1
|
Niu Y, Liu Q, Ou X, Zhou Y, Sun Z, Yan F. CO 2-Sourced Polymer Dyes for Dual Information Encryption. SMALL METHODS 2024; 8:e2400470. [PMID: 38818740 DOI: 10.1002/smtd.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Large amounts of small molecule dyes leak into the ecosystems annually in harmful and unsustainable ways. Polymer dyes have attracted much attention because of their high migration resistance, excellent stability, and minimized leakage. However, the complex synthesis process, high cost, and poor degradability hinder their widespread application. Herein, green and sustainable polymer dyes are prepared using natural dye quercetin (Qc) and CO2 through a one-step process. The CO2-sourced polymer dyes show strong migration resistance, high stability, and can be degraded on demand. Additionally, the CO2-sourced polymer dyes showed unique responses to Zn2+, leading to significantly enhanced fluorescence, highlighting their potential for information encryption/decryption. The CO2-sourced polymer dyes can solve the environmental hazards caused by small molecule dye leakage and promote the carbon cycle process. Meanwhile, the one-step synthesis process is expected to achieve sustainable and widespread utilization of CO2-sourced polymer dyes.
Collapse
Affiliation(s)
- Yajuan Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qinbo Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xu Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Habets T, Méreau R, Siragusa F, Grignard B, Detrembleur C. Fast, Regioselective Aminolysis of Tetrasubstituted Cyclic Carbonates and Application to Recyclable Thermoplastics and Thermosets. ACS Macro Lett 2024; 13:1425-1432. [PMID: 39383047 DOI: 10.1021/acsmacrolett.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Herein, the long-standing challenge of the ring-opening aminolysis of CO2-derived tetrasubstituted cyclic carbonates at room temperature (r.T) is overcome under catalyst-free conditions. Molecular design of the cyclic carbonate by substitution of an alkyl group by a thioether unlocks quantitative conversion at r.T and ensures total regioselectivity toward highly substituted oxazolidone scaffolds. An in-depth rationalization of the high reactivity of these cyclic carbonate structures and of the aminolysis reaction mechanism is provided by a computational study supporting experimental observations. The high efficiency of the reaction is then translated to the deconstruction of high-performance thermoplastics containing tetrasubstituted cyclic carbonate linkages to deliver building blocks that are reused for designing recyclable thermosets bearing dynamic N,S-acetal linkages.
Collapse
Affiliation(s)
- Thomas Habets
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Raphaël Méreau
- Institut des Sciences Moléculaires (ISM), Univ. Bordeaux, CNRS, Bordeaux INP - UMR 5255, F-33400 Talence, France
| | - Fabiana Siragusa
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
- FRITCO2T Platform, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
- WEL Research Institute, Wavre 1300, Belgium
| |
Collapse
|
3
|
Cao Q, Sun W, Xiao Z, Zhou X, Lu L, Hou H, Chen Y, Wang L. Tri-site Synergistic Cu(I)/Cu(II)─N Single-Atom Catalysts for Additive-Free CO 2 Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404202. [PMID: 39036839 DOI: 10.1002/smll.202404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 07/23/2024]
Abstract
As the highly stable and abundant carbon source in nature, the activation and conversion of CO2 into high-value chemicals is highly desirable yet challenging. The development of Cu(I)/Cu(II)─N tri-site synergistic single-atom catalysts (TS-SACs) with remarkable CO2 activation and conversion performance is presented, eliminating the need for external additives in cascade reactions. Under mild conditions (40 °C, atmospheric CO2), the catalyst achieves high yields (up to 99%) of valuable 2-oxazolidinones from CO2 and propargylamine. Notably, the catalyst demonstrates easy recovery, short reaction times, and excellent tolerance toward various functional groups. Supported by operando techniques and density functional theory calculations, it is elucidated that the spatially proximal Cu(I)/Cu(II)─N sites facilitate the coupling of multiple chemical transformations. This surpasses the performance of supported isolated Cu(I) or Cu(II) catalysts and traditional organic base-assisted cascade processes. These Cu(I)/Cu(II)─N tri-site synergistic atom active sites not only enable the co-activation of CO2 at the Cu(II)─N pair and alkyne at the Cu(I) site but also induce a di-metal locking geometric effect that accelerates the ring closure of cyclic carbamate intermediates. The work overcomes the limitations of single metal sites and paves the way for designing multisite catalysts for CO2 activation, especially for consecutive activation, tandem, or cascade reactions.
