1
|
Qin W, Cera G. Enantioselective Catalytic Synthesis of Inherently Chiral Calixarenes. CHEM REC 2025; 25:e202400237. [PMID: 39876669 DOI: 10.1002/tcr.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Since the introduction of the concept of inherent chirality by Böhmer, an important part of research focused on the asymmetric synthesis of calixarene macrocycles. However, long synthetic procedures and tedious separation strategies hampered the application of this technology in many topics of organic chemistry, including enantioselective molecular recognition and catalysis. Very recently, a new generation of enantioselective catalytic methodologies has been reported, able to provide highly functionalized, inherently chiral calixarenes in a straightforward manner. In this review, we will discuss these new catalytic methods and the versatile properties of such macrocycles that call for potential applications in many areas of science.
Collapse
Affiliation(s)
- Wenling Qin
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, I-43124, Parma, Italy
| | - Gianpiero Cera
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
2
|
Schneider CW, Devery JJ. Theoretical Investigations of Substrate Behavior in FeCl 3-Catalyzed Carbonyl-Olefin Metathesis. ACS OMEGA 2025; 10:10283-10293. [PMID: 40124011 PMCID: PMC11923843 DOI: 10.1021/acsomega.4c09880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
FeCl3-catalyzed ring-closing carbonyl-olefin metathesis is a powerful method for the formation of cyclic olefins. Multiple substrate classes are known to display this reactivity; however, two substrates have been reported to form an oxetane, and do not undergo retro-[2 + 2] fragmentation into the cyclic olefin and a byproduct carbonyl. Specifically, phenanthrene producing polycyclic aromatic hydrocarbons yield an oxetane when electrophilic fluorine is introduced α to the substrate carbonyl. Herein, we report the application of quantum chemical modeling of enthalpies and NBO charges to investigate this divergent reactivity. In particular, the replacement of C-H bonds with C-F bonds eliminates hyperconjugative stabilization of the retro-[2 + 2] transition state. Taken together, this model suggests that charge stabilization at the reactive carbonyl carbon dictates the ability of the oxetane to fragment into the metathesis product. However, we also observe that electron-deficient carbonyls have a significantly lower barrier to Fe(III)-mediated oxetane formation. Balancing the factors implicated by our model, we predict the structures of possible metathesis-active molecules as well as oxetane-forming molecules.
Collapse
Affiliation(s)
- Cory W. Schneider
- Department of Chemistry & Biochemistry, Loyola University
Chicago, Chicago, Illinois 60660, United States
| | - James J. Devery
- Department of Chemistry & Biochemistry, Loyola University
Chicago, Chicago, Illinois 60660, United States
| |
Collapse
|
3
|
Mohite SB, Bera PS, Mirza YK, Ntuli V, Soorni Y, Karpoormath R, Bera M. Hydrogen-Bonding Network-Enabled Terminal Selective Heteroarylation of Allenamides in Hexafluoroisopropanol. Org Lett 2025; 27:2053-2059. [PMID: 39980356 DOI: 10.1021/acs.orglett.4c04824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Hexafluoroisopropanol (HFIP)-mediated terminal selective heteroarylation of allenamides has been accomplished through H-bonding network-enabled substrate activation in a robust fashion. This strategy features a cascade process involving sequential nucleophilic addition followed by electrophilic heteroaromatic substitution and is well suited for late-stage functionalization of complex bioactive molecules. The elucidation of the underlying mechanism was achieved through a comprehensive combination of several control experiments, kinetic studies, isotopic labeling experiments, and the isolation of the HFIP-allenamide intermediate adduct.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Partha Sarathi Bera
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida 201303, India
| | - Yafia Kousin Mirza
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida 201303, India
| | - Vusisizwe Ntuli
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Yugendhar Soorni
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Milan Bera
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida 201303, India
