1
|
Jin J, Shang J, Zhu Z, Guo T, Wang Y, Chen L, Ming Y, Li J, Tang G, Tai Q. Highly conductive and homogeneous NiO x nanoparticles for stable and efficient flexible perovskite solar cells. Chem Commun (Camb) 2025; 61:3844-3847. [PMID: 39930969 DOI: 10.1039/d4cc06797e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
We present a facile strategy to improve the conductivity and homogeneousness of nickel oxide nanoparticles (NiOx NPs). The inverted flexible perovskite solar cells (F-PSCs) prepared with NiOx achieved impressive efficiencies of 22.68% under AM 1.5G and 35.59% under 1000 lux, respectively.
Collapse
Affiliation(s)
- Junjun Jin
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Jitao Shang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Zhenkun Zhu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Tonghui Guo
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Yanghou Wang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610500, P. R. China.
| | - Lijun Chen
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610500, P. R. China.
| | - Yidong Ming
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jinhua Li
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guanqi Tang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610500, P. R. China.
| | - Qidong Tai
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
2
|
Dong H, Fan J, Fang H, Lin H, Gao X, Wang K, Wang Y, Mu C, Xu D. Modification at ITO/NiO x Interface with MoS 2 Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells. CHEMSUSCHEM 2025:e202402400. [PMID: 39831802 DOI: 10.1002/cssc.202402400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiOx) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiOx and inefficient hole transport. In this study, we introduced MoS2 nanoparticles at the indium tin oxide (ITO) /NiOx interface to enhance the ITO surface and optimize the deposition of NiOx, resulting in increased conductivity linked to a ratio of Ni3+:Ni2+. This interface modification not only optimized energy level but also promoted hole transport and reduced defects. Consequently, IPSCs with MoS2 modified at ITO/NiOx interface achieved a champion power conversion efficiency (PCE) of 21.42 %, compared to 20.25 % without modification. Additionally, unencapsulated IPSCs with this interface modification displayed improved stability under thermal, light, humidity and ambient conditions. This innovative strategy for ITO/NiOx interface modification efficiently promotes hole transportation and can be integrated with other interface engineering approaches, offering valuable insights for the development of highly efficient and stable IPSCs.
Collapse
Affiliation(s)
- Hongye Dong
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P. R. China
| | - Jiayi Fan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P. R. China
| | - Haohui Fang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaowen Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Kewei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Yi Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P. R. China
| | - Cheng Mu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P. R. China
| | - Dongsheng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
3
|
Yang Y, Chen R, Wu J, Dai Z, Luo C, Fang Z, Wan S, Chao L, Liu Z, Wang H. Bilateral Chemical Linking at NiO x Buried Interface Enables Efficient and Stable Inverted Perovskite Solar Cells and Modules. Angew Chem Int Ed Engl 2024; 63:e202409689. [PMID: 38872358 DOI: 10.1002/anie.202409689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Inverted NiOx-based perovskite solar cells (PSCs) exhibit considerable potential because of their low-temperature processing and outstanding excellent stability, while is challenged by the carriers transfer at buried interface owing to the inherent low carrier mobility and abundant surface defects that directly deteriorates the overall device fill factor. Present work demonstrates a chemical linker with the capability of simultaneously grasping NiOx and perovskite crystals by forming a Ni-S-Pb bridge at buried interface to significantly boost the carriers transfer, based on a rationally selected molecule of 1,3-dimethyl-benzoimidazol-2-thione (NCS). The constructed buried interface not only reduces the pinholes and needle-like residual PbI2 at the buried interface, but also deepens the work function and valence band maximum positions of NiOx, resulting in a smaller VBM offset between NiOx and perovskite film. Consequently, the modulated PSCs achieved a high fill factor up to 86.24 %, which is as far as we know the highest value in records of NiOx-based inverted PSCs. The NCS custom-tailored PSCs and minimodules (active area of 18 cm2) exhibited a champion efficiency of 25.05 % and 21.16 %, respectively. The unencapsulated devices remains over 90 % of their initial efficiency at maximum power point under continuous illumination for 1700 hours.
