1
|
Zhu MY, Dong LY, Wu YT, Ma J, Hao GP, Lu AH. Electroreduction of acetonitrile to ethylamine by thin carbon-coated copper catalysts with rich active interphases. Chem Commun (Camb) 2025; 61:6494-6497. [PMID: 40183156 DOI: 10.1039/d5cc01152c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Thin carbon-coated copper catalysts facilitate the electroreduction of acetonitrile to ethylamine, in which a faradaic selectivity of 98% and a partial current density of 117 mA cm-2 towards ethylamine at -0.8 VRHE can be achieved. The carbon shells benefit the formation of rich active interfaces and suppress copper agglomeration.
Collapse
Affiliation(s)
- Min-Yi Zhu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China.
| | - Ling-Yu Dong
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China.
| | - Yu-Tai Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China.
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, and Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China.
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China.
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China.
| |
Collapse
|
2
|
Zang Y, Li H, Sun Y, Tang L, Xu K, Gao D. Controlling the Activity and Selectivity of Cu Catalysts toward Industrially Relevant Ethanol Electrosynthesis via High-Index Step Density Engineering. ACS NANO 2025; 19:13436-13445. [PMID: 40146760 DOI: 10.1021/acsnano.5c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemical CO2 reduction reaction on Cu catalysts can generate high-value multicarbon (C2+) products, making it a significant research area of growing commercial interest. However, the production rate of ethanol remains low owing to the trade-off between the activity and selectivity of Cu catalysts. Here, we develop a defect-rich Cu catalyst with abundant high-index step sites by chemically etching commercially available Cu nanoparticles. This catalyst exhibits a high Faradaic efficiency of ∼50% and a partial current density of ∼416 mA cm-2 for ethanol production. Furthermore, it shows good stability at a high total current density of ∼800 mA cm-2, without obvious decay in ethanol selectivity. Control experiments indicate that the impressive ethanol selectivity is closely associated with the high density of high-index steps present on the defect-rich Cu catalyst. In situ Raman spectroscopy and density functional theory calculations further verify that the optimal high-index step sites enable balanced adsorption of *CO, *OH, and *H, and facilitate the hydrogenation of *CHCOH to *CHCHOH, thereby improving ethanol selectivity. This work underscores the importance of step density control for steering the reaction pathway and selectivity toward ethanol.
Collapse
Affiliation(s)
- Yipeng Zang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Tang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kangli Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Li D, Liu J, Wang B, Huang C, Chu PK. Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO 2 to C 2+ Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416597. [PMID: 40013974 PMCID: PMC11967780 DOI: 10.1002/advs.202416597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The electrocatalytic conversion of CO2 into valuable multi-carbon (C2+) products using Cu-based catalysts has attracted significant attention. This review provides a comprehensive overview of recent advances in Cu-based catalyst design to improve C2+ selectivity and operational stability. It begins with an analysis of the fundamental reaction pathways for C2+ formation, encompassing both established and emerging mechanisms, which offer critical insights for catalyst design. In situ techniques, essential for validating these pathways by real-time observation of intermediates and material evolution, are also introduced. A key focus of this review is placed on how to enhance C2+ selectivity through intermediates manipulation, particularly emphasizing catalytic site construction to promote C─C coupling via increasing *CO coverage and optimizing protonation. Additionally, the challenge of maintaining catalytic activity under reaction conditions is discussed, highlighting the reduction of active charged Cu species and materials reconstruction as major obstacles. To address these, the review describes recent strategies to preserve active sites and control materials evolution, including novel catalyst design and the utilization and mitigation of reconstruction. By presenting these developments and the challenges ahead, this review aims to guide future materials design for CO2 conversion.