| |
Collapse
|
4
|
Zhang XY, Zhu D, Cao RF, Huo YX, Ding TM, Chen ZM. Enantioselective synthesis of inherently chiral sulfur-containing calix[4]arenes via chiral sulfide catalyzed desymmetrizing aromatic sulfenylation. Nat Commun 2024; 15:9929. [PMID: 39548106 PMCID: PMC11568299 DOI: 10.1038/s41467-024-54380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Inherently chiral calixarenes hold great potential for applications in chiral recognition, sensing, and asymmetric catalysis due to their unique structures. However, due to their special structures and relatively large sizes, the catalytic asymmetric synthesis of inherently chiral calixarenes is challenging with very limited examples available. Here, we present an efficient method for the enantioselective synthesis of inherently chiral sulfur-containing calix[4]arenes through the desymmetrizing electrophilic sulfenylation of calix[4]arenes. This catalytic asymmetric reaction is enabled by a chiral 1,1'-binaphthyl-2,2'-diamine-derived sulfide catalyst and hexafluoroisopropanol. Various inherently chiral sulfur-containing calix[4]arenes are obtained in moderate to excellent yields with high enantioselectivities. Control experiments indicate that the thermodynamically favored C-SAr product is formed from the kinetically favored N-SAr product and the combination of the chiral sulfide catalyst and hexafluoroisopropanol is crucially important for both enantioselectivity and reactivity.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Deng Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ren-Fei Cao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yu-Xuan Huo
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
5
|
Ho TH, Mai BK, To TA, Nguyen TV. A 1,2-Aryl Migration Reaction in Visible-Light-Mediated Synthesis of Quinoxaline Derivatives: Mechanistic Studies. Org Lett 2024; 26:8842-8847. [PMID: 39365979 DOI: 10.1021/acs.orglett.4c03293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The synthesis of quinoxaline derivatives holds critical importance in various fields ranging from pharmaceuticals to material science. In this study, we introduce a practical light-mediated method for the efficient synthesis of quinoxaline derivatives. This approach enabled the sequential two-step, one-pot synthesis of 1,2-dihydro-2,2-diaryl-substituted quinoxalines from quinones, alkynes, and diamines. By adjusting the stoichiometric ratios and reaction conditions, the method was shifted to yield 2,3-diaryl-substituted quinoxalines exclusively, demonstrating remarkable versatility and efficiency. This switch in reaction outcomes was revealed to involve an oxidative 1,2-aryl migration through a combination of thorough experimental and computational mechanistic studies.
Collapse
Affiliation(s)
- Tuan Hoang Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tuong Anh To
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Zhang X. Cyclization Strategies in Carbonyl-Olefin Metathesis: An Up-to-Date Review. Molecules 2024; 29:4861. [PMID: 39459236 PMCID: PMC11510574 DOI: 10.3390/molecules29204861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The metathesis reaction between carbonyl compounds and olefins has emerged as a potent strategy for facilitating swift functional group interconversion and the construction of intricate organic structures through the creation of novel carbon-carbon double bonds. To date, significant progress has been made in carbonyl-olefin metathesis reactions, where oxetane, pyrazolidine, 1,3-diol, and metal alkylidene have been proved to be key intermediates. Recently, several reviews have been disclosed, focusing on distinct catalytic approaches for achieving carbonyl-olefin metathesis. However, the summarization of cyclization strategies for constructing aromatic heterocyclic frameworks through carbonyl-olefin metathesis reactions has rarely been reported. Consequently, we present an up-to-date review of the cyclization strategies in carbonyl-olefin metathesis, categorizing them into three main groups: the formation of monocyclic compounds, bicyclic compounds, and polycyclic compounds. This review delves into the underlying mechanism, scope, and applications, offering a comprehensive perspective on the current strength and the limitation of this field.