Collapse
Affiliation(s)
- Qiuyan Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wenqiang Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhihe Xiao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaole Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lilin Lu
- State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Haonan Hou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yueguang Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Raj A, Panchireddy S, Bekaert L, Grignard B, Detrembleur C, Gohy JF. Solid Polymer Electrolytes with Sacrificial End Groups for a Wide Oxidative Potential and Stable Interface in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47464-47476. [PMID: 39213516 DOI: 10.1021/acsami.4c07927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Poly(ethylene glycol) (PEG), despite being the most studied polymer electrolyte, suffers from serious drawbacks, which require fundamental studies behind its underperformance in lithium batteries. Here, we report the effect of the terminal group on triarm PEG stars bearing either hydroxyl (TPEG-OH) or carbonate-ketone (TPEG-Carb-ket) terminal groups. The latter is synthesized by a ring-opening reaction triggered by the -OH end group of TPEG-OH and results in a carbonate-ketone functionality. Indeed, the modified chain end is found to act as a sacrificial group by focusing the reactivity of the chain on the terminal group, protecting the rest of the TPEG molecule, which significantly reduces interfacial degradation and achieves a broader electrochemical stability window of up to 4.47 V, high Coulombic efficiency, and capacity retention. It furthermore demonstrates a stable interface with lithium metal after more than 1200 h of stripping and plating. When those electrolytes are investigated in reference cells based on LiFePO4 cathodes and Li anodes, the change in discharge capacity is observed from 118.7 to 113.8 and 108.9 to 5.03 mAh g-1 for TPEG-Carb-ket and TPEG-OH electrolytes, respectively, from the 1st to 100th cycle. The experimental results are further supported by density functional theory calculations and ab initio molecular dynamics simulations.
Collapse
Affiliation(s)
- Ashish Raj
- Institute of Condensed Matter and Nanoscience (IMCN), UCLouvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Satyannarayana Panchireddy
- Institute of Condensed Matter and Nanoscience (IMCN), UCLouvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Lieven Bekaert
- Electrochemical and Surface Engineering (SURF), Department of Materials and Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, 13 Allée du 6 août, Building B6A, 4000 Liège, Belgium
- Federation of Researcher in Innovation Technologies for CO2 Transformation (FRITCO2T Research Platform), University of Liège, 13 Allée du 6 août, Building B6A, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, 13 Allée du 6 août, Building B6A, 4000 Liège, Belgium
- Federation of Researcher in Innovation Technologies for CO2 Transformation (FRITCO2T Research Platform), University of Liège, 13 Allée du 6 août, Building B6A, 4000 Liège, Belgium
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanoscience (IMCN), UCLouvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Siragusa F, Crane L, Stiernet P, Habets T, Grignard B, Monbaliu JCM, Detrembleur C. Continuous Flow Synthesis of Functional Isocyanate-Free Poly(oxazolidone)s by Step-Growth Polymerization. ACS Macro Lett 2024; 13:644-650. [PMID: 38717381 DOI: 10.1021/acsmacrolett.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Flow chemistry presents many advantages over batch processes for the fast and continuous production of polymers under more robust, safer, and easily scalable conditions. Although largely exploited for chain-growth polymerizations, it has rarely been applied to step-growth polymerizations (SGP) due to their inherent limitations. Here, we report the facile and fast preparation of an emerging class of nonisocyanate polyurethanes, i.e., CO2-based poly(oxazolidone)s, by SGP in continuous flow reactors. Importantly, we also demonstrate that functional poly(oxazolidone)s are easily prepared by telescoping a flow module where SGP occurs with reagents able to simultaneously promote two polymer derivatizations in a second module, i.e., dehydration followed by cationic thiol-ene to yield poly(N,S-acetal oxazolidone)s. The functional polymer is produced at a high rate and functionalization degree, without requiring the isolation of any intermediates. This work demonstrates the enormous potential of flow technology for the facile and fast continuous production of functional polymers by SGP.
