1
|
Li X, Lu B, He J, Fan X, Zhai J. V-ATPase-Inspired Artificially Rectified Nanochannel Ion Pumps Using a TpPa-SO 3/TiO 2-C 3N 4 Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409834. [PMID: 40103430 DOI: 10.1002/smll.202409834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/22/2025] [Indexed: 03/20/2025]
Abstract
The cation transport pump is a critical process in the realm of organismal energy utilization and acquisition. In this study, a TpPa-SO3/TiO2-C3N4 nanochannel membrane is fabricated to emulate the energy-consuming ion pump mechanism of V-ATPase. The channels exhibit ion rectification properties, excellent cation selectivity due to negatively charged TpPa-SO3 groups, while the TiO2-C3N4 heterojunction acted as the light-harnessing component for counter-gradient ion transport, enabling light-driven cation pumping through their synergistic effect. Asymmetric visible light irradiation on one side of the TpPa-SO3/TiO2-C3N4 nanochannel membrane generates a built-in electric field across the membrane due to the intrinsic photoelectronic properties of TiO2-C3N4, driving cation transport against the concentration gradients and demonstrating an ion-pumping effect. Impressively, the nanochannels can utilize external light energy to generate a chemical potential gradient, enabling an entropy reduction process similar to reverse concentration gradient transport in living organisms. These distinctive ion rectification and pumping properties offer great potential for advancements in ion circuits and energy conversion systems, expanding the frontiers of scientific exploration.
Collapse
Affiliation(s)
- Xuejiang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Li S, Guo W, Sun M, Nie X, Xiao T, Liu Z. Photothermal-Enhanced Ion Transport in Robust 2D Hybrid Nanofluidic Membranes for Osmotic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411958. [PMID: 40012452 DOI: 10.1002/smll.202411958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Multifunctional 2D membranes with interstitial nanofluidic channels are of great significance for controllable ion transport and osmotic energy conversion. Herein, the robust photothermal-responsive 2D hybrid membranes based on the near-parallel laminar stacking of black phosphorus (BP) and montmorillonite (MMT) nanosheets reinforced by cellulose nanofibers (CNF) are developed. The resultant hybrid membrane exhibits cationic selectivity and surface-charge-governed ion transport properties. The photothermal effect of BP nanosheets increases the surface temperature of the hybrid membrane under illumination, which contributes to enhanced ion transport. This photothermal-enhanced ion transport boosts the maximum power density of osmotic energy conversion from 4.84 to 5.31 W·m-2 by 9.7% at a 50-fold concentration gradient under 400 mW·cm-2 simulated sunlight. This work reveals the integration of the photothermal effect of BP nanosheets in 2D nanofluidic membranes, providing a possible route to enhance the osmotic energy conversion performance by renewable light energy.
Collapse
Affiliation(s)
- Shuyu Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Wenyi Guo
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingyan Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiaoyan Nie
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, P.R. China
| | - Tianliang Xiao
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zhaoyue Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
3
|
Leslie FJ, Stakem KG, Gregory GL. The Sustainable Potential of Single-Ion Conducting Polymers. CHEMSUSCHEM 2025:e2500055. [PMID: 40067084 DOI: 10.1002/cssc.202500055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/20/2025] [Indexed: 05/03/2025]
Abstract
Energy storage technologies are critical for sustainable development, with electrolyte materials playing a decisive role in performance and safety. Single-ion conducting polymers (SICPs) represent a distinct materials class characterized by selective ion transport through immobilized ionic groups. While their potential for battery applications is recognized, an analysis of their sustainability implications and pathways to practical implementation has been lacking. This work demonstrates how strategic design of SICPs can contribute to sustainable energy storage through both materials' development and device integration. Recent advances in lithium borate-based systems and CO2-derived polycarbonate architectures have achieved ionic conductivities exceeding 10-4 S cm-1 at room temperature through scalable synthesis routes. In lithium-metal batteries, their high transference numbers and viscoelastic properties enable stable cycling with industrial-relevant cathode loadings, while as electrode binders, they enable aqueous processing and enhanced interfacial stability. Their versatility extends to sustainable chemistries, including sodium and zinc systems. Analysis reveals that while SICPs can enhance energy storage sustainability through improved performance, processability, and potential recyclability, opportunities remain in investigating end-of-life management. This work highlights frameworks for advancing SICP sustainability while maintaining the performance requirements for practical implementation in next-generation energy storage.