Collapse
Affiliation(s)
- Xiaoke Zhang
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563006, China;
- Institute of Life Sciences, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
7
|
Yaragorla S, Sneha Latha D, Kumar R. Mechanochemical Regioselective [3+3] Annulation of 6-Amino Uracil with Propargyl Alcohols Catalyzed by a Brønsted Acid/Hexafluoroisopropanol. Chemistry 2024; 30:e202401480. [PMID: 38727792 DOI: 10.1002/chem.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 06/19/2024]
Abstract
A mechanochemistry approach is developed for regioselective synthesis of functionalized dihydropyrido[2,3-d]pyrimidines by milling propargylic alcohols and 6-aminouracils with HFIP/p-TsOH. In the case of tert-propargyl alcohols, this [3+3] cascade annulation proceeded through allenylation of uracil followed by a 6-endo trig cyclization. With sec-propargyl alcohols, the reaction furnished the propargylation of uracil. This atom economy ball milling reaction allows access to a broad range of dihydropyrido[2,3-d]pyrimidine derivatives in excellent yields. We demonstrated the gram scale synthesis of 3 g and post-synthetic modifications to effect the cyclization of 5 to 6.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Dandugula Sneha Latha
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Rituraj Kumar
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
8
|
Yadav N, Mahato R, Khan J, Jaiswal H, Hazra CK. Synthesis of tetralone and indanone derivatives via cascade reductive Friedel-Crafts alkylation/cyclization of keto acids/esters. Chem Commun (Camb) 2024; 60:9274-9277. [PMID: 39129437 DOI: 10.1039/d4cc02754j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
We disclose herein a metal-free cascade reductive Friedel-Crafts alkylation/cyclization of keto acids/esters for the synthesis of tetralones and indanones. Owing to the simple reaction conditions and setup, this protocol features broad substrate generality, facile scalability, and remarkable functional group tolerance, including the synthesis of bioactive molecule sertraline.
Collapse
Affiliation(s)
- Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Harshit Jaiswal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
9
|
To TA, Phan NTA, Mai BK, Nguyen TV. Controlling the regioselectivity of the bromolactonization reaction in HFIP. Chem Sci 2024; 15:7187-7197. [PMID: 38756818 PMCID: PMC11095382 DOI: 10.1039/d4sc01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
The halolactonization reaction provides rapid access to densely functionalized lactones from unsaturated carboxylic acids. The endo/exo regioselectivity of this cyclization reaction is primarily determined by the electronic stabilization of alkene substituents, thus making it inherently dependent on substrate structures. Therefore this method often affords one type of halolactone regioisomer only. Herein, we introduce a simple and efficient method for regioselectivity-switchable bromolactonization reactions mediated by HFIP solvent. Two sets of reaction conditions were developed, each forming endo-products or exo-products in excellent regioselectivity. A combination of computational and experimental mechanistic studies not only confirmed the crucial role of HFIP, but also revealed the formation of endo-products under kinetic control and exo-products under thermodynamic control. This study paves the way for future work on the use of perfluorinated solvents to dictate reaction outcomes in organic synthesis.
Collapse
Affiliation(s)
- Tuong Anh To
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
| | - Nhu T A Phan
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh Pennsylvania 15260 USA
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
10
|
Makino K, Fukuda R, Sueki S, Anada M. Total Synthesis of Alanense A through an Intramolecular Friedel-Crafts Alkylation. J Org Chem 2024; 89:2050-2054. [PMID: 38241043 DOI: 10.1021/acs.joc.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The first total synthesis of cadinane sesquiterpenoid alanense A, in which an intramolecular dehydrative Friedel-Crafts alkylation of 2,5-diaryl-2-pentanol is incorporated as a key step, has been achieved. The combinatorial use of p-TsOH·H2O as a catalyst and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a solvent provides 1,1-disubstituted tetrahydronaphthalene in 97% yield. It was also found that the combination of p-TsOH and HFIP is effective for the removal of phenolic MOM ether.
Collapse
Affiliation(s)
- Kosho Makino
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Rio Fukuda
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Shunsuke Sueki
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Masahiro Anada
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| |
Collapse
|
11
|
Gómez-Gil S, Solas M, Suárez-Pantiga S, Sanz R. Brønsted Acid-Catalyzed Synthesis of 4-Functionalized Tetrahydrocarbazol-1-ones from 1,4-Dicarbonylindole Derivatives. J Org Chem 2024; 89:505-520. [PMID: 38085096 PMCID: PMC10777410 DOI: 10.1021/acs.joc.3c02248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
A p-toluenesulfonic acid-catalyzed cascade reaction is reported for the synthesis of 4-functionalized tetrahydrocarbazolones via the reaction of 4-(indol-2-yl)-4-oxobutanal derivatives with a variety of nucleophiles in acetonitrile or hexafluoroisopropanol. After the initial intramolecular Friedel-Crafts hydroxyalkylation, the 3-indolylmethanol intermediate is subsequently activated and reacted with the external nucleophile. The reaction conditions are crucial to avoid alternative reaction pathways, allowing direct substitution reaction with thiols, (hetero)arenes, alkenes, or sulfinates. The procedure features high overall yields to access a diverse family of compounds bearing the tetrahydrocarbazole core.