Collapse
Affiliation(s)
- Yang Yang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Ruihao Chen
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Jiandong Wu
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Zhiyuan Dai
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Chuanyao Luo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhiyu Fang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Shuyuan Wan
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Lingfeng Chao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Zhe Liu
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Hongqiang Wang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| |
Collapse
|
4
|
Roy A, Healey CP, Larm NE, Ishtaweera P, Roca M, Baker GA. The Huge Role of Tiny Impurities in Nanoscale Synthesis. ACS NANOSCIENCE AU 2024; 4:176-193. [PMID: 38912288 PMCID: PMC11191736 DOI: 10.1021/acsnanoscienceau.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Nanotechnology is vital to many current industries, including electronics, energy, textiles, agriculture, and theranostics. Understanding the chemical mechanisms of nanomaterial synthesis has contributed to the tunability of their unique properties, although studies frequently overlook the potential impact of impurities. Impurities can show adverse effects, clouding the interpretation of results or limiting the practical utility of the nanomaterial. On the other hand, as successful doping has demonstrated, the intentional introduction of impurities can be a powerful tool for enhancing the properties of a nanomaterial. This Review examines the complex role of impurities, unintentionally or intentionally added, during nanoscale synthesis and their effects on the performance and usefulness of the most common classes of nanomaterials: nanocarbons, noble metal and metal oxide nanoparticles, semiconductor quantum dots, thermoelectrics, and perovskites.
Collapse
Affiliation(s)
- Angira Roy
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ciaran P. Healey
- Chemistry
Department, Skidmore College, Saratoga Springs, New York 12866, United States
| | - Nathaniel E. Larm
- Department
of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Piyuni Ishtaweera
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Maryuri Roca
- Chemistry
Department, Skidmore College, Saratoga Springs, New York 12866, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Mann DS, Kwon SN, Thakur S, Patil P, Jeong KU, Na SI. Suppressing Redox Reactions at the Perovskite-Nickel Oxide Interface with Zinc Nitride to Improve the Performance of Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311362. [PMID: 38192000 DOI: 10.1002/smll.202311362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Indexed: 01/10/2024]
Abstract
For p-i-n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer leads to oxidized CH3NH3 + and reacts with PbI in the perovskite, resulting in a large number of non-radiative recombination sites. Among various transition metals, an ultra-thin zinc nitride (Zn3N2) layer on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non-radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap-passivation ability. Consequently, Zn3N2-modified NiOx-based PSCs achieve a champion PCE of 21.61%, over the NiOx-based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions.
Collapse
Affiliation(s)
- Dilpreet Singh Mann
- Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea
| | - Sung-Nam Kwon
- Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea
| | - Sakshi Thakur
- Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea
| | - Pramila Patil
- Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Seok-In Na
- Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea
| |
Collapse
|
6
|
Liu Y, Ding B, Zhang G, Ma X, Wang Y, Zhang X, Zeng L, Nazeeruddin MK, Yang G, Chen B. Synergistic Redox Modulation for High-Performance Nickel Oxide-Based Inverted Perovskite Solar Modules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309111. [PMID: 38501909 DOI: 10.1002/advs.202309111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/31/2024] [Indexed: 03/20/2024]
Abstract
Nickel oxide (NiOx)-based inverted perovskite solar cells stand as promising candidates for advancing perovskite photovoltaics towards commercialization, leveraging their remarkable stability, scalability, and cost-effectiveness. However, the interfacial redox reaction between high-valence Ni4+ and perovskite, alongside the facile conversion of iodide in perovskite into I2, significantly deteriorates the performance and reproducibility of NiOx-based perovskite photovoltaics. Here, potassium borohydride (KBH4) is introduced as a dual-action reductant, which effectively avoids the Ni4+/perovskite interface reaction and mitigates the iodide-to-I2 oxidation within perovskite film. This synergistic redox modulation significantly suppresses nonradiative recombination and increases the carrier lifetime. As a result, an impressive power conversion efficiency of 24.17% for NiOx-based perovskite solar cells is achieved, and a record efficiency of 20.2% for NiOx-based perovskite solar modules fabricated under ambient conditions. Notably, when evaluated using the ISOS-L-2 standard protocol, the module retains 94% of its initial efficiency after 2000 h of continuous illumination under maximum power point at 65 °C in ambient air.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Bin Ding
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL VALAIS, Sion, 1950, Switzerland
| | - Gao Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xintong Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yao Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Lirong Zeng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL VALAIS, Sion, 1950, Switzerland
| | - Guanjun Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Bo Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
7
|
Zhang J, Ji X, Wang X, Zhang L, Bi L, Su Z, Gao X, Zhang W, Shi L, Guan G, Abudula A, Hao X, Yang L, Fu Q, Jen AKY, Lu L. Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation. NANO-MICRO LETTERS 2024; 16:190. [PMID: 38698298 PMCID: PMC11065817 DOI: 10.1007/s40820-024-01408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.