Collapse
Affiliation(s)
- Fabiana Siragusa
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Lionel Crane
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Thomas Habets
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- FRITCO2T Platform, CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- WEL Research Institute, 1300 Wavre, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- WEL Research Institute, 1300 Wavre, Belgium
| |
Collapse
|
6
|
Ximenis M, Monot J, Gabirondo E, Jeschke J, Martín-Vaca B, Bourissou D, Sardon H. Boosting the Reactivity of Bis-Lactones to Enable Step-Growth Polymerization at Room Temperature. Macromolecules 2024; 57:3319-3327. [PMID: 38616811 PMCID: PMC11008534 DOI: 10.1021/acs.macromol.3c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
The development of new sustainable polymeric materials endowed with improved performances but minimal environmental impact is a major concern, with polyesters as primary targets. Lactones are key monomers thanks to ring-opening polymerization, but their use in step-growth polymerization has remained scarce and challenging. Herein, we report a powerful bis(γ-lactone) (γSL) that was efficiently prepared on a gram scale from malonic acid by Pd-catalyzed cycloisomerization. The γ-exomethylene moieties and the spiro structure greatly enhance its reactivity toward ring-opening and enable step-growth polymerization under mild conditions. Using diols, dithiols, or diamines as comonomers, a variety of regioregular (AB)n copolymers with diverse linkages and functional groups (from oxo-ester to β-thioether lactone and β-hydroxy-lactame) have been readily prepared. Reaction modeling and monitoring revealed the occurrence of an original trans-lactonization process following the first ring-opening of γSL. This peculiar reactivity opens the way to regioregular (ABAC)n terpolymers, as illustrated by the successive step-growth polymerization of γSL with a diol and a diamine.
Collapse
Affiliation(s)
- Marta Ximenis
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Julien Monot
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Elena Gabirondo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Janna Jeschke
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Blanca Martín-Vaca
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Didier Bourissou
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials/Physics, Chemistry
and Technology, University of the Basque
Country UPV/EHU, Joxe
Mari Korta Center Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
7
|
Shi W, Qiao C, Benet-Buchholz J, Kleij AW. Catalytic Domino Three-Component Synthesis of Functionalized Heterocycles from Carbon Dioxide. CHEMSUSCHEM 2024; 17:e202301626. [PMID: 38109072 DOI: 10.1002/cssc.202301626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Indexed: 12/19/2023]
Abstract
A catalytic domino, three-component reaction has been developed for the transformation of carbon dioxide into functionalized six-membered cyclic carbonates. The catalytic process combines an initial carboxylative cyclization of β-epoxy alcohols followed by an oxa-Michael reaction affording an unparalleled scope of heterocyclic structures. The wide range of functional groups, including free-alcohols, empowers the access to a range of products including C11-oxo-based bicyclic heterocycles. The versatility of these functionalized carbonates is further complemented by a series of synthetic diversifications. Control experiments are consistent with the first step of this domino process being promoted by a binary Lewis acid/base catalyst, while the second stage only requires catalytic base.
Collapse
Affiliation(s)
- Wangyu Shi
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Chang Qiao
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
8
|
Pierrard A, Melo SF, Thijssen Q, Van Vlierberghe S, Lancellotti P, Oury C, Detrembleur C, Jérôme C. Design of 3D-Photoprintable, Bio-, and Hemocompatible Nonisocyanate Polyurethane Elastomers for Biomedical Implants. Biomacromolecules 2024; 25:1810-1824. [PMID: 38360581 DOI: 10.1021/acs.biomac.3c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.