Collapse
Affiliation(s)
- Sara Gómez-Gil
- Área de Química
Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain
| | - Marta Solas
- Área de Química
Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain
| | - Samuel Suárez-Pantiga
- Área de Química
Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain
| | - Roberto Sanz
- Área de Química
Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain
| |
Collapse
|
12
|
To TA, Nguyen TV. Olefination of Aromatic Carbonyls via Site-Specific Activation of Cycloalkanone Ketals. Angew Chem Int Ed Engl 2024; 63:e202317003. [PMID: 37997004 DOI: 10.1002/anie.202317003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Skeletal editing is an important strategy in organic synthesis as it modifies the carbon backbone to tailor molecular structures with precision, enabling access to compounds with specific desired properties. Skeletal editing empowers chemists to transform synthetic approaches of target compounds across diverse applications from drug discovery to materials science. Herein, we introduce a new skeletal editing method to convert readily available aromatic carbonyl compounds into valuable unsaturated carboxylic acids with extended carbon chains. Our reaction setup enables a cascade reaction of enolization-[2+2]cycloaddition-[2+2]cycloreversion between aromatic carbonyl compounds and ketals of cyclic ketones to generate unsaturated carboxylic acids as ring-opening products. Through a simple design, our substrates are specifically activated to react at predetermined positions to enhance selectivity and efficiency. This practical method offers convenient access to versatile organic building blocks as well as provides fresh insights into manipulating traditional reaction pathways for new synthetic applications.
Collapse
Affiliation(s)
- Tuong Anh To
- School of Chemistry, University of New South Wales, Sydney Anzac Parade, Kensington, NSW 2052, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney Anzac Parade, Kensington, NSW 2052, Australia
| |
Collapse
|
13
|
Pizzio MG, Cenizo ZB, Méndez L, Sarotti AM, Mata EG. InCl 3-catalyzed intramolecular carbonyl-olefin metathesis. Org Biomol Chem 2023; 21:8141-8151. [PMID: 37779456 DOI: 10.1039/d3ob01170d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
An efficient and novel synthetic strategy for the generation of different carbocyclic moieties by ring closing carbonyl-olefin metathesis is reported. Herein, we describe a sustainably attractive protocol for one of the most powerful carbon-carbon bond-forming reactions, based on solvent-reduction, use of InCl3 catalyst, and microwave irradiation, affording target compounds with yields up to 96%.
Collapse
Affiliation(s)
- Marianela G Pizzio
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Zoe B Cenizo
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Luciana Méndez
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Ernesto G Mata
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
14
|
Todtz SR, Schneider CW, Malakar T, Anderson C, Koska H, Zimmerman PM, Devery JJ. Controlling Catalyst Behavior in Lewis Acid-Catalyzed Carbonyl-Olefin Metathesis. J Am Chem Soc 2023; 145:13069-13080. [PMID: 37279356 PMCID: PMC10517625 DOI: 10.1021/jacs.3c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lewis acid-catalyzed carbonyl-olefin metathesis has introduced a new means for revealing the behavior of Lewis acids. In particular, this reaction has led to the observation of new solution behaviors for FeCl3 that may qualitatively change how we think of Lewis acid activation. For example, catalytic metathesis reactions operate in the presence of superstoichiometric amounts of carbonyl, resulting in the formation of highly ligated (octahedral) iron geometries. These structures display reduced activity, decreasing catalyst turnover. As a result, it is necessary to steer the Fe-center away from inhibiting pathways to improve the reaction efficiency and augment yields for recalcitrant substrates. Herein, we examine the impact of the addition of TMSCl to FeCl3-catalyzed carbonyl-olefin metathesis, specifically for substrates that are prone to byproduct inhibition. Through kinetic, spectroscopic, and colligative experiments, significant deviations from the baseline metathesis reactivity are observed, including mitigation of byproduct inhibition as well as an increase in the reaction rate. Quantum chemical simulations are used to explain how TMSCl induces a change in catalyst structure that leads to these kinetic differences. Collectively, these data are consistent with the formation of a silylium catalyst, which induces the reaction through carbonyl binding. The FeCl3 activation of Si-Cl bonds to give the silylium active species is expected to have significant utility in enacting carbonyl-based transformations.