Collapse
Affiliation(s)
- Freddie J Leslie
- Chemistry Research Lab, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Kieran G Stakem
- Chemistry Research Lab, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Georgina L Gregory
- Chemistry Research Lab, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Xian W, Xu X, Ge Y, Xing Z, Lai Z, Meng QW, Dai Z, Wang S, Chen R, Huang N, Ma S, Sun Q. Efficient Light-Driven Ion Pumping for Deep Desalination via the Vertical Gradient Protonation of Covalent Organic Framework Membranes. J Am Chem Soc 2024; 146:33973-33982. [PMID: 39607814 DOI: 10.1021/jacs.4c12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Traditional desalination methods face criticism due to high energy requirements and inadequate trace ion removal, whereas natural light-driven ion pumps offer superior efficiency. Current synthetic systems are constrained by short exciton lifetimes, which limit their ability to generate sufficient electric fields for effective ion pumping. We introduce an innovative approach utilizing covalent-organic framework membranes that enhance light absorption and reduce charge recombination through vertical gradient protonation of imine linkages during acid-catalyzed liquid-liquid interfacial polymerization. This technique creates intralayer and interlayer heterojunctions, facilitating interlayer hybridization and establishing a robust built-in electric field under illumination. These improvements enable the membranes to achieve remarkable ion transport across extreme concentration gradients (2000:1), with a transport rate of approximately 3.2 × 1012 ions per second per square centimeter and reduce ion concentrations to parts per billion. This performance significantly surpasses that of conventional reverse osmosis systems, representing a major advancement in solar-powered desalination technology by substantially reducing energy consumption and secondary waste.
Collapse
Affiliation(s)
- Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yongxin Ge
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Xing
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Sai Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 310015, China
| | - Ruotian Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Jin X, Zeng Y, Zhou M, Quan D, Jia M, Liu B, Cai K, Kang L, Kong XY, Wen L, Jiang L. Photo-Driven Ion Directional Transport across Artificial Ion Channels: Band Engineering of WS 2 via Peptide Modification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401264. [PMID: 38634249 DOI: 10.1002/smll.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Biological photo-responsive ion channels play important roles in the important metabolic processes of living beings. To mimic the unique functions of biological prototypes, the transition metal dichalcogenides, owing to their excellent mechanical, electrical, and optical properties, are already used for artificial intelligent channel constructions. However, there remain challenges to building artificial bio-semiconductor nanochannels with finely tuned band gaps for accurately simulating or regulating ion transport. Here, two well-designed peptides are employed for the WS2 nanosheets functionalization with the sequences of PFPFPFPFC and DFDFDFDFC (PFC and DFC; P: proline, D: aspartate, and F: phenylalanine) through cysteine (Cys, C) linker, and an asymmetric peptide-WS2 membrane (AP-WS2M) could be obtained via self-assembly of peptide-WS2 nanosheets. The AP-WS2M could realize the photo-driven anti-gradient ion transport and vis-light enhanced osmotic energy conversion by well-designed working patterns. The photo-driven ion transport mechanism stems from a built-in photovoltaic motive force with the help of formed type II band alignment between the PFC-WS2 and DFC-WS2. As a result, the ions would be driven across the channels of the membrane for different applications. The proposed system provides an effective solution for building photo-driven biomimetic 2D bio-semiconductor ion channels, which could be extensively applied in the fields of drug delivery, desalination, and energy conversion.
