1
|
Guo H, Loh CCJ. Noncovalent interactions: An emerging focal point in stereoselective catalytic carbohydrate synthesis. Carbohydr Res 2025; 552:109458. [PMID: 40132292 DOI: 10.1016/j.carres.2025.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The incorporation of frontier synthetic concepts into stereoselective carbohydrate synthesis is gaining significant traction. In the last five years, there are increasing reports documenting that the consideration of weak non-covalent interactions (NCIs) constitutes a vital factor in steering the anomeric and site-selectivity, as well as in activating difficult glycosylations. In light of blossoming developments on this front, we present a brief overview of recent case studies that involve the harnessing of hydrogen bonding (HB), halogen bonding (XB), chalcogen bonding (ChB) and π-interactions. These NCIs represent a considerable palette of classical/non-classical weak interactions that is of current interest to the broad synthesis community. Significantly, a close mechanistic analysis often revealed that NCIs were instrumental in dictating the final stereoselectivity outcome of many glycosylation pathways. We are optimistic that by expanding the focal point from purely glycosyl substrate modifications towards tweaking catalytic NCIs at the supramolecular level of chemical glycosylations, this emerging concept offers new levers of stereoselectivity control beyond classical stereoelectronic and steric considerations.
Collapse
Affiliation(s)
- Hao Guo
- College of Chemistry and Materials Science, And Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Charles C J Loh
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Li Y, Zhuang H, Tao X, Liu Y, Li T, Peng P. Convergent synthesis of steviol glycosides rebaudioside a and M. Carbohydr Res 2025; 552:109446. [PMID: 40081115 DOI: 10.1016/j.carres.2025.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Steviol glycosides, a natural health-focused sweetener, is receiving increasing attention. Herein, an efficient and concise approach for the convergent synthesis of Rebaudioside A and M has been devised. This method features a AuCl3-tBuCN cooperative catalysis to achieve highly 1, 2-trans stereoselective glycosidation of a C2-branched trisaccharide trichloroacetimidate with tertiary C-13 hydroxy group in steviol aglycone, without relying on neighboring group participation.
Collapse
Affiliation(s)
- Yuanyuan Li
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450000, China; Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong 518057, China
| | - Haoru Zhuang
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong 518057, China; National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Xuerui Tao
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong 518057, China; National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Yingguo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450000, China
| | - Tianlu Li
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong 518057, China; National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Peng Peng
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong 518057, China; National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Tiwari A, Khanam A, Mandal PK. Organocatalyzed O-glycosylation of glycosyl trichloroacetimidates donors: l-prolinethioamide as brønsted acid catalyst. Carbohydr Res 2025; 552:109470. [PMID: 40174324 DOI: 10.1016/j.carres.2025.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
In this study, we present the utilization of l-proline-derived thioamide small organic molecules as an effective organocatalyst for the O-glycosylation of various glycosyl trichloroacetimidate donors, eliminating the need for any cocatalysts or additives. The catalytic process achieves high yields with a wide array of alcohol and sugar nucleophiles, demonstrating a broad substrate scope and operational simplicity under mild reaction conditions. Preliminary mechanistic investigations indicate that l-prolinethioamide facilitates the glycosylation reaction via Brønsted acid/base catalysis, involving the formation of a catalyst-acceptor adduct.
Collapse
Affiliation(s)
- Ashwani Tiwari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Lal M, Gangwar H, Gaurav A, Khanam A, Tiwari A, Mandal PK. Hydrogen-Bond-Mediated Glycosylation Reactions with Glycosyl Picolinates. Org Lett 2025; 27:4238-4243. [PMID: 40214270 DOI: 10.1021/acs.orglett.5c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Herein, we report a generally applicable hydrogen-bond-mediated glycosylation protocol of glycosyl picolinate donors with a charged (thio)urea hydrogen-bond-donor catalyst. A variety of nucleophiles, including complex natural products, glycosides, amino acids, and less nucleophilic phenolic acceptors were also glycosylated successfully. Hydrogen-bond-mediated glycosylation systems combined with different strategies were also explored to achieve stereoselective glycosylation. A mechanistic study revealed that catalysts form the donor-catalyst noncovalent complex through hydrogen bonds and then produce the oxocarbenium species.
