1
|
Zuber D, Storcheva O, Lüdtke KP, Brunk L, Coburger P. Redox-induced dimerisations of a phosphacyclic biradicaloid. Chem Commun (Camb) 2025; 61:2798-2801. [PMID: 39835689 DOI: 10.1039/d4cc05656f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Despite the first examples being isolated more than two decades ago, little is known about the redox chemistry of stable phosphacyclic biradicaloids. Here, we demonstrate that a biradicaloid featuring a diphosphaindenyl backbone is able to undergo both oxidation and reduction reactions. One-electron oxidation results in the formation of a dicationic cage compound structurally related to an isomer of hypostrophene (C10H10). Reduction of PPIPh with [Co2(CO)8] results in the formation of the bimetallic complex 2, which contains a bis(benzodiphosphole) ligand.
Collapse
Affiliation(s)
- David Zuber
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, D-85747, Garching, Germany.
| | - Oksana Storcheva
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, D-85747, Garching, Germany.
| | - Karsten Paul Lüdtke
- University of Rostock, Institute of Chemistry, Albert-Einstein-Straße 3a, D-18059, Rostock, Germany
| | - Leonidas Brunk
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, D-85747, Garching, Germany.
| | - Peter Coburger
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, D-85747, Garching, Germany.
| |
Collapse
|
2
|
Gravogl L, Keilwerth M, Körber E, Heinemann FW, Meyer K. From d 8 to d 1: Iron(0) and Iron(I) Complexes Complete the Series of Eight Fe Oxidation States within the TIMMN Mes Ligand Framework. Inorg Chem 2024; 63:15888-15905. [PMID: 39145894 DOI: 10.1021/acs.inorgchem.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Reduction of the ferrous precursor [(TIMMNMes)Fe(Cl)]+ (1) (TIMMNMes = tris-[(3-mesitylimidazol-2-ylidene)methyl]amine) to the low-valent iron(0) complex [(TIMMNMes)Fe(CO)3] (2) is presented, where the tris(N-heterocyclic carbene) (NHC) ligand framework remains intact, yet the coordination mode changed from 3-fold to 2-fold coordination of the carbene arms. Further, the corresponding iron(I) complexes [(TIMMNMes)Fe(L)]+ (L = free site, η1-N2, CO, py) (3) are synthesized and fully characterized. Complexes 1-3 demonstrate the notable steric and electronic flexibility of the TIMMNMes ligand framework by variation of the Fe-N anchor and Fe-carbene distances and the variable size of the axial cavity occupation. This is further underpinned by the oxidation of 3-N2 in a reaction with benzophenone to yield the corresponding, charge-separated iron(II) radical complex [(TIMMNMes)Fe(OCPh2)]+ (4). We found rather surprising similarities in the reactivity behavior when going to low- or high-valent oxidation states of the central iron ion. This is demonstrated by the closely related reactivity of 3-N2, where H atom abstraction with TEMPO triggers the formation of the metallacycle [(TIMMNMes*)Fe(py)]+ (5), and the reactivity of the highly unstable Fe(VII) nitride complex [(TIMMNMes)Fe(N)(F)]3+ to give the metallacyclic Fe(V) imido complex [(TIMMNMesN)Fe(NMes)(MeCN)]3+ (6) upon warming. Thus, the employed tris(carbene) chelate is not only capable of stabilizing the superoxidized Fe(VI) and Fe(VII) nitrides but equally supports the iron center in its low oxidation states 0 and +1. Isolation and characterization of these zero- and monovalent iron complexes demonstrate the extraordinary capability of the tris(carbene) chelate TIMMN to support iron in eight different oxidation states within the very same ligand platform.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Eva Körber
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Coburger P, Zuber D, Schweinzer C, Scharnhölz M. Phosphonium-substituted Diphosphaindenylide (PPI): Exploration of Biradical Character and Ligand Properties. Chemistry 2024; 30:e202302970. [PMID: 38032060 DOI: 10.1002/chem.202302970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Starting from C6 H4 (PCl2 )2 and the TMS-substituted ylide (TMS)2 C=PR3 (TMS=trimethylsilyl, R=p-tolyl), the phosphonium-substituted diphosphaindenylide PPI was prepared in two steps. CASSCF calculations as well as the reactivity toward diphenyl acetylene suggest a notable biradical character in PPI. Reaction with [Cr(CO)3 (MeCN)3 ] affords the complex [Cr(CO)3 (η5 -PPI)] (5). This complex was employed to explore the ligand properties of PPI, which demonstrates considerable potential through the combination of strong metal-ligand interactions and the possibility of a pronounced indenyl effect.