Collapse
Affiliation(s)
- Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yabing Zeng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, 361005, P. R. China
| | - Lei Kang
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Zhou M, Jin X, Jia M, Quan D, Liu B, Wei Y, Kong XY, Wen L, Jiang L. Light-Powered Directional Ion Transport via PFN-Br/MoS 2 Heterogeneous Membranes: Band Alignment and Activation Energy Barrier Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39321-39329. [PMID: 39024512 DOI: 10.1021/acsami.4c05901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Biological photoresponsive ion transport systems consistently attract researchers' attention owing to their remarkable functions of harvesting energy from nature and participating in visual perception systems. Designing and constructing artificial light-driven ion transport devices to mimic biological counterparts remains a challenge owing to fabrication limitations in nanoconfined spaces. Herein, a typical conjugated polyelectrolyte (PFN-Br) was assembled onto a laminated MoS2M using simple solution-processing vacuum filtration, resulting in a heterogeneous three- and two-dimensional nanoporous membrane. The designed band alignment between PFN-Br and MoS2 enables effective directional ion transport under irradiation in an equilibrium solution, even against a 30-fold concentration gradient. The staggered energy structure of PFN-Br and MoS2 enhances charge separation and establishes a photogenerated potential as the driving force for ion transport. Additionally, the activation energy barrier for ion transport across the heterogeneous membrane decreased by 60% after light irradiation, considerably improving ion transport flux. The easy fabrication and high performance of the membrane in light-powered ion transport provide promising approaches for designing nanofluidic devices with possible applications in energy conversion, light-enhanced biosensing, and photoresponsive ionic devices.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Di Quan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Wei
- NMPA Key Laboratory for Dental Materials National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Liu S, Yao Y, Li X, Tang J, Dong X, Wang Y, Yin R, Li J, Xie Y, Gan W. Wood Ion Pumps Enabled by Light-Responsive MoS 2-Decorated Nanocellulosic Channels. ACS NANO 2024. [PMID: 39054775 DOI: 10.1021/acsnano.4c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Light-driven active ion transport discovered in nanomaterials (e.g., graphene, metal-organic framework, and MXene) implicates crucial applications in membrane-based technology and energy conversion systems. However, it remains a challenge to achieve bulk assembly. Herein, we employ the scalable wood as a framework for in situ growth of MoS2 nanosheets to facilitate light-responsive ion transport. Owing to the aligned and negatively charged wood nanochannels, the MoS2-decorated wood exhibits an excellent nanofluidic conductivity of 8.3 × 10-5 S cm-1 in 1 × 10-6 M KCl. Asymmetric light illumination creates the separation of electrons and holes in MoS2 nanosheets, enabling ions to move uphill against a wide range of concentration gradients. As a result, the MoS2-decorated wood can pump ions uphill against a 20-fold concentration gradient at a light intensity of 300 mW cm-2. When the illumination is applied to the opposite side, the osmotic current along the 20-fold concentration gradient can be enhanced to 75.1 nA, and the corresponding osmotic energy conversion power density increases to more than 12.6 times that of the nonilluminated state. Based on the light-responsive behaviors, we are extending the use of MoS2-decorated wood as the ionic elements for nanofluidic circuits, such as ion switches, ion diodes, and ion transistors. This work provides a facile and scalable strategy for fabricating light-controlled nanofluidic devices from biomass materials.
Collapse
Affiliation(s)
- Suling Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Yongxian Yao
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Xueqi Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Jianfu Tang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Xiaofei Dong
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Yaoxing Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Ran Yin
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Wentao Gan
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
8
|
Chen C, Wu X, Chen J, Liu S, Wang Y, Wu W, Zhang J, Wang J, Jiang Z. Built-in Electric Fields in Heterostructured Lamellar Membranes Enable Highly Efficient Rejection of Charged Mass. Angew Chem Int Ed Engl 2024; 63:e202406113. [PMID: 38687257 DOI: 10.1002/anie.202406113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Separation membranes with homogeneous charge channels are the mainstream to reject charged mass by forming electrical double layer (EDL). However, the EDL often compresses effective solvent transport space and weakens channel-ion interaction. Here, built-in electric fields (BIEFs) are constructed in lamellar membranes by assembling the heterostructured nanosheets, which contain alternate positively-charged nanodomains and negatively-charged nanodomains. We demonstrate that the BIEFs are perpendicular to horizontal channel and the direction switches alternately, significantly weakening the EDL effect and forces ions to repeatedly collide with channel walls. Thus, highly efficient rejection for charged mass (salts, dyes, and organic acids/bases) and ultrafast water transport are achieved. Moreover, for desalination on four-stage filtration option, salt rejection reaches 99.9 % and water permeance reaches 19.2 L m-2 h-1 bar-1. Such mass transport behavior is quite different from that in homogeneous charge channels. Furthermore, the ion transport behavior in nanochannels is elucidated by validating horizontal projectile motion model.