Collapse
Affiliation(s)
- Mohan Lal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Himanshu Gangwar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Anand Gaurav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ariza Khanam
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ashwani Tiwari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
5
|
Zhu Q, Tian X, He G. Insertion of Glycosylidene Carbenes into Phenolic O-H Bonds for the Synthesis of O-Aryl Glycosides. J Org Chem 2025; 90:3087-3092. [PMID: 39965089 DOI: 10.1021/acs.joc.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
We present a new strategy for the synthesis of O-aryl glycosides through the formal insertion of glycosylidene carbenes into the O-H bond of phenols. The key glycosylidene carbene intermediates were generated in situ by copper-catalyzed oxidation of bench-stable glycosylidene diaziridine precursors. This method enables the glycosylation of a variety of phenols with good yields, excellent diastereoselectivity, and chemoselectivity, providing a highly practical method for the late-stage glycosylation of complex natural products and bioactive agents.
Collapse
Affiliation(s)
- Qibin Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinyu Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Ghosh B, Enlow C, Ma Z, Warden AN, Axelrod AJ. Isothiourea - catalyzed α-selective glycosylations. Chem Commun (Camb) 2025; 61:3856-3859. [PMID: 39936368 DOI: 10.1039/d4cc05456c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Herein, we present a catalytic strategy to efficiently form both α-1,2-cis and α-1,2-trans glycosyl linkages from either glycosyl bromide or chloride donors using the commercially available HyperBTM isothiourea in both good yields and selectivities.
Collapse
Affiliation(s)
- Bhaswati Ghosh
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
| | - Charles Enlow
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
| | - Zhichen Ma
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
| | - Ashley N Warden
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
| | - Abram J Axelrod
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Ghorai J, Almounajed L, Noori S, Nguyen HM. Cooperative Catalysis in Stereoselective O- and N-Glycosylations with Glycosyl Trichloroacetimidates Mediated by Singly Protonated Phenanthrolinium Salt and Trichloroacetamide. J Am Chem Soc 2024; 146:34413-34426. [PMID: 39630085 PMCID: PMC11749421 DOI: 10.1021/jacs.4c10633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The development of small-molecule catalysts that can effectively activate both reacting partners simultaneously represents a pivotal pursuit in advancing the field of stereoselective glycosylation reactions. We report herein the development of the singly protonated form of readily available phenanthroline as an effective cooperative catalyst that facilitates the coupling of a wide variety of aliphatic alcohols, phenols, and aromatic amines with α-glycosyl trichloroacetimidate donors. The glycosylation reaction likely proceeds via an SN2-like mechanism, generating β-selective glycoside products. The developed protocol provides access to O- and N-glycosides in good yields with excellent levels of β-selectivity and enables late-stage functionalization of O- and N-glycosides via cross-coupling reactions. Importantly, this method exhibits excellent β-selectivity that is unattainable through a C2-O-acyl neighboring group participation strategy, especially in the case of glycosyl donors already containing a C2 heteroatom or sugar unit. Kinetic studies demonstrate that the byproduct trichloroacetamide group plays a previously undiscovered pivotal role in influencing the reactivity and selectivity of the reaction. A proposed mechanism involving simultaneous activation of the glycosyl donor and acceptor by the singly protonated phenanthrolinium salt catalyst with the assistance of the trichloroacetamide group is supported by kinetic analysis and preliminary computational studies. This cooperative catalysis process involves four consecutive hydrogen bond interactions. The first interaction occurs between the carbonyl oxygen of the trichloroacetamide group and the hydroxyl group of alcohol nucleophile (C═O···HO). The second involves the trichloroacetamide-NH2 forming a hydrogen bond with the nitrogen atom of the phenanthroline (NH···N). The third involves the donor trichloroacetimidate (═NH) engaging in a hydrogen bond interaction with the phenanthrolinium-NH (NH···N═H). Lastly, the protonated trichloroacetimidate-NH2 forms a hydrogen bond with the fluorine atom of the tetrafluoroborate ion.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Leila Almounajed