Collapse
Affiliation(s)
- Anna Pierrard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Sofia F Melo
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Faculty of Medicine, University of Liège, Avenue Hippocrate 15, Quartier Hôpital, 4000 Liège, Belgium
| | - Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Department of Cardiology - Centre Hospitalier Universitaire (CHU) of Liège, University of Liège Hospital, 4000 Liège, Belgium
| | - Cécile Oury
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| |
Collapse
|
9
|
Zhou Y, Lv S, Feng M, Qian C, Liu S, Chen Z. Ligand-assisted formation of mesoporous Zn-N-C to realize superior catalytic activity in solvent-free CO 2 cycloaddition reactions. Chem Commun (Camb) 2024; 60:2641-2644. [PMID: 38348751 DOI: 10.1039/d4cc00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Mesoporous nitrogen-doped carbon-anchored single atom Zn was synthesized through etching of ZIF-8 with 1,10-phenanthroline and subsequent pyrolysis based on the Kirkendall effect. The abundant pores and increased surface area promote CO2 adsorption and mass transfer, thus significantly improving the catalytic activity in solvent-free cycloaddition of epoxides with CO2.
Collapse
Affiliation(s)
- Yan Zhou
- School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shanshan Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Mengmeng Feng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjin Qian
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Seo HJ, Seo YH, Park SU, Lee HJ, Lee MR, Park JH, Cho WY, Lee PC, Lee BY. Glycerol-derived organic carbonates: environmentally friendly plasticizers for PLA. RSC Adv 2024; 14:4702-4716. [PMID: 38318613 PMCID: PMC10840682 DOI: 10.1039/d3ra08922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Polylactic acid (PLA) stands as a promising material, sourced from renewables and exhibiting biodegradability-albeit under stringent industrial composting settings. A primary challenge impeding PLA's broad applications is its inherent brittleness, as it fractures with minimal elongation despite its commendable tensile strength. A well-established remedy involves blending PLA with plasticizers. In this study, a range of organic carbonates-namely, 4-ethoxycarbonyloximethyl-[1,3]dioxolan-2-one (1), 4-methoxycarbonyloximethyl-[1,3]dioxolan-2-one (2), glycerol carbonate (3), and glycerol 1-acetate 2,3-carbonate (4)-were synthesized on a preparative scale (∼100 g), using renewable glycerol and CO2-derived diethyl carbonate (DEC) or dimethyl carbonate (DMC). Significantly, 1-4 exhibited biodegradability under ambient conditions within a week, ascertained through soil exposure at 25 °C-outpacing the degradation of comparative cellulose. Further investigations revealed 1's efficacy as a PLA plasticizer. Compatibility with PLA, up to 30 phr (parts per hundred resin), was verified using an array of techniques, including DSC, DMA, SEM, and rotational rheometry. The resulting blends showcased enhanced ductility, evident from tensile property measurements. Notably, the novel plasticizer 1 displayed an advantage over conventional acetyltributylcitrate (ATBC) in terms of morphological stability. Slow crystallization, observed in PLA/ATBC blends over time at room temperature, was absent in PLA/1 blends, preserving amorphous domain dimensions and mitigating plasticizer migration-confirmed through DMA assessments of aged and unaged specimens. Nevertheless, biodegradation assessments of the blends revealed that the biodegradable organic carbonate plasticizers did not augment PLA's biodegradation. The PLA in the blends remained mostly unchanged under ambient soil conditions of 25 °C over a 6 month period. This work underscores the potential of organic carbonates as both eco-friendly plasticizers for PLA and as biodegradable compounds, contributing to the development of environmentally conscious polymer systems.
Collapse
Affiliation(s)
- Hyeon Jeong Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Sang Uk Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Mi Ryu Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Jun Hyeong Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Woo Yeon Cho
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| |
Collapse
|
11
|
Dhandabani GK, Jeyakannu P, Shih CL, Abraham AM, Senadi GC, Wang JJ. A Regioselective [3 + 2] Cycloaddition of Alkynols and Ketones To Access Diverse 1,3-Dioxolane Scaffolds. J Org Chem 2024; 89:719-724. [PMID: 38149308 DOI: 10.1021/acs.joc.3c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
This study presents a stepwise exoselective [3 + 2] cycloaddition reaction of alkynols with ketones, leading to the synthesis of 4-methylene-1,3-dioxolane derivatives. Remarkably, without any Thorpe-Ingold induced effect, the cyclization reaction was demonstrated with complete regio- and chemoselectivity, which was solely promoted by cesium carbonate. A wide range of unactivated ketones are viable under these mild reaction conditions, and both primary and tertiary alkynols are compatible with these cyclization reactions. We have prepared a diverse array of highly dense exomethylene 1,3-dioxolane rings demonstrating a remarkable tolerance for various functional groups.