Collapse
Affiliation(s)
- Sophi R Todtz
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| | - Cory W Schneider
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| | - Tanmay Malakar
- Department of Chemistry, Barasat College, 10 K.N.C. Road, Barasat, Kolkata 700124, West Bengal, India
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Clare Anderson
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| | - Heather Koska
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - James J Devery
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
15
|
Hu X, Zhao X, Lv X, Wu YB, Bu Y, Lu G. Ab Initio Metadynamics Simulations of Hexafluoroisopropanol Solvent Effects: Synergistic Role of Solvent H-Bonding Networks and Solvent-Solute C-H/π Interactions. Chemistry 2023; 29:e202203879. [PMID: 36575142 DOI: 10.1002/chem.202203879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The solvent effects in Friedel-Crafts cycloalkylation of epoxides and Cope rearrangement of aldimines were investigated by using ab initio molecular dynamics simulations. Explicit molecular treatments were applied for both reactants and solvents. The reaction mechanisms were elucidated via free energy calculations based on metadynamics simulations. The results reveal that both reactions proceed in a concerted fashion. Key solvent-substrate interactions are identified from the structures of transition states with explicit solvent molecules. The remarkable promotion effect of hexafluoroisopropanol solvent is ascribed to the synergistic effect of H-bonding networks and C-H/π interactions with substrates.
Collapse
Affiliation(s)
- Xinmin Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xia Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province, and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
16
|
De Angelis L, Pei C, Narro AL, Wherritt D, Koenigs RM, Doyle MP. Polyfunctionalization of vicinal carbon centers and synthesis of unsymmetric 1,2,3,4-tetracarbonyl compounds. Nat Commun 2023; 14:1109. [PMID: 36849502 PMCID: PMC9971237 DOI: 10.1038/s41467-023-36757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
The synthesis and characterization of organic compounds with unusual atom or functional group connectivity is one of the main driving forces in the discovery of new synthetic methods that has raised the interest of chemists for many years. Polycarbonyl compounds are such compounds wherein multiple carbonyl groups are directly juxtaposed and influence each other's chemical reactivity. While 1,2-dicarbonyl or 1,2,3-tricarbonyl compounds are well-known in organic chemistry, the 1,2,3,4-tetracarbonyl motif remains barely explored. Herein, we report on the synthesis of such 1,2,3,4-tetracarbonyl compounds employing a synthetic strategy that involves C-nitrosation of enoldiazoacetates, while the diazo functional group remains untouched. This strategy not only leverages the synthesis of 1,2,3,4-tetracarbonyl compounds to an unprecedented level, it also accomplishes the synthesis of 1,2,3,4-tetracarbonyl compounds, wherein each carbonyl group is orthogonally masked. Combined experimental and theoretical studies provide an understanding of the reaction mechanism and rationalize the formation of such 1,2,3,4-tetracarbonyl compounds.
