regulating different facets of cell biology, the use of this post-translational modification to develop protein-based materials and therapies remains underexplored. The progress has been slow due to the lack of accessible methodologies to generate farnesylated proteins with broad physicochemical diversities rapidly. This limitation, in turn, has hindered the empirical elucidation of farnesylated proteins' sequence-structure-function rules. To address this gap, we genetically engineered prokaryotes to develop operationally simple, high-yield biosynthetic routes to produce farnesylated proteins and revealed determinants of their emergent material properties (nano-aggregation and phase-behavior) using scattering, calorimetry, and microscopy. These outcomes foster the development of farnesylated proteins as recombinant therapeutics or biomaterials with molecularly programmable assembly.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sudhat Ashok
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ashley R. Jenks
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
25
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202200163. [PMID: 38505698 PMCID: PMC10947028 DOI: 10.1002/ange.202200163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 03/21/2024]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
26
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. Angew Chem Int Ed Engl 2022; 61:e202200163. [PMID: 35194928 PMCID: PMC9314092 DOI: 10.1002/anie.202200163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
27
|
Wang N, Lin JY, Luo SH, Zhou YJ, Yang K, Chen RH, Yang GX, Wang ZY. Furanonyl amino acid derivatives as hemostatic drugs: design, synthesis and hemostasis performance. Amino Acids 2022; 54:989-999. [PMID: 35305164 DOI: 10.1007/s00726-022-03155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
Using 3,4-dihalo-2(5H)-furanones and easily available hemostatic drugs, such as tranexamic acid (TA), 4-aminomethylbenzoic acid (ABA), aminocaproic acid (AA) as starting materials, serial multi-functional molecules 2(5H)-furanonyl amino acids are designed by the combination of different pharmacophores, and successfully synthesized by a transition metal-free Michael addition-elimination reaction. The reaction is carried out under mild conditions with ethanol-dichloromethane as solvent and only stirring at room temperature for 24 h, and the yield can be up to 91%. All products are well characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), high-resolution mass spectra (HRMS). Ten typical target compounds among them are selected out for the experiments of hemostasis performance by the evaluation of in vitro clot formation model and liver hemorrhage model. The test results show that, their hemostasis effect is better than the original drugs. Especially the target compound G, a TA derivative from 5-borneoloxy-3,4-dibromo-2(5H)-furanone, has the best hemostasis effect among all the tested compounds. These obtained target molecules are expected to be used as multi-functional hemostatic drugs.
Collapse
Affiliation(s)
- Neng Wang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jian-Yun Lin
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Shi-He Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Yong-Jun Zhou
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Kai Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Ren-Hong Chen
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, People's Republic of China.
| | - Guo-Xian Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhao-Yang Wang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|