Collapse
Affiliation(s)
- Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Zhongzheng Dist., Taipei City 100025, Taiwan
| | - Palaniraja Jeyakannu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Chia-Ling Shih
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Zhongzheng Dist., Taipei City 100025, Taiwan
| | - Aksa Mariyam Abraham
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science & Technology, SRM Nagar, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou First Road, Sanmin District, Kaohsiung City 807, Taiwan
| |
Collapse
|
12
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
13
|
Liu Y, Li S, Chen Y, Hu T, Pudukudy M, Shi L, Shan S, Zhi Y. Modified melamine-based porous organic polymers with imidazolium ionic liquids as efficient heterogeneous catalysts for CO 2 cycloaddition. J Colloid Interface Sci 2023; 652:737-748. [PMID: 37500314 DOI: 10.1016/j.jcis.2023.07.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The chemical conversion of carbon dioxide (CO2) into highly value-added products not only alleviates the environmental issues caused by global warming but also makes an impact on economic benefits in the world. The synthesis of cyclic carbonates by the cycloaddition of CO2 with epoxides is one of the most attractive methods for CO2 conversion. However, the development of green and highly efficient heterogeneous catalysts is considered to be a great challenge in catalysis. In this work, alkenyl-modified melamine-based porous organic polymer (MPOP-4A) was firstly synthesized by a one-pot polycondensation method, and it was again modified with imidazolium-based ionic liquids to obtain final modified catalyst (MPOP-4A-IL). Various analytical techniques were used to confirm structure and chemical composition of the prepared materials. The MPOP-4A-IL catalyst synthesized by the post-modification strategy with imidazolium-based ionic liquids exhibited enhanced catalytic activity for CO2 cycloaddition reaction. The enhanced catalytic performance could be attributed to the presence of abundant active sites in their structure such as hydrogen bond donors (HBD), nitrogen (N) sites, and nucleophilic groups for an effective chemical reaction. The MPOP-4A-IL catalyst was found to be metal-free, easy to recycle and reuse, and has good versatility for a series of different epoxides. The interaction of MPOP-4A-IL catalyst with epoxide and CO2 was further verified by density functional theory (DFT) calculations, and the possible mechanism of the CO2 cycloaddition reaction was proposed.
Collapse
Affiliation(s)
- Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Shuangjiang Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Ying Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Sichuan Vocational College of Chemical Technology, Luzhou, Sichuan 646300, PR China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Manoj Pudukudy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Lan Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
14
|
Habets T, Seychal G, Caliari M, Raquez JM, Sardon H, Grignard B, Detrembleur C. Covalent Adaptable Networks through Dynamic N, S-Acetal Chemistry: Toward Recyclable CO 2-Based Thermosets. J Am Chem Soc 2023; 145:25450-25462. [PMID: 37942776 DOI: 10.1021/jacs.3c10080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Finding new chemistry platforms for easily recyclable polymers has become a key challenge to face environmental concerns and the growing plastics demand. Here, we report a dynamic chemistry between CO2-sourced alkylidene oxazolidones and thiols, delivering circular non-isocyanate polyurethane networks embedding N,S-acetal bonds. The production of oxazolidone monomers from CO2 is facile and scalable starting from cheap reagents. Their copolymerization with a polythiol occurs under mild conditions in the presence of a catalytic amount of acid to furnish polymer networks. The polymer structure is easily tuned by virtue of monomer design, translating into a wide panel of mechanical properties similar to commodity plastics, ranging from PDMS-like elastomers [with Young's modulus (E) of 2.9 MPa and elongation at break (εbreak) of 159%] to polystyrene-like rigid plastics (with E = 2400 MPa, εbreak = 3%). The highly dissociative nature of the N,S-acetal bonds is demonstrated and exploited to offer three different recycling scenarios to the thermosets: (1) mechanical recycling by compression molding, extrusion, or injection molding─with multiple recycling (at least 10 times) without any material property deterioration, (2) chemical recycling through depolymerization, followed by repolymerization, also applicable to composites, and (3) upcycling of two different oxazolidone-based thermosets into a single one with distinct properties. This work highlights a new facile and scalable chemical platform for designing highly dynamic polymer networks containing elusive oxazolidone motifs. The versatility of this chemistry shows great potential for the preparation of materials (including composites) of tuneable structures and properties, with multiple end-of-life scenarios.