Collapse
Affiliation(s)
- Luca De Angelis
- grid.215352.20000000121845633Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX USA
| | - Chao Pei
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany
| | - Ana L. Narro
- grid.215352.20000000121845633Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX USA
| | - Daniel Wherritt
- grid.215352.20000000121845633Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX USA
| | - Rene M. Koenigs
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany
| | - Michael P. Doyle
- grid.215352.20000000121845633Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX USA
| |
Collapse
|
17
|
McAtee CC, Nasrallah DJ, Ryu H, Gatazka MR, McAtee RC, Baik MH, Schindler CS. Catalytic, Interrupted Carbonyl-Olefin Metathesis for the Formation of Functionalized Cyclopentadienes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Christopher C. McAtee
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Daniel J. Nasrallah
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ho Ryu
- Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejon 34141, Republic of Korea
| | - Michael R. Gatazka
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Rory C. McAtee
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Mu-Hyun Baik
- Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejon 34141, Republic of Korea
| | - Corinna S. Schindler
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Sindhe H, Saiyed N, Kamble A, Mounika Reddy M, Singh A, Sharma S. Catalytic and Chemodivergent Synthesis of 1-Substituted 9 H-Pyrrolo[1,2- a]indoles via Annulation of β-CF 3 Enones with 3-Substituted Indoles. J Org Chem 2023; 88:230-244. [PMID: 36503232 DOI: 10.1021/acs.joc.2c02240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemodivergent reactions are more advantageous in organic synthesis that yield diversely functionalized scaffolds from common starting materials. Herein, we report an efficient metal-free chemodivergent protocol for the synthesis of 1-substituted 9H-pyrrolo[1,2-a]indole derivatives in the presence of catalytic amounts of Lewis acid/Brønsted acid conditions using 3-substituted indoles and β-trifluoromethyl-α,β-unsaturated ketones. Fine-tuning of the catalyst and solvent system in the reaction conditions deliver the trifluoromethyl, trifluoroethylcarboxylate, or carboxylic acid substituents on the C1-position of 9H-pyrrolo[1,2-a]indole derivatives in situ. It is postulated that the solvent and LA/BA catalyst interaction was found to be crucial for the catalytic C-F activation in these transformations.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Nehanaz Saiyed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Malladi Mounika Reddy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amardeep Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
19
|
To TA, Mai BK, Nguyen TV. Toward Homogeneous Brønsted-Acid-Catalyzed Intramolecular Carbonyl-Olefin Metathesis Reactions. Org Lett 2022; 24:7237-7241. [PMID: 36166378 DOI: 10.1021/acs.orglett.2c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carbonyl-olefin metathesis (COM) reaction is an attractive approach for the formation of a new carbon-carbon double bond from a carbonyl precursor. In principle, this reaction can be promoted by the activation of the carbonyl group with a Brønsted acid catalyst; however, it is often complicated as a result of unwanted side reactions under acidic conditions. Thus, there have been only a very few examples of Brønsted-acid-catalyzed COM reactions, all of which required specially designed setups. Herein, we report a new practical homogeneous Brønsted-acid-catalyzed protocol using nitromethane, a readily available solvent, to promote intramolecular ring-closing COM reactions.
Collapse
Affiliation(s)
- Tuong Anh To
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
20
|
Anh To T, Pei C, Koenigs RM, Vinh Nguyen T. Hydrogen Bonding Networks Enable Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis. Angew Chem Int Ed Engl 2022; 61:e202117366. [PMID: 34985790 PMCID: PMC9303705 DOI: 10.1002/anie.202117366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/18/2022]
Abstract
Synthetic chemists have learned to mimic nature in using hydrogen bonds and other weak interactions to dictate the spatial arrangement of reaction substrates and to stabilize transition states to enable highly efficient and selective reactions. The activation of a catalyst molecule itself by hydrogen-bonding networks, in order to enhance its catalytic activity to achieve a desired reaction outcome, is less explored in organic synthesis, despite being a commonly found phenomenon in nature. Herein, we show our investigation into this underexplored area by studying the promotion of carbonyl-olefin metathesis reactions by hydrogen-bonding-assisted Brønsted acid catalysis, using hexafluoroisopropanol (HFIP) solvent in combination with para-toluenesulfonic acid (pTSA). Our experimental and computational mechanistic studies reveal not only an interesting role of HFIP solvent in assisting pTSA Brønsted acid catalyst, but also insightful knowledge about the current limitations of the carbonyl-olefin metathesis reaction.
Collapse
Affiliation(s)
- Tuong Anh To
- School of ChemistryUniversity of New South Wales, Sydney Anzac ParadeKensingtonNSW2052Australia
| | - Chao Pei
- Institute of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Thanh Vinh Nguyen
- School of ChemistryUniversity of New South Wales, Sydney Anzac ParadeKensingtonNSW2052Australia
| |
Collapse
|