Collapse
Affiliation(s)
- Dan Li
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Jinyuan Liu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Bin Wang
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Chao Huang
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| |
Collapse
|
4
|
Qiao Y, Shen S, Mao C, Xiao Y, Lai W, Wang Y, Zhong X, Lu Y, Li J, Ge J, Hsu HY, Su Y, Shao M, Hu Z, Huang H. Interfacial Oxygen Vacancy-Copper Pair Sites on Inverse CeO 2/Cu Catalyst Enable Efficient CO 2 Electroreduction to Ethanol in Acid. Angew Chem Int Ed Engl 2025; 64:e202424248. [PMID: 39788905 DOI: 10.1002/anie.202424248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Renewable electricity-driven electrochemical reduction of CO2 offers a promising route for the production of high-value ethanol. However, the current state of this technology is hindered by low selectivity and productivity, primarily due to a limited understanding of the atomic-level active sites involved in ethanol formation. Herein, we identify that the interfacial oxygen vacancy-neighboring Cu (Ov-Cu) pair sites are the active sites for CO2 electroreduction to ethanol. A linear correlation between the density of Ov-Cu pair sites and ethanol productivity is experimentally evidenced. Moreover, a high Faradaic efficiency of 48.5 % and a partial current density of 344.0 mA cm-2 for ethanol production are achieved over the inverse CeO2/Cu catalyst with a high density of Ov-Cu pair sites in acid. Mechanistic studies that combine density functional theory calculations and spectroscopic techniques propose an Ov-involved mechanism where interfacial Ov sites directly activate and dissociate CO2 into *CO in a thermodynamically spontaneous manner, thus favoring the subsequent *CHO formation and asymmetric CHO-CO coupling. Besides, the asymmetric Ov-Cu pair sites could preferentially stabilize the *CH2CHOH intermediate, resulting in the favorable formation of ethanol over ethylene. Our findings provide new atomic-level insights into CO2 electroreduction to ethanol, paving the way for the rational design of future catalysts.
Collapse
Affiliation(s)
- Yan Qiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shenyu Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xian, Shanxi, 710049, P. R. China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yongchun Xiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanan Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xingyu Zhong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yangfan Lu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xian, Shanxi, 710049, P. R. China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
5
|
Zhang D, Liu X, Zhao Y, Zhang H, Rudnev AV, Li JF. In situ Raman spectroscopic studies of CO 2 reduction reactions: from catalyst surface structures to reaction mechanisms. Chem Sci 2025; 16:4916-4936. [PMID: 40007664 PMCID: PMC11848642 DOI: 10.1039/d5sc00569h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) has gained widespread attention as an important technology for carbon cycling and sustainable chemistry. In situ Raman spectroscopy, due to its molecular structure, sensitive advantage and real-time monitoring capability, has become an effective tool for studying the reaction mechanisms and structure-performance relationships in eCO2RR. This article reviews recent advancements in the application of in situ Raman spectroscopy in eCO2RR research, focusing on its critical role in monitoring reaction intermediates, analyzing catalyst surface states, and optimizing catalyst design. Through systematic studies of different catalysts and reaction conditions, in situ Raman spectroscopy has revealed the formation and transformation pathways of various intermediates, deeply exploring their relationship with the active sites of the catalysts. Furthermore, the review discusses the integration of in situ Raman spectroscopy with other characterization techniques to achieve a more comprehensive understanding of the reaction mechanisms. Finally, we summarize the current challenges and opportunities in this research area and look ahead to the future applications of in situ Raman spectroscopy in the field of eCO2RR.
Collapse
Affiliation(s)
- Dongao Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Xuan Liu
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Yu Zhao
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Hua Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| | - Alexander V Rudnev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences Leninsky Prospekt 31 119071 Moscow Russia
| | - Jian-Feng Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| |
Collapse
|
6
|
Zheng S, Zhang XM, Liu HS, Liang GH, Zhang SW, Zhang W, Wang B, Yang J, Jin X, Pan F, Li JF. Active phase discovery in heterogeneous catalysis via topology-guided sampling and machine learning. Nat Commun 2025; 16:2542. [PMID: 40087307 PMCID: PMC11909169 DOI: 10.1038/s41467-025-57824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
Understanding active phases across interfaces, interphases, and even within the bulk under varying external conditions and environmental species is critical for advancing heterogeneous catalysis. Describing these phases through computational models faces the challenges in the generation and calculation of a vast array of atomic configurations. Here, we present a framework for the automatic and efficient exploration of active phases. This approach utilizes a topology-based algorithm leveraging persistent homology to systematically sample configurations across diverse coordination environments and material morphologies. Simultaneously, efficient machine learning force fields enable rapid computations. We demonstrate the effectiveness of this framework in two systems: hydrogen absorption in Pd, where hydrogen penetrates subsurface layers and the bulk, inducing a "hex" reconstruction critical for CO2 electroreduction, explored through 50,000 sampled configurations; and the oxidation dynamics of Pt clusters, where oxygen incorporation renders the clusters less active during oxygen reduction reactions, investigated through 100,000 sampled configurations. In both cases, the predicted active phases and their impacts on catalytic mechanisms closely align with previous experimental observations, indicating that the proposed strategy can model complex catalytic systems and discovery active phases under specific environmental conditions.