Collapse
Affiliation(s)
- Juan Zhang
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People's Republic of China
- JINNENG Clean Energy Technology Ltd., Jinzhong, 030300, Shanxi, People's Republic of China
| | - Xiaofei Ji
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People's Republic of China.
| | - Xiaoting Wang
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People's Republic of China
| | - Liujiang Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Leyu Bi
- Department of Materials Science and Engineering, Department of Chemistry, Hong Kong Institute for Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, People's Republic of China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Wenjun Zhang
- Hangzhou Zhongneng Photoelectricity Technology Co., Ltd., Hangzhou, 310018, People's Republic of China
| | - Lei Shi
- Hangzhou Zhongneng Photoelectricity Technology Co., Ltd., Hangzhou, 310018, People's Republic of China
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan.
- Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan.
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan
| | - Xiaogang Hao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Liyou Yang
- JINNENG Clean Energy Technology Ltd., Jinzhong, 030300, Shanxi, People's Republic of China
| | - Qiang Fu
- Department of Materials Science and Engineering, Department of Chemistry, Hong Kong Institute for Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, People's Republic of China.
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, Department of Chemistry, Hong Kong Institute for Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, People's Republic of China.
| | - Linfeng Lu
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People's Republic of China
| |
Collapse
|
8
|
Cao F, Zhan S, Dai X, Cheng F, Li W, Feng Q, Huang X, Yin J, Li J, Zheng N, Wu B. Redox-Sensitive NiO x Stabilizing Perovskite Films for High-Performance Photovoltaics. J Am Chem Soc 2024; 146:11782-11791. [PMID: 38639158 DOI: 10.1021/jacs.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Metal halide perovskite materials inherently possess imperfections, particularly under nonequilibrium conditions, such as exposure to light or heat. To tackle this challenge, we introduced stearate ligand-capped nickel oxide (NiOx), a redox-sensitive metal oxide with variable valence, into perovskite intermediate films. The integration of NiOx improved the efficiency and stability of perovskite solar cells (PSCs) by offering multifunctional roles: (1) chemical passivation for ongoing defect repair, (2) energetic passivation to bolster defect tolerance, and (3) field-effect passivation to mitigate charge accumulation. Employing a synergistic approach that tailored these three passivation mechanisms led to a substantial increase in the devices' efficiencies. The target cell (0.12 cm2) and module (18 cm2) exhibited efficiencies of 24.0 and 22.9%, respectively. Notably, the encapsulated modules maintained almost 100 and 87% of the initial efficiencies after operating for 1100 h at the maximum power point (60 °C, 50% RH) and 2000 h of damp-heat testing (85 °C, 85% RH), respectively. Outdoor real-time tests further validated the commercial viability of the NiOx-assisted PSMs. The proposed passivation strategy provides a practical and uncomplicated approach for fabricating high-efficiency and stable photovoltaics.