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Suendues Noori
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
Beyer PD, Nielsen MM, Picazo E, Jacobsen EN. β-Selective 2-Deoxy- and 2,6-Dideoxyglucosylations Catalyzed by Bis-Thioureas. J Am Chem Soc 2024; 146:27318-27323. [PMID: 39348510 PMCID: PMC11905915 DOI: 10.1021/jacs.4c11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
We present methods for β-selective 2-deoxy- and 2,6-dideoxyglucosylations of natural products, carbohydrates, and amino acids using bis-thiourea hydrogen-bond-donor catalysts. Disarming ester protecting groups were necessary to counter the high reactivity of 2-deoxyglycosyl electrophiles toward non-stereospecific SN1 pathways. Alcohol and phenol nucleophiles with both base- and acid-sensitive functionalities were compatible with the catalytic protocol, enabling access to a wide array of 2-deoxy-β-O-glucosides.
Collapse
Affiliation(s)
- Peyton D Beyer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael M Nielsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elias Picazo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Alom NE, Rani N, Schlegel HB, Nguyen HM. Highly stereoselective synthesis of α-glycosylated carboxylic acids by phenanthroline catalysis. Org Chem Front 2024; 11:5769-5783. [PMID: 39211000 PMCID: PMC11347974 DOI: 10.1039/d4qo00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Carbohydrate molecules with an α-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse α-glycosylated carboxylic acids in good yields with high diastereoselectivity. Although there is no apparent correlation between reaction conversion and pK a of carboxylic acids, we found that carboxylic acids with a pK a of 4-5 provide high selectivity while those of a pK a of 2.5 or lower do not. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the α-face of the more reactive intermediate, resulting in the formation of α-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding.
Collapse
Affiliation(s)
- Nur-E Alom
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | - Neha Rani
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | | | - Hien M Nguyen
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| |
Collapse
|
10
|
Ishiwata A, Zhong X, Tanaka K, Ito Y, Ding F. ZnI 2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules 2024; 29:4710. [PMID: 39407638 PMCID: PMC11477539 DOI: 10.3390/molecules29194710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides and peptides. The development of a generally applicable approach for the stereoselective construction of glycosidic bonds remains a major challenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones. This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations of various constrained glycosyl donors, as well as the recent advances in the development of stereoselective cis-glycosylations.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
11
|
Manash Bharali M, Pramanik S, Santra A. Zinc Tetrafluoroborate Catalyzed Stereo- and Regioselective O-Glycosylation for the Direct Synthesis of β-Glycosides from Armed O-Glycosyl Trichloroacetimidates. Chem Asian J 2024; 19:e202400420. [PMID: 38801056 DOI: 10.1002/asia.202400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 05/29/2024]
Abstract
Efficient stereo- and regioselective O-glycosylation methods remain essential to capacitate the studies of sugars and sugar derivatives in various disciplines. In this work, we demonstrated an operationally simple and cost-effective strategy for the synthesis of 1,2-trans glycosides by the activation of armed O-glycosyl trichloroacetimidates donor using zinc tetrafluoroborate. This mild, transition metal-free, and scalable approach allowed stereo- and regioselective synthesis of β-glycosides with a wide range of acceptors containing various protecting groups/functionalities. This method is exemplified by synthesizing a branched trisaccharide fragment related to the cell wall O-polysaccharide of E. Coli O27.