Collapse
Affiliation(s)
- Chongchong Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoli Wu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Jingjing Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongzheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjia Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, School of Chemical Engineering and Technology, Tianjin, 300072, China
| |
Collapse
|
9
|
Nie X, Li L, Sun M, Xiao T, Hu Z, Liu Z. Photosynthetic-Membrane-Like Ion Translocation in Visible-Light-Harvesting Nanofluidic Channels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311531. [PMID: 38326095 DOI: 10.1002/smll.202311531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
The selective uphill and downhill movement of protons in and out of photosynthetic membrane enabled by ion pumps and ion channels is key to photosynthesis. Reproducing the functions of photosynthetic membranes in artificial systems has been a persistent goal. Here, a visible-light-harvesting nanofluidic channels is reported which experimentally demonstrates the ion translocation functions of photosynthetic membranes. A molecular junction consisting of photosensitive ruthenium complexes linked to TiO2 electron acceptors forms the reaction centers in the nanofluidic channels. The visible-light-triggered vectorial electron injection into TiO2 establishes a difference in transmembrane potential across the channels, which enables uphill transport of ions against a 5-fold concentration gradient. In addition, the asymmetric charge distribution across the channels enables the unidirectional downhill movement of ions, demonstrating an ion rectification effect with a ratio of 18:1. This work, for the first time, mimics both the uphill and downhill ion translocation functions of photosynthetic membranes, which lays a foundation for nanofluidic energy conversion.
Collapse
Affiliation(s)
- Xiaoyan Nie
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Li Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingyan Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Zhaoyue Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
10
|
Geng Y, Zhang L, Li M, He Y, Lu B, He J, Li X, Zhou H, Fan X, Xiao T, Zhai J. Nano-Confined Effect and Heterojunction Promoted Exciton Separation for Light-Boosted Osmotic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309128. [PMID: 38308414 DOI: 10.1002/smll.202309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The osmotic energy conversion properties of biomimetic light-stimulated nanochannels have aroused great interest. However, the power output performance is limited by the low light-induced current and energy conversion efficiency. Here, nanochannel arrays with simultaneous modification of ZnO and di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,20-bipyridyl-4,40-dicarboxylato) ruthenium (II) (N719) onto anodic aluminum oxide (AAO) to combine the nano-confined effect and heterojunction is designed, which demonstrate rectified ion transport behavior due to the asymmetric composition, structure and charge. High cation selectivity and ion flux contribute to the high power density of ≈7.33 W m-2 by mixing artificial seawater and river water. Under light irradiation, heterojunction promoted the production and separation of exciton, enhanced cation selectivity, and improved the utilization efficiency of osmotic energy, providing a remarkable power density of ≈18.49 W m-2 with an increase of 252% and total energy conversion efficiency of 30.43%. The work opens new insights into the biomimetic nanochannels for high-performance energy conversion.
Collapse
Affiliation(s)
- Yutong Geng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Liangqian Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mengjie Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Youfeng He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xuejiang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hangjian Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
11
|
Meng D, Li C, Hao C, Shi W, Xu J, Sun M, Kuang H, Xu C, Xu L. Interfacial Self-assembly of Chiral Selenide Nanomembrane for Enantiospecific Recognition. Angew Chem Int Ed Engl 2023; 62:e202311416. [PMID: 37677113 DOI: 10.1002/anie.202311416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Here, we report the synthesis of chiral selenium nanoparticles (NPs) using cysteine and the interfacial assembly strategy to generate a self-assembled nanomembrane on a large-scale with controllable morphology and handedness. The selenide (Se) NPs exhibited circular dichroism (CD) bands in the ultraviolet and visible region with a maximum intensity of 39.96 mdeg at 388 nm and optical anisotropy factors (g-factors) of up to 0.0013 while a self-assembled monolayer nanomembrane exhibited symmetrical CD approaching 72.8 mdeg at 391 nm and g-factors up to 0.0034. Analysis showed that a photocurrent of 20.97±1.55 nA was generated by the D-nanomembrane when irradiated under light while the L-nanomembrane generated a photocurrent of 20.58±1.36 nA. Owing to the asymmetric intensity of the photocurrent with respect to the handedness of the nanomembrane, an ultrasensitive recognition of enantioselective kynurenine (Kyn) was achieved by the ten-layer (10L) D-nanomembrane exhibiting a photocurrent for L-kynurenine (L-Kyn) that was 8.64-fold lower than that of D-Kyn, with a limit of detection (LOD) of 0.0074 nM for the L-Kyn, which was attributed to stronger affinity between L-Kyn and D-Se NPs. Noticeably, the chiral Se nanomembrane precisely distinguished L-Kyn in serum and cerebrospinal fluid samples from Alzheimer's disease patients and healthy subjects.