Collapse
Affiliation(s)
- Fang Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Shaoqi Zhan
- Department of Chemistry - Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Xinfeng Dai
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Fangwen Cheng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Weixin Li
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qifan Feng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xiaofeng Huang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jun Yin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Binghui Wu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Xin Y, Liu H, Dong X, Xiao Z, Wang R, Gao Y, Zou Y, Kan B, Wan X, Liu Y, Chen Y. Multiarmed Aromatic Ammonium Salts Boost the Efficiency and Stability of Inverted Organic Solar Cells. J Am Chem Soc 2024; 146:3363-3372. [PMID: 38265366 DOI: 10.1021/jacs.3c12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Inverted organic solar cells (OSCs) have attracted much attention because of their outstanding stability, with zinc oxide (ZnO) being commonly used as the electron transport layer (ETL). However, both surface defects and the photocatalytic effect of ZnO could lead to serious photodegradation of acceptor materials. This, in turn, hampers the improvement of the efficiency and stability in OSCs. Herein, we developed a multiarmed aromatic ammonium salt, namely, benzene-1,3,5-triyltrimethanaminium bromide (PhTMABr), for modifying ZnO. This compound possesses mild weak acidity aimed at removing the residual amines present within ZnO film. In addition, the PhTMABr could also passivate surface defects of ZnO through multiple hydrogen-bonding interactions between its terminal amino groups and the oxygen anion of ZnO, leading to a better interface contact, which effectively enhances charge transport. As a result, an efficiency of 18.75% was achieved based on the modified ETL compared to the bare ZnO (PCE = 17.34%). The devices utilizing the modified ZnO retained 87% and 90% of their initial PCE after thermal stress aging at 65 °C for 1500 h and continuous 1-sun illumination with maximum power point (MPP) tracking for 1780 h, respectively. Importantly, the extrapolated T80 lifetime with MPP tracking exceeds 10 000 h. The new class of materials employed in this work to modify the ZnO ETL should pave the way for enhancing the efficiency and stability of OSCs, potentially advancing their commercialization process.
Collapse
Affiliation(s)
- Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiyue Dong
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng Xiao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuping Gao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zou
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Nath B, Behera SK, Kumar J, Hemmerle A, Fontaine P, Ramamurthy PC, Mahapatra DR, Hegde G. Understanding the Heterointerfaces in Perovskite Solar Cells via Hole Selective Layer Surface Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307547. [PMID: 38030567 DOI: 10.1002/adma.202307547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Indexed: 12/01/2023]
Abstract
Interfaces in perovskite solar cells (PSCs) play a pivotal role in determining device performance by influencing charge transport and recombination. Understanding the physical processes at these interfaces is essential for achieving high-power conversion efficiency in PSCs. Particularly, the interfaces involving oxide-based transport layers are susceptible to defects like dangling bonds, excess oxygen, or oxygen deficiency. To address this issue, the surface of NiOx is passivated using octadecylphosphonic acid (ODPA), resulting in improved charge transport across the perovskite hole transport layer (HTL) interface. This surface treatment has led to the development of hysteresis-free devices with an impressive ≈13% increase in power conversion efficiency. Computational studies have explored the halide perovskite architecture of ODPA-treated HTL/Perovskite, aiming to unlock superior photovoltaic performance. The ODPA surface functionalization has demonstrated enhanced device performance, characterized by superior charge exchange capacity. Moreover, higher band-to-band recombination in photoluminescence and electroluminescence indicates presence of lower mid-gap energy states, thereby increasing the effective photogenerated carrier density. These findings are expected to promote the utilization of various phosphonic acid-based self-assembly monolayers for surface passivation of oxide-based transport layers in perovskite solar cells. Ultimately, this research contributes to the realization of efficient halide PSCs by harnessing the favorable architecture of NiOx interfaces.