Collapse
Affiliation(s)
- Mrinmoy Manash Bharali
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swapnendu Pramanik
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Santra
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Terada M, Yazaki R, Obayashi R, Iwasaki Z, Umemiya S, Kikuchi J. Consecutive π-Lewis acidic metal-catalysed cyclisation/photochemical radical addition promoted by in situ generated 2-benzopyrylium as the photoredox catalyst. Chem Sci 2024; 15:6115-6121. [PMID: 38665511 PMCID: PMC11041276 DOI: 10.1039/d4sc00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
A π-Lewis acidic metal-catalysed cyclisation/photochemical radical addition sequence was developed, which utilises in situ generated 2-benzopyrylium cation intermediates as photoredox catalysts and electrophilic substrates to form 1H-isochromene derivatives in good yields in most cases. The key 2-benzopyrylium intermediates were generated through the activation of the alkyne moiety of ortho-carbonyl alkynylbenzene derivatives by such π-Lewis acidic metal catalysts as AgNTf2 and Cu(NTf2)2, and the subsequent intramolecular cyclisation and proto-demetalation using trifluoroacetic acid. Further photo-excitation of the 2-benzopyrylium intermediates facilitated single-electron transfer from a benzyltrimethylsilane derivative as a donor molecule to promote the radical addition of arylmethyl radicals to the 2-benzopyrylium intermediates.
Collapse
Affiliation(s)
- Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Ryohei Yazaki
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Ren Obayashi
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Zen Iwasaki
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Shigenobu Umemiya
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai Miyagi 980-8578 Japan
| |
Collapse
|
13
|
Addanki RB, Moktan S, Halder S, Sharma M, Sarmah BK, Bhattacharyya K, Kancharla PK. Exploiting the Strained Ion-Pair Interactions of Sterically Hindered Pyridinium Salts Toward S N2 Glycosylation of Glycosyl Trichloroacetimidates. J Org Chem 2024; 89:3713-3725. [PMID: 38407946 DOI: 10.1021/acs.joc.3c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We demonstrate here that strained and sterically hindered protonated 2,4,6-tri-tert-butylpyridinium (TTBPy) tetrafluoroborate, a crystalline, bench stable salt serves as a mild and efficient organocatalyst for the SN2 type displacement of glycosyl trichloroacetimidates toward the stereoselective synthesis of both α- and β-glycosides. The strained ion-pair interactions between the sterically hindered pyridinium cation and the tetrafluoroborate anion infuse unusual reactivity to the ions resulting in the unique anion assisted activation of alcohol. This mild activation of alcohol facilitates the SN2 type displacement of glycosyl α-trichloroacetimidates into β-glycosides in a highly diastereoselective manner. These unique interactions were established based on extensive infrared and 1H, 19F, 11B NMR studies and theoretical studies.
Collapse
Affiliation(s)
- Rupa Bai Addanki
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sangay Moktan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suvendu Halder
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Madhur Sharma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bikash K Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Jiao Q, Guo Z, Zheng M, Lin W, Liao Y, Yan W, Liu T, Xu C. Anion-Bridged Dual Hydrogen Bond Enabled Concerted Addition of Phenol to Glycal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308513. [PMID: 38225720 PMCID: PMC10953558 DOI: 10.1002/advs.202308513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 01/17/2024]
Abstract
A noncovalent organocatalytic concerted addition of phenol to glycal is developed for the stereoselective and regioselective construction of biologically important phenolic 2-deoxyglycosides, featuring wide substrate tolerance. The method relies on an anion-bridged dual hydrogen bond interaction which is experimentally proved by Nuclear Magnetic Resonance (NMR), Ultraviolet and visible (UV-vis), and fluorescence analysis. Experimental evidence including kinetic analysis, Kinetic Isotope Effect (KIE) studies, linear free energy relationship, Hammett plot, and density functional theory (DFT) calculations is provided for a concerted mechanism where a high-energy oxocarbenium ion is not formed. In addition, the potential utility of this method is further demonstrated by the synthesis of biologically active glycosylated flavones. The benchmarking studies demonstrate significant advances in this newly developed method compared to previous approaches.