Collapse
Affiliation(s)
- Shisheng Zheng
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Institute of Artificial Intelligence, School of Mathematical Sciences, Xiamen University, Xiamen, China.
| | - Xi-Ming Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Institute of Artificial Intelligence, School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Heng-Su Liu
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Institute of Artificial Intelligence, School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Ge-Hao Liang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Institute of Artificial Intelligence, School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Si-Wang Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Institute of Artificial Intelligence, School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Wentao Zhang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China
| | - Bingxu Wang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China
| | - Jingling Yang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Institute of Artificial Intelligence, School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Xian'an Jin
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Institute of Artificial Intelligence, School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China.
| | - Jian-Feng Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Institute of Artificial Intelligence, School of Mathematical Sciences, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
7
|
Li X, Kang W, Fan X, Tan X, Masa J, Robertson AW, Jung Y, Han B, Texter J, Cheng Y, Dai B, Sun Z. Electrochemical CO 2 reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes. Innovation (N Y) 2025; 6:100807. [PMID: 40098663 PMCID: PMC11910886 DOI: 10.1016/j.xinn.2025.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 03/19/2025] Open
Abstract
The high energy density of green synthetic liquid chemicals and fuels makes them ideal for sustainable energy storage and transportation applications. Electroreduction of carbon dioxide (CO2) directly into such high value-added chemicals can help us achieve a renewable C cycle. Such electrochemical reduction typically suffers from low faradaic efficiencies (FEs) and generates a mixture of products due to the complexity of controlling the reaction selectivity. This perspective summarizes recent advances in the mechanistic understanding of CO2 reduction reaction pathways toward liquid products and the state-of-the-art catalytic materials for conversion of CO2 to liquid C1 (e.g., formic acid, methanol) and C2+ products (e.g., acetic acid, ethanol, n-propanol). Many liquid fuels are being produced with FEs between 80% and 100%. We discuss the use of structure-binding energy relationships, computational screening, and machine learning to identify promising candidates for experimental validation. Finally, we classify strategies for controlling catalyst selectivity and summarize breakthroughs, prospects, and challenges in electrocatalytic CO2 reduction to guide future developments.
Collapse
Affiliation(s)
- Xueying Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Woojong Kang
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, and Institute of Engineering Research, Seoul National University, 1 Kwanak-ro, Seoul 08826, South Korea
| | - Xinyi Fan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyi Tan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing 100081, China
| | - Justus Masa
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Alex W Robertson
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Yousung Jung
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, and Institute of Engineering Research, Seoul National University, 1 Kwanak-ro, Seoul 08826, South Korea
| | - Buxing Han
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John Texter
- Strider Research Corporation, Rochester, NY 14610-2246, USA
- School of Engineering and Coating Research Institute, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Yuanfu Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Zheng X, Yang S, Chen D, Kong Y, Cui T, Zheng X, Fu H, Xue W, Li S, Cheng C, Chen H, Li R, Xu J. Crown ether functionalization boosts CO 2 electroreduction to ethylene on copper-based MOFs. Chem Commun (Camb) 2025; 61:2993-2996. [PMID: 39846834 DOI: 10.1039/d4cc06719c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The electroconversion of CO2 into ethylene (C2H4) offers a promising solution to environmental and energy challenges. Crown ether (CE) modification significantly enhances the C2H4 selectivity of copper-based MOFs, improving C2H4 faradaic efficiency (FE) in CuBTC, CuBDC, and CuBDC-NH2 by 3.1, 1.7, and 2.4 times, respectively. Among these, CuBTC achieves the highest FE for C2H4, reaching ca. 52% at 120 mA cm-2. Control experiments and in situ Fourier transform infrared spectroscopy (FTIR) reveal that CE stabilizes Cu+ during the catalyst's in situ reconstruction, promoting the formation of Cu2O, which is more favorable for C2H4 production. Furthermore, CE increases the local concentration of K+ at the catalyst-electrolyte interface, enhancing *CO adsorption and facilitating C-C coupling reactions. This process promotes the formation of key intermediates, such as *CO*CO, *CO*COH and *COCHO, ultimately boosting C2H4 production.