Collapse
Affiliation(s)
- Thomas Habets
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Guillem Seychal
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons UMONS, Place du Parc 20, 7000 Mons, Belgium
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Marco Caliari
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons UMONS, Place du Parc 20, 7000 Mons, Belgium
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
- FRITCO2T Platform, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| |
Collapse
|
15
|
Guan M, Hou M, Tang S, Cheng G, Zhu X, Zhao YH, Tang X, Zhou H, Qiu G. Iron-catalyzed β-hydroxymethylative carbonylation of styrene under photo-irradiation. Chem Commun (Camb) 2023; 59:13309-13312. [PMID: 37859505 DOI: 10.1039/d3cc03919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
This study describes an iron-catalyzed divergent oxidation of styrene into β-hydroxylmethylketone and ketone under photo-irradiation. This divergence is ascribed to the use of styrene with various substituents. More importantly, methanol is oxidized into formaldehyde in the reaction and serves as a C1 synthon. Mechanism investigations show that the reaction is initiated by oxidative SET to transfer styrene into the cation radical. The reaction pathway undergoes HAT and β-hydride elimination as well as a concerted cyclization. Particularly, several drug-like molecules, such as melperone analogue, lenperone analogue, and haloperidol analogue, are synthesized. In addition, this method is also applicable to the synthesis of natural product (R)-atomoxetine.
Collapse
Affiliation(s)
- Meng Guan
- College of Chemistry and Chemical Engineering, Hunan University of Sciences and Technology, Xiangtan 4111201, Hunan, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Ming Hou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Shuwang Tang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Guang Cheng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Xinyu Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yun-Hui Zhao
- College of Chemistry and Chemical Engineering, Hunan University of Sciences and Technology, Xiangtan 4111201, Hunan, China.
| | - Ximei Tang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
16
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Palenzuela M, Sarisuta K, Navarro M, Kumamoto N, Chanthaset N, Monot J, Ajiro H, Martín-Vaca B, Bourissou D. 5-Methylene-1,3-dioxane-2-one: A First-Choice Comonomer for Trimethylene Carbonate. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Miguel Palenzuela
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), CNRS, Université de Toulouse (UPS), 118 route de Narbonne, F-31062 Toulouse, France
| | - Kamolchanok Sarisuta
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), CNRS, Université de Toulouse (UPS), 118 route de Narbonne, F-31062 Toulouse, France
- Graduate School of Materials Science and Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Marta Navarro
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), CNRS, Université de Toulouse (UPS), 118 route de Narbonne, F-31062 Toulouse, France
| | - Narumi Kumamoto
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), CNRS, Université de Toulouse (UPS), 118 route de Narbonne, F-31062 Toulouse, France
- Graduate School of Materials Science and Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Nalinthip Chanthaset
- Graduate School of Materials Science and Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Julien Monot
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), CNRS, Université de Toulouse (UPS), 118 route de Narbonne, F-31062 Toulouse, France
| | - Hiroharu Ajiro
- Graduate School of Materials Science and Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Blanca Martín-Vaca
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), CNRS, Université de Toulouse (UPS), 118 route de Narbonne, F-31062 Toulouse, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), CNRS, Université de Toulouse (UPS), 118 route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
18
|
Chelike DK, Gurusamy Thangavelu SA. Biodegradable isocyanate-free polyurethane films via a noncatalytic route: facile modified polycaprolactone triol and biobased diamine as precursors. RSC Adv 2022; 13:309-319. [PMID: 36605652 PMCID: PMC9766200 DOI: 10.1039/d2ra05710g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