Collapse
Affiliation(s)
- Bidisha Nath
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Sushant K Behera
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Jeykishan Kumar
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Arnaud Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190, France
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190, France
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Debiprosad Roy Mahapatra
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Gopalkrishna Hegde
- Department of Aerospace Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| |
Collapse
|
11
|
Jiang Z, Wang D, Sun J, Hu B, Zhang L, Zhou X, Wu J, Hu H, Zhang J, Choy WCH, Xu B. Quenching Detrimental Reactions and Boosting Hole Extraction via Multifunctional NiO x /Perovskite Interface Passivation for Efficient and Stable Inverted Solar Cells. SMALL METHODS 2024; 8:e2300241. [PMID: 37246253 DOI: 10.1002/smtd.202300241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Indexed: 05/30/2023]
Abstract
Nickel oxide (NiOx ) is one of the most promising hole transport materials for inverted perovskite solar cells (PSCs). However, its application is severely restrained due to unfavorable interfacial reactions and insufficient charge carrier extraction. Herein, a multifunctional modification at the NiOx /perovskite interface is developed via introducing fluorinated ammonium salt ligand to synthetically solve the obstacles. Specifically, the interface modification can chemically convert detrimental Ni≥3+ to lower oxidation state, resulting in the elimination of interfacial redox reactions. Meanwhile, interfacial dipole is incorporated simultaneously to tune the work function of NiOx and optimize energy level alignment, which effectively promotes the charge carrier extraction. Therefore, the modified NiOx -based inverted PSCs achieve a remarkable power conversion efficiency (PCE) of 22.93%. Moreover, the unencapsulated devices obtain a significantly enhanced long-term stability, maintaining over 85% and 80% of the initial PCEs after storage in ambient air with a high relative humidity of 50-60% for 1000 h and continuous operation at maximum power point under one-sun illumination for 700 h, respectively.
Collapse
Affiliation(s)
- Zhengyan Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Deng Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiayun Sun
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Bihua Hu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Luozheng Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianyong Zhou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiawen Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hang Hu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiyao Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Li C, Zhang Z, Zhang H, Yan W, Li Y, Liang L, Yu W, Yu X, Wang Y, Yang Y, Nazeeruddin MK, Gao P. Fully Aromatic Self-Assembled Hole-Selective Layer toward Efficient Inverted Wide-Bandgap Perovskite Solar Cells with Ultraviolet Resistance. Angew Chem Int Ed Engl 2024; 63:e202315281. [PMID: 37987092 DOI: 10.1002/anie.202315281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet-induced degradation has emerged as a critical stability concern impeding the widespread adoption of perovskite solar cells (PSCs), particularly in the context of phase-unstable wide-band gap perovskite films. This study introduces a novel approach by employing a fully aromatic carbazole-based self-assembled monolayer, denoted as (4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)phosphonic acid (MeO-PhPACz), as a hole-selective layer (HSL) in inverted wide-band gap PSCs. Incorporating a conjugated linker plays a pivotal role in promoting the formation of a dense and highly ordered HSL on substrates, facilitating subsequent perovskite interfacial interactions, and fostering the growth of uniform perovskite films. The high-quality film could effectively suppress interfacial non-radiative recombination, improving hole extraction/transport efficiency. Through these advancements, the optimized wide-band gap PSCs, featuring a band gap of 1.68 eV, attain an impressive power conversion efficiency (PCE) of 21.10 %. Remarkably, MeO-PhPACz demonstrates inherent UV resistance and heightened UV absorption capabilities, substantially improving UV resistance for the targeted PSCs. This characteristic holds significance for the feasibility of large-scale outdoor applications.
Collapse
Affiliation(s)
- Chi Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Huifeng Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenlong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuheng Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lusheng Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Wei Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xuteng Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne, Peshawar, 1951 Sion, Switzerland
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Shi J, Zhao C, Yuan J. Achieving High Fill Factor in Efficient P-i-N Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302383. [PMID: 37501318 DOI: 10.1002/smll.202302383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Lead halide perovskite solar cells (PSCs) have made unprecedented progress, exhibiting great potential for commercialization. Among them, inverted p-i-n PSCs provide outstanding compatibility with flexible substrates, more importantly, with silicon (Si) bottom devices for higher efficiency perovskite-Si tandem solar cells. However, even with recently obtained efficiency over 25%, the investigation of inverted p-i-n PSCs is still behind the n-i-p counterpart so far. Recent progress has demonstrated that the fill factor (FF) in inverted PSCs currently still underperforms relative to open-circuit voltage and short-circuit current density, which requires an in-depth understanding of the mechanism and further research. In this review article, the recent advancements in high FF inverted PSCs by adopting the approaches of interfacial optimization, precursor engineering as well as fabrication techniques to minimize undesirable recombination are summarized. Insufficient carrier extraction and transport efficiency are found to be the main factors that hinder the current FF of inverted PSCs. In addition, insights into the main factors limiting FF and strategies for minimizing series resistance in inverted PSCs are presented. The continuous efforts dedicated to the FF of high-performance inverted devices may pave the way toward commercial applications of PSCs in the near future.