Collapse
Affiliation(s)
- Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research 8 Center for Neurological Diseases, No. 119 South 4th Ring West Road, Beijing, 100070, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
12
|
Zhou S, Zhang X, Xie L, He Y, Yan M, Liu T, Zeng H, Jiang L, Kong B. Dual-Functional Super-Assembled Mesoporous Carbon-Titania/AAO Hetero-Channels for Bidirectionally Photo-Regulated Ion Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301038. [PMID: 37069771 DOI: 10.1002/smll.202301038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Photo-regulated nanofluidic devices have attracted great attention in recent years due to their adjustable ion transport in real time. However, most of the photo-responsive nanofluidic devices can only adjust the ionic current unidirectionally, and cannot simultaneously increase or decrease the current signal intelligently by one device. Herein, a mesoporous carbon-titania/ anodized aluminum hetero-channels (MCT/AAO) is constructed by super-assembly strategy, which exhibits dual-function of cation selectivity and photo response. The polymer and TiO2 nanocrystals jointly build the MCT framework. Polymer framework with abundant negatively charged sites endows MCT/AAO with excellent cation selectivity, and TiO2 nanocrystals are responsible for the photo-regulated ion transport. High photo current densities of 1.8 mA m-2 (increase) and 1.2 mA m-2 (decrease) are realized by MCT/AAO benefiting from the ordered hetero-channels. Significantly, MCT/AAO can also achieve the bidirectionally adjustable osmotic energy by alternating the configurations of concentration gradient. Theoretical and experimental results reveal that the superior photo-generated potential is responsible for the bidirectionally adjustable ion transport. Consequently, MCT/AAO performs the function of harvesting ionic energy from the equilibrium electrolyte solution, which greatly expands its practical application field. This work provides a new strategy in constructing dual-functional hetero-channels toward bidirectionally photo-regulated ionic transport and energy harvesting.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yanjun He
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Tianyi Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Hui Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong, 250103, P. R. China
| |
Collapse
|
13
|
Zhang X, Zhou S, Xie L, Zeng H, Liu T, Huang Y, Yan M, Liang Q, Liang K, Jiang L, Kong B. Superassembly of 4-Aminothiophenol-Modified Mesoporous Titania-Alumina Oxide Heterochannels for Smart Ion Transport Based on the Photo-Induced Electron-Transfer Process. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368865 DOI: 10.1021/acsami.3c05207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Light-responsive nanochannels have attracted extensive attention due to their noninvasive external field control and intelligent ion regulation. However, the limited photoresponsive current and the low photoelectric conversion efficiency still restrict their development. Here, a light-controlled nanochannel composed of 4-aminothiophenol and gold nanoparticles-modified mesoporous titania nanopillar arrays and alumina oxide (4-ATP-Au-MTI/AAO) is fabricated by the interfacial super-assembly strategy. Inspired by the process of electron transfer between photosystem I and photosystem II, the efficient electron transfer between TiO2, AuNPs, and 4-ATP under light is achieved by coupling the photoresponsive materials and functional molecules. Under illumination, 4-ATP is oxidized to p-nitrothiophenol (PNTP), which brings about changes in the wettability of the nanochannel, resulting in significant improvement (252.8%) of photoresponsive current. In addition, under the action of the reductant, the nanochannels can be restored to the initial dark state, enabling multiple reversible cycles. This work opens a new route for the fabrication of high-performance light-controlled nanochannels by coupling light-responsive materials and light-responsive molecules, which may guide the development of photoelectric conversion nanochannel systems.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Lei Xie
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanan Huang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong 250103, P. R. China
| |
Collapse
|
14
|
Wu J, Liao C, Li T, Zhou J, Zhang L, Wang JQ, Li G, Li X. Metal-coordinated polybenzimidazole membranes with preferential K + transport. Nat Commun 2023; 14:1149. [PMID: 36854779 PMCID: PMC9975182 DOI: 10.1038/s41467-023-36711-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Membranes with fast and selective ion transport are essential for separations and electrochemical energy conversion and storage devices. Metal-coordinated polymers are promising for fabricating ion-conducting membranes with molecular channels, however, the structures and ion transport channels remain poorly understood. Here, we reported mechanistic insights into the structures of metal-ion coordinated polybenzimidazole membranes and the preferential K+ transport. Molecular dynamics simulations suggested that coordination between metal ions and polybenzimidazole expanded the free volume, forming subnanometre molecular channels. The combined physical confinement in nanosized channels and electrostatic interactions of membranes resulted in a high K+ transference number up to 0.9 even in concentrated salt and alkaline solutions. The zinc-coordinated polybenzimidazole membrane enabled fast transport of charge carriers as well as suppressed water migration in an alkaline zinc-iron flow battery, enabling the battery to operate stably for over 340 hours. This study provided an alternative strategy to regulate the ion transport properties of polymer membranes by tuning polymer chain architectures via metal ion coordination.