Collapse
Affiliation(s)
- Xuan Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Siheng Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Dingwen Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Yuxuan Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tianhua Cui
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Zhou J, He B, Huang P, Wang D, Zhuang Z, Xu J, Pan C, Dong Y, Wang D, Wang Y, Huang H, Zhang J, Zhu Y. Regulating Interfacial Hydrogen-Bonding Networks by Implanting Cu Sites with Perfluorooctane to Accelerate CO 2 Electroreduction to Ethanol. Angew Chem Int Ed Engl 2025; 64:e202418459. [PMID: 39623792 DOI: 10.1002/anie.202418459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 12/14/2024]
Abstract
Efficient CO2 electroreduction (CO2RR) to ethanol holds promise to generate value-added chemicals and harness renewable energy simultaneously. Yet, it remains an ongoing challenge due to the competition with thermodynamically more preferred ethylene production. Herein, we presented a CO2 reduction predilection switch from ethylene to ethanol (ethanol-to-ethylene ratio of ~5.4) by inherently implanting Cu sites with perfluorooctane to create interfacial noncovalent interactions. The 1.83 %F-Cu2O organic-inorganic hybrids (OIHs) exhibited an extraordinary ethanol faradaic efficiency (FEethanol) of ∼55.2 %, with an impressive ethanol partial current density of 166 mA cm-2 and excellent robustness over 60 hours of continuous operation. This exceptional performance ranks our 1.83 %F-Cu2O OIHs among the best-performing ethanol-oriented CO2RR electrocatalysts. Our findings identified that C8F18 could strengthen the interfacial hydrogen bonding connectivity, which consequently promotes the generation of active hydrogen species and preferentially favors the hydrogenation of *CHCOH to *CHCHOH, thus switching the reaction from ethylene-preferred to ethanol-oriented. The presented investigations highlight opportunities for using noncovalent interactions to tune the selectivity of CO2 electroreduction to ethanol, bringing it closer to practical implementation requirements.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Bingling He
- School of Electronic Engineering, Chaohu University, Hefei, 238000, P. R. China
| | - Pu Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Dongge Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Columbia University, New York, NY-10027, USA
| | - Jing Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chengsi Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Hongwen Huang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiawei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Liu XC, Wu G, Han X, Wang Y, Wu B, Wang G, Mu Y, Hong X. High-Entropy Metal Interstitials Activate TiO 2 for Robust Catalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416749. [PMID: 39743965 DOI: 10.1002/adma.202416749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Substitution metal doping strategies are crucial for developing catalysts capable of activating O2, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO2 (HE-TiO2) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO2, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO2. Theoretical analysis and in situ synchrotron radiation Fourier transform infrared studies reveal that the electron of metal interstitials can populate the subgap states within the host TiO2, enabling a moderate adsorption band for robust and efficient O2 activation. This study introduces a universal strategy for synthesizing a novel class of high-entropy materials with integrated metal interstitials in metal oxides, promising to enhance the stability and efficiency of O2 activation catalysts and broaden their potential applications.