Collapse
Affiliation(s)
- Junwei Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Chenyu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
14
|
Ma X, Luo H, Jiang S, Zheng L, Xue H, Li X. Phase-Engineering of Layered Nickel Hydroxide for Synthesizing High-Quality NiO x Nanocrystals for Efficient Inverted Flexible Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38444-38453. [PMID: 37526352 DOI: 10.1021/acsami.3c06717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Nickel oxide (NiOx) nanocrystals have been widely used in inverted (p-i-n) flexible perovskite solar cells (fPSCs) due to their remarkable advantages of low cost and outstanding stability. However, anion and cation impurities such as NO3- widely exist in the NiOx nanocrystals obtained from calcinated nickel hydroxide (Ni(OH)2). The impurities impair the photovoltaic performance of fPSCs. In this work, we report a facile but effective way to reduce the impurities within the NiOx nanocrystals by regulating the Ni(OH)2 crystal phase. We add different alkalis, such as organic ammonium hydroxide and alkali metal hydroxides, to nickel nitrate solutions to precipitate layered Ni(OH)2 with different crystalline phase compositions (α and β mixtures). Especially, Ni(OH)2 with a high β-phase content (such as from KOH) has a narrower crystal plane spacing, resulting in fewer residual impurity ions. Thus, the NiOx nanocrystals, by calcinating the Ni(OH)x with excess β phase from KOH, show improved performance in inverted fPSCs. A champion power conversion efficiency (PCE) of 20.42% has been achieved, which is among the state-of-art inverted fPSCs based on the NiOx hole transport material. Moreover, the reduced impurities are beneficial for enhancing the fPSCs' stability. This work provides an essential but facile strategy for developing high-performance inverted fPSCs.
Collapse
Affiliation(s)
- Xingjuan Ma
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Hongqiang Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Shusen Jiang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Lingling Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Hao Xue
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Xin Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Guo H, Liu C, Hu H, Zhang S, Ji X, Cao XM, Ning Z, Zhu WH, Tian H, Wu Y. Neglected acidity pitfall: boric acid-anchoring hole-selective contact for perovskite solar cells. Natl Sci Rev 2023; 10:nwad057. [PMID: 37274941 PMCID: PMC10237332 DOI: 10.1093/nsr/nwad057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 04/07/2024] Open
Abstract
The spontaneous formation of self-assembly monolayer (SAM) on various substrates represents an effective strategy for interfacial engineering of optoelectronic devices. Hole-selective SAM is becoming popular among high-performance inverted perovskite solar cells (PSCs), but the presence of strong acidic anchors (such as -PO3H2) in state-of-the-art SAM is detrimental to device stability. Herein, we report for the first time that acidity-weakened boric acid can function as an alternative anchor to construct efficient SAM-based hole-selective contact (HSC) for PSCs. Theoretical calculations reveal that boric acid spontaneously chemisorbs onto indium tin oxide (ITO) surface with oxygen vacancies facilitating the adsorption progress. Spectroscopy and electrical measurements indicate that boric acid anchor significantly mitigates ITO corrosion. The excess boric acid containing molecules improves perovskite deposition and results in a coherent and well-passivated bottom interface, which boosts the fill factor (FF) performance for a variety of perovskite compositions. The optimal boric acid-anchoring HSC (MTPA-BA) can achieve power conversion efficiency close to 23% with a high FF of 85.2%. More importantly, the devices show improved stability: 90% of their initial efficiency is retained after 2400 h of storage (ISOS-D-1) or 400 h of operation (ISOS-L-1), which are 5-fold higher than those of phosphonic acid SAM-based devices. Acidity-weakened boric acid SAMs, which are friendly to ITO, exhibits well the great potential to improve the stability of the interface as well as the device.