Collapse
Affiliation(s)
- Qinbo Jiao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Zhenbo Guo
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Mingwen Zheng
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Wentao Lin
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Yujie Liao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Weitao Yan
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Tianfei Liu
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| |
Collapse
|
15
|
Deng LF, Wang Y, Xu S, Shen A, Zhu H, Zhang S, Zhang X, Niu D. Palladium catalysis enables cross-coupling-like S N2-glycosylation of phenols. Science 2023; 382:928-935. [PMID: 37995215 DOI: 10.1126/science.adk1111] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Despite their importance in life and material sciences, the efficient construction of stereo-defined glycosides remains a challenge. Studies of carbohydrate functions would be advanced if glycosylation methods were as reliable and modular as palladium (Pd)-catalyzed cross-coupling. However, Pd-catalysis excels in forming sp2-hybridized carbon centers whereas glycosylation mostly builds sp3-hybridized C-O linkages. We report a glycosylation platform through Pd-catalyzed SN2 displacement from phenols toward bench-stable, aryl-iodide-containing glycosyl sulfides. The key Pd(II) oxidative addition intermediate diverges from an arylating agent (Csp2 electrophile) to a glycosylating agent (Csp3 electrophile). This method inherits many merits of cross-coupling reactions, including operational simplicity and functional group tolerance. It preserves the SN2 mechanism for various substrates and is amenable to late-stage glycosylation of commercial drugs and natural products.
Collapse
Affiliation(s)
- Li-Fan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yingwei Wang
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ao Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hangping Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Siyu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Zhao X, Zhang Z, Xu J, Wang N, Huang N, Yao H. Stereoselective Synthesis of O-Glycosides with Borate Acceptors. J Org Chem 2023; 88:11735-11747. [PMID: 37525574 DOI: 10.1021/acs.joc.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Borate esters have been applied widely as coupling partners in organic synthesis. However, the direct utilization of borate acceptors in O-glycosylation with glycal donors remains underexplored. Herein, we describe a novel O-glycosylation resulting in the formation of 2,3-unsaturated O-glycosides and 2-deoxy O-glycosides mediated by palladium and copper catalysis, respectively. This O-glycosylation method tolerated a broad scope of trialkyl/triaryl borates and various glycals with exclusive stereoselectivities in high yields. All the desired aliphatic/aromatic O-glycosides and 2-deoxy O-glycosides were generated successfully, without the hemiacetal byproducts and O→C rearrangement because of the nature of borate esters. The utility of this strategy was demonstrated by functionalizing the 2,3-unsaturated glycoside products to form saturated β-O-glycosides, 2,3-deoxy O-glycosides, and 2,3-epoxy O-glycosides.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhentao Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jing Xu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
17
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
19
|
Ishiwata A, Tanaka K, Ao J, Ding F, Ito Y. Recent advances in stereoselective 1,2- cis- O-glycosylations. Front Chem 2022; 10:972429. [PMID: 36059876 PMCID: PMC9437320 DOI: 10.3389/fchem.2022.972429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, β-mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Mukherjee MM, Ghosh R, Hanover JA. Recent Advances in Stereoselective Chemical O-Glycosylation Reactions. Front Mol Biosci 2022; 9:896187. [PMID: 35775080 PMCID: PMC9237389 DOI: 10.3389/fmolb.2022.896187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Carbohydrates involving glycoconjugates play a pivotal role in many life processes. Better understanding toward glycobiological events including the structure–function relationship of these biomolecules and for diagnostic and therapeutic purposes including tailor-made vaccine development and synthesis of structurally well-defined oligosaccharides (OS) become important. Efficient chemical glycosylation in high yield and stereoselectivity is however challenging and depends on the fine tuning of a protection profile to get matching glycosyl donor–acceptor reactivity along with proper use of other important external factors like catalyst, solvent, temperature, activator, and additive. So far, many glycosylation methods have been reported including several reviews also. In the present review, we will concentrate our discussion on the recent trend on α- and β-selective glycosylation reactions reported during the past decade.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, India
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| |
Collapse
|