A facile synthesis of isocyanate free polyurethanes (PU) was executed by the reaction of biodegradable cyclic carbonate and sustainable diamines generated via chemical modification. The biodegradable polyol polycaprolactone triol (PCL) was transformed into a new glycerol carbonate derivative, PCL-(COOGC)3, and subjected to polyaddition with the diamines linalool diamine (LLDA), isosorbide diamine (ISODA) and hexamethylene diamine (HDA). Polyaddition of PCL-(COOGC)3 with the above diamine precursors was conducted via a one-pot reaction under catalyst-free reaction conditions prior to film casting. The above precursors were characterized by Fourier-transform infrared (FTIR) and 1H and 13C nuclear magnetic resonance spectroscopies, high-resolution mass spectrometry and electrospray ionization matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whereas the PU films were studied by attenuated total reflectance-FTIR spectroscopy, solid state 13C NMR, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffractometry, differential scanning calorimetry and thermogravimetric analysis. High onset degradation temperature (T d) values were observed for the PU films PU-1 (345.8 °C), PU-2 (309.6 °C) and PU-3 (344.6 °C), and further studies, including cross-link density, water contact angle, swelling behaviour and biodegradation (phosphate-buffered saline medium, pH = 7.2 at 45 °C) measurements, were conducted.
Collapse
Affiliation(s)
- Dinesh Kumar Chelike
- Department of Chemistry, SRM Institute of Science and TechnologyKattankulathurChennai 603 203Tamil NaduIndia
| | | |
Collapse
|
19
|
Wong AR, Barrera M, Pal A, Lamb JR. Improved Characterization of Polyoxazolidinones by Incorporating Solubilizing Side Chains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Allison R. Wong
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Melissa Barrera
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Arpan Pal
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Jessica R. Lamb
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| |
Collapse
|
20
|
Li H, Cheng H, Zhao F. A Review on CO
2
‐Based Polyureas and Polyurea Hybrids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Haiyang Cheng
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Fengyu Zhao
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
21
|
Siragusa F, Demarteau J, Habets T, Olazabal I, Robeyns K, Evano G, Mereau R, Tassaing T, Grignard B, Sardon H, Detrembleur C. Unifying Step-Growth Polymerization and On-Demand Cascade Ring-Closure Depolymerization via Polymer Skeletal Editing. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fabiana Siragusa
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liege, Belgium
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Jeremy Demarteau
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Thomas Habets
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Ion Olazabal
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-La-Neuve B-1348, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Raphael Mereau
- Institut des Sciences Moléculaires (ISM), UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la libération, F-33405 Talence Cedex, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires (ISM), UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la libération, F-33405 Talence Cedex, France
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liege, Belgium
| |
Collapse
|
22
|
Ni J, Lanzi M, Kleij AW. Unusual DBU-catalyzed decarboxylative formation of allylic thioethers from vinyl cyclic carbonates and thiols. Org Chem Front 2022. [DOI: 10.1039/d2qo01511k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vinyl cyclic carbonates undergo an exo-cyclic attack by thiol nucleophiles under DBU catalysis to form allylic thioether products in moderate to good yields through a decarboxylative process under attractive process conditions.
Collapse
Affiliation(s)
- Jixiang Ni
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007 – Tarragona, Spain
| | - Matteo Lanzi
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007 – Tarragona, Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007 – Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 – Barcelona, Spain
| |
Collapse
|
23
|
Habets T, Siragusa F, Muller A, Grossman Q, Ruffoni D, Grignard B, Detrembleur C. Facile construction of functional poly(monothiocarbonate)s copolymers under mild operating conditions. Polym Chem 2022. [DOI: 10.1039/d2py00307d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The installation of both oxazolidone and thiocarbonate linkages within a single polymer backbone remains elusive by simple procedures under mild conditions. In this work, we report the construction of copolymers...
Collapse
|