Collapse
Affiliation(s)
- Xiao-Cheng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Geng Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bei Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Mu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xun Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
Li M, Sun H, Wang C, Liu Y, Xia Q, Meng J, Yu H, Dou S. Balancing Competitive Adsorption on Co 3O 4@P, N-Doped Porous Carbon to Enhance the Electrocatalytic Upgrading of Biomass Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409765. [PMID: 39937509 DOI: 10.1002/smll.202409765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Indexed: 02/13/2025]
Abstract
The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) represents an environmentally friendly approach to generate high-value-added chemicals from biomass. The successful electrochemical transformation of HMF during the oxidation reaction (HMFOR) necessitates an ideal adsorption interaction between HMF and OH- on the electrode surface. Yet, catalysts with a singular active site offer limited flexibility in managing the competitive adsorption of HMF and OH-. To this end, different active sites are customized in this work to construct a P and N co-doped porous carbon that wrapped Co3O4 (Co3O4@PNC). Co-doping with these two heteroatoms generates C3P = O and pyrrolic N as adsorption sites to better balance the adsorption of HMF and OH-, respectively, rather than promoting competition between the HMF and OH- on a single active site. With this design strategy, Co3O4@PNC demonstrates significant HMFOR activity, the conversion rate of HMF surpassed 99% with a 2,5-furandicarboxylic acid (FDCA) yield exceeding 95% after 2 h of electrolysis. Furthermore, it shows universal applicability in the electrooxidation of other alcohol/aldehyde substrates, yielding efficiencies of 90-99%. This work not only provides guidance for advanced electrocatalysts design toward alcohol/aldehyde oxidation but also offers insights into the utilization of biomass-derived platform chemicals.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Haixin Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Chen Wang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Qinqin Xia
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Juan Meng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shuo Dou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
12
|
Ma X, Shao J, Mao B, Ye F, Wang Z, Mao J, Chen A, Wang D, Zhang L, Dong H, Lin H, Li N, Hu C. "Cu-N x" Site-Driven Selectivity Switch for Electrocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6326-6336. [PMID: 39832485 DOI: 10.1021/acsami.4c18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The comprehensive understanding of the effect of the chemical environment surrounding active sites on the pathway for the electrochemical carbon dioxide reduction reaction (eCO2RR) is essential for the development of advanced catalysts for large-scale applications. Based on a series of model catalysts engineered by the coordination of copper ions with various isomers of phenylenediamine [i.e., o-phenylenediamine (oPD), m-phenylenediamine (mPD), and p-phenylenediamine (pPD)] featuring two amino groups in ortho-, meta-, and para-positions, the steric effects could significantly govern the selectivity of the "Cu-N" sites for eCO2RR. It was found the steric distance between adjacent copper and nitrogen active sites in Cu-oPD enhanced the C-C coupling of the *COOH intermediate, thereby resulting in increased selectivity for C2H4 production. In contrast, the weak van der Waals interactions arising from steric electrostatic effects surrounding the *CHO intermediate on Cu-pPD facilitated subsequent hydrogenation, leading to the preferential synthesis of CH4. However, Cu-mPD exhibited diminished eCO2RR activity due to a higher free energy associated with the rate-determining step, which primarily led to the formation of H2. This study underscores the significant role of a steric effect-driven selectivity switch for eCO2RR.
Collapse
Affiliation(s)
- Xinyue Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zichun Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Aibing Chen
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lipeng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Husitu Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Li Z, Sun B, Xiao D, Liu H, Wang Z, Liu Y, Zheng Z, Wang P, Dai Y, Huang B, Cheng H. Mesostructure-Specific Configuration of *CO Adsorption for Selective CO 2 Electroreduction to C 2+ Products. Angew Chem Int Ed Engl 2025; 64:e202413832. [PMID: 39221719 DOI: 10.1002/anie.202413832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The multi-carbon (C2+) alcohols produced by electrochemical CO2 reduction, such as ethanol and n-propanol, are considered as indispensable liquid energy carriers. In most C-C coupling cases, however, the concomitant gaseous C2H4 product results in the low selectivity of C2+ alcohols. Here, we report rational construction of mesostructured CuO electrocatalysts, specifically mesoporous CuO (m-CuO) and cylindrical CuO (c-CuO), enables selective distribution of C2+ products. The m-CuO and c-CuO show similar selectivity towards total C2+ products (≥76 %), but the corresponding predominant products are C2+ alcohols (55 %) and C2H4 (52 %), respectively. The ordered mesostructure not only induces the surface hydrophobicity, but selectively tailors the adsorption configuration of *CO intermediate: m-CuO prefers bridged adsorption, whereas c-CuO favors top adsorption as revealed by in situ spectroscopies. Computational calculations unravel that bridged *CO adsorbate is prone to deep protonation into *OCH3 intermediate, thus accelerating the coupling of *CO and *OCH3 intermediates to generate C2+ alcohols; by contrast, top *CO adsorbate is apt to undergo conventional C-C coupling process to produce C2H4. This work illustrates selective C2+ products distribution via mesostructure manipulation, and paves a new path into the design of efficient electrocatalysts with tunable adsorption configuration of key intermediates for targeted