Collapse
Affiliation(s)
- Huanxin Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuo Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyu Ji
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongzhen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Wang J, Zhang Z, Liang J, Zheng Y, Wu X, Tian C, Huang Y, Zhou Z, Yang Y, Sun A, Chen Z, Chen CC. Bottom-Up Templated and Oriented Crystallization for Inverted Triple-Cation Perovskite Solar Cells with Stabilized Nickel-Oxide Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203886. [PMID: 36148856 DOI: 10.1002/smll.202203886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Inverted-structure perovskite solar cells (PSCs) are known for their superior device stability. However, based on nickel-oxide (NiOx ) substrate, disordered crystallization and bottom interface instability of perovskite film are still the main factors that compromise the power conversion efficiency (PCE) of PSCs. Here, 2D perovskite of thiomorpholine 1,1-dioxide lead iodide (Td2 PbI4 ) is introduced as a template to prepare 3D perovskite thin film with high crystal orientation and large grain size via a bottom-up growth method. By adding TdCl to the precursor solution, pre-crystallized 2D Td2 PbI4 seeds can accumulate at the bottom interface, lowering the barrier of nucleation, and templating the growth of 3D perovskite films with improved (100) orientation and reduced defects during crystallization. In addition, 2D Td2 PbI4 at the bottom interface also hinders the interfacial redox reaction and reduces the hole extraction barrier on the buried interface. Based on this, the Td-0.5 PSC achieves a PCE of 22.09% and an open-circuit voltage of 1.16 V. Moreover, Td-0.5 PSCs show extremely high stability, which retains 84% of its initial PCE after 500 h of continuous illumination under maximum power point operating conditions in N2 atmosphere. This work paves the way for performance improvement of inverted PSCs on NiOx substrate.
Collapse
Affiliation(s)
- Jianli Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhanfei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jianghu Liang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Ying Huang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhuang Zhou
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yajuan Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Anxin Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| |
Collapse
|
17
|
Li M, Li H, Zhuang Q, He D, Liu B, Chen C, Zhang B, Pauporté T, Zang Z, Chen J. Stabilizing Perovskite Precursor by Synergy of Functional Groups for NiO x -Based Inverted Solar Cells with 23.5 % Efficiency. Angew Chem Int Ed Engl 2022; 61:e202206914. [PMID: 35713582 DOI: 10.1002/anie.202206914] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Perovskite solar cells suffer from poor reproducibility due to the degradation of perovskite precursor solution. Herein, we report an effective precursor stabilization strategy via incorporating 3-hydrazinobenzoic acid (3-HBA) containing carboxyl (-COOH) and hydrazine (-NHNH2 ) functional groups as stabilizer. The oxidation of I- , deprotonation of organic cations and amine-cation reaction are the main causes of the degradation of mixed organic cation perovskite precursor solution. The -NHNH2 can reduce I2 defects back to I- and thus suppress the oxidation of I- , while the H+ generated by -COOH can inhibit the deprotonation of organic cations and subsequent amine-cation reaction. The above degradation reactions are simultaneously inhibited by the synergy of functional groups. The inverted device achieves an efficiency of 23.5 % (certified efficiency of 23.3 %) with an excellent operational stability, retaining 94 % of the initial efficiency after maximum power point tracking for 601 hours.
Collapse
Affiliation(s)
- Mengjia Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Material Science and Engineering, Hebei University of Technology, Dingzigu Road 1, Tianjin, 300130, P. R. China
| | - Haiyun Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Qixin Zhuang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongmei He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Baibai Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Cong Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Material Science and Engineering, Hebei University of Technology, Dingzigu Road 1, Tianjin, 300130, P. R. China.,Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Boxue Zhang
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), UMR8247, 11 rue P. et M. Curie, 75005, Paris, France
| | - Thierry Pauporté
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), UMR8247, 11 rue P. et M. Curie, 75005, Paris, France
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
18
|
Zhou T, Wang K, Zhu D, Kuang A. Passivating Lead Halide Perovskites Using Pyridinium Salts with Superhalogen Atoms. J Phys Chem Lett 2022; 13:6074-6078. [PMID: 35758933 DOI: 10.1021/acs.jpclett.2c01276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Passivating lead halide perovskites using pyridinium salts has attracted enormous attention, but the excellent surface passivation of the halide perovskites has not been achieved by using only a pyridinium salt until now. Herein, passivating the (001) planes of the cubic CsPbI3, CH3NH3PbI3, and NH2CHNH2PbI3 perovskites using the pyridinium salts of C5NH6X (X = Cl, Br, I, PF6, ClO4, or BF4) is systematically studied by high-throughput first-principle calculations and ab initio molecular dynamics simulations. The results show that the excellent surface passivation of the three perovskites is achieved by the pyridinium salt of C5NH6BF4 (i.e., shallow level, negative formation energy, unchanged band-edge construction, and stable dynamics property are obtained for the three passivated perovskites), which strongly imply that their devices can show excellent performances, such as long-term stability, low ion migration, and high efficiency. However, the C5NH6ClO4 and C5NH6PF6 pyridinium salts are only profitable for passivating the (001) PbI2 plane of the three perovskites, and other C5NH6X pyridinium salts have adverse effects.