Collapse
Affiliation(s)
- Peter Coburger
- Department of Inorganic Chemistry, TU München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - David Zuber
- Department of Inorganic Chemistry, TU München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Clara Schweinzer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Moritz Scharnhölz
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
4
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
5
|
Zhu B, Song Y, Zhu J, Rauhut G, Jiang J, Zeng X. FP(μ-N) 2 S: A Sulfur-Pnictogen Four-Membered Ring with 6π Electrons. Chemistry 2023; 29:e202300251. [PMID: 37261435 DOI: 10.1002/chem.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/02/2023]
Abstract
The new 6π-electron four-membered ring compound 3-fluoro-1λ2 ,2,4,3λ3 -thiadiazaphosphetidine, FP(μ-N)2 S, has been generated in the gas phase through high-vacuum flash pyrolysis (HVFP) of thiophosphoryl diazide, FP(S)(N3 )2 , at 1000 K. Subsequent isolation of FP(μ-N)2 S in cryogenic matrices (Ar, Ne, and N2 ) allows its characterization with matrix-isolation IR and UV-vis spectroscopy by combination with 15 N-isotope labeling and computations at the CCSD(T)-F12a/VTZ-F12 level of theory. Upon visible-light irradiation at 550 nm, this cyclic compound undergoes ring-opening to the thiazyl isomer FPNSN, followed by dissociation to FP and SN2 under subsequent UV-irradiation at 365 nm. In sharp contrast to the square planar structure for the isolobal four-membered ring S2 N2 , a puckered structure with significant biradical character has been found for FP(μ-N)2 S.
Collapse
Affiliation(s)
- Bifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yanlin Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany
| | - Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Coburger P, Schweinzer C, Li Z, Grützmacher H. Reversible Single Electron Redox Steps Convert Polycycles with a C 3 P 3 Core to a Planar Triphosphinine. Angew Chem Int Ed Engl 2023; 62:e202214548. [PMID: 36688727 DOI: 10.1002/anie.202214548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Reaction of the imidazolium-stabilized diphosphete-diide IDP with trityl phosphaalkyne affords a mixture which contains the molecules 1 a and 1 b with a central C3 P3 core, which formally carries a two-fold negative charge. In order to avoid the formation of an antiaromatic 8π electron system within a conjugated dianionic six-membered [C3 P3 ]2- ring, 1 a adopts a bicyclic [3.1.0] and 1 b a tricyclic [2.2.0.0] structure which are in a dynamic equilibrium. 1 a, b can be reversibly oxidized to a triphosphinine dication [5]2+ with a central flat aromatic six-membered C3 P3 ring. This two-electron redox reaction occurs in two single-electron transfer steps via the 7π-radical cation [4]⋅+ , which could also be isolated and fully characterized. The profound reversible structural change observed for the two-electron redox couple [5]2+ /1 a, b is in sharp contrast to the C6 H6 /[C6 H6 ]2- couple, which undergoes only a modest structural deformation.
Collapse
Affiliation(s)
- Peter Coburger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Clara Schweinzer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 30071, Tianjin, China
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| |
Collapse
|
7
|
Yang ES, Wilson DWN, Goicoechea JM. Metal-Mediated Oligomerization Reactions of the Cyaphide Anion. Angew Chem Int Ed Engl 2023; 62:e202218047. [PMID: 36656139 PMCID: PMC10946887 DOI: 10.1002/anie.202218047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
The cyaphide anion, CP- , is shown to undergo three distinct oligomerization reactions in the coordination sphere of metals. Reductive coupling of Au(IDipp)(CP) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) by Sm(Cp*)2 (OEt2 ) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), was found to afford a tetra-metallic complex containing a 2,3-diphosphabutadiene-1,1,4,4-tetraide fragment. By contrast, non-reductive dimerization of Ni(SIDipp)(Cp)(CP) (SIDipp=1,3-bis(2,6-diisopropylphenyl)-imidazolidin-2-ylidene; Cp=cyclopentadienyl), gives rise to an asymmetric bimetallic complex containing a 1,3-diphosphacyclobutadiene-2,4-diide moiety. Spontaneous trimerization of Sc(Cp*)2 (CP) results in the formation of a trimetallic complex containing a 1,3,5-triphosphabenzene-2,4,6-triide fragment. These transformations show that while cyaphido transition metal complexes can be readily accessed using metathesis reactions, many such species are unstable to further oligomerization processes.
Collapse
Affiliation(s)
- Eric S. Yang
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Daniel W. N. Wilson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
- Department of ChemistryIndiana University—Bloomington800 E. Kirkwood Ave.BloomingtonIN-47405-7102USA
| |
Collapse
|