Collapse
Affiliation(s)
- Jine Wu
- grid.9227.e0000000119573309Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Chenyi Liao
- grid.9227.e0000000119573309Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Tianyu Li
- grid.9227.e0000000119573309Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jing Zhou
- grid.9227.e0000000119573309Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Linjuan Zhang
- grid.9227.e0000000119573309Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Jian-Qiang Wang
- grid.9227.e0000000119573309Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
15
|
Liu J, Zhang B, Zhang P, Zhao K, Lu Z, Wei H, Zheng Z, Yang R, Yu Y. Protein Crystallization-Mediated Self-Strengthening of High-Performance Printable Conducting Organohydrogels. ACS NANO 2022; 16:17998-18008. [PMID: 36136126 DOI: 10.1021/acsnano.2c07823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive polymers have many advanced applications, but there is still an important target in developing a general and straightforward strategy for printable, mechanically stable, and durable organohydrogels with typical conducting polymers of, for example, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene). Here we report a protein crystallization-mediated self-strengthening strategy to fabricate printable conducting organohydrogels with the combination of rational photochemistry design. Such organohydrogels are one-step prepared via rapidly and orthogonally controllable photopolymerizations of pyrroles and gelatin protein in tens of seconds. As-prepared conducting organohydrogels are patterned and printed to complicated structures via shadow-mask lithography and 3D extrusion technology. The mild photocatalytic system gives the transition metal carbide/nitride (MXene) component high stability during the oxidative preparation process and storage. Controlling water evaporation promotes gelatin crystallization in the as-prepared organohydrogels that significantly self-strengthens their mechanical property and stability in a broad temperature range and durability against continuous friction treatment without introducing guest functional materials. Also, these organohydrogels have commercially electromagnetic shielding, thermal conducting properties, and temperature- and light-responsibility. To further demonstrate the merits of this simple strategy and as-prepared organohydrogels, prism arrays, as proofs-of-concept, are printed and applied to make wearable triboelectric nanogenerators. This self-strengthening process and 3D-printability can greatly improve their voltage, charge, and current output performances compared to the undried and flat samples.
Collapse
Affiliation(s)
- Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Keqi Zhao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710000, China
| | - Zhe Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zijian Zheng
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, HongKong SAR, 999077, China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710000, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
16
|
Abstract
Ion pumps are important membrane-spanning transporters that pump ions against the electrochemical gradient across the cell membrane. In biological systems, ion pumping is essential to maintain intracellular osmotic pressure, to respond to external stimuli, and to regulate physiological activities by consuming adenosine triphosphate. In recent decades, artificial ion pumping systems with diverse geometric structures and functions have been developing rapidly with the progress of advanced materials and nanotechnology. In this Review, bioinspired artificial ion pumps, including four categories: asymmetric structure-driven ion pumps, pH gradient-driven ion pumps, light-driven ion pumps, and electron-driven ion pumps, are summarized. The working mechanisms, functions, and applications of those artificial ion pumping systems are discussed. Finally, a brief conclusion of underpinning challenges and outlook for future research are tentatively discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Hongjie Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| |
Collapse
|