Collapse
Affiliation(s)
- Tingwei Zhou
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Kejie Wang
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Dongjie Zhu
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Anlong Kuang
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Li R, Chen B, Ren N, Wang P, Shi B, Xu Q, Zhao H, Han W, Zhu Z, Liu J, Huang Q, Zhang D, Zhao Y, Zhang X. CsPbCl 3 -Cluster-Widened Bandgap and Inhibited Phase Segregation in a Wide-Bandgap Perovskite and its Application to NiO x -Based Perovskite/Silicon Tandem Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201451. [PMID: 35476756 DOI: 10.1002/adma.202201451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Nickel oxide (NiOx ) is an attractive hole-transport material for efficient and stable p-i-n metal-halide perovskite solar cells (PSCs). However, an undesirable redox reaction occurs at the NiOx /perovskite interface, which results in a low open-circuit voltage (VOC ), instability, and phase separation of the NiOx -based wide-bandgap perovskite (Br > 20%). In order to simultaneously address the abovementioned phase separation problem and redox chemistry at the perovskite/NiOx interface, the bandgap is widened from 1.64 to 1.67 eV by adding inorganic CsPbCl3 -clusters (3 mol%) to the Cs22 Br15 perovskite precursor solution. Moreover, adding extra 2 mol% CsCl enriches the NiOx /perovskite interface with Cl, thereby preventing the redox reaction at the interface, while controlling the Br content to within 15% improves the photostability of the wide-bandgap perovskite. Consequently, the power conversion efficiency (PCE) of a single-junction p-i-n PSC increases from 17.82% to 19.76%, which leads to the fabrication of highly efficient monolithic p-i-n-type NiOx -based perovskite/silicon tandem solar cells with PCEs of up to 27.26% (certified PCE: 27.15%). The perovskite to an n-i-p-type perovskite/silicon tandem solar cell is also applied to deliver a VOC of 1.93 V and a final efficiency of 25.5%. These findings provide critical insight into the fabrication of highly efficient and stable wide-bandgap perovskites.
Collapse
Affiliation(s)
- Renjie Li
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Bingbing Chen
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Ningyu Ren
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Pengyang Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Biao Shi
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Qiaojing Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hua Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Wei Han
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Zhao Zhu
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Jingjing Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Qian Huang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Dekun Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
20
|
Li M, Li H, Zhuang Q, He D, Liu B, Chen C, Zhang B, Pauporté T, Zang Z, Chen J. Stabilizing Perovskite Precursor by Synergy of Functional Groups for NiOx‐Based Inverted Solar Cells with 23.5% Efficiency. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengjia Li
- Hebei University of Technology School of Material Science and Engineering CHINA
| | - Haiyun Li
- Chongqing University College of Optoelectronic Engineering CHINA
| | - Qixin Zhuang
- Chongqing University College of Optoelectronic Engineering CHINA
| | - Dongmei He
- Chongqing University College of Optoelectronic Engineering CHINA
| | - Baibai Liu
- Chongqing University College of Optoelectronic Engineering CHINA
| | - Cong Chen
- Hebei University of Technology School of Material Science and Engineering CHINA
| | - Boxue Zhang
- Institut de Recherche de Chimie Paris Chimie ParisTech FRANCE
| | | | - Zhigang Zang
- Chongqing University College of Optoelectronic Engineering CHINA
| | - Jiangzhao Chen
- Chongqing University College of Optoelectronic Engineering Chongqing Chongqing CHINA
| |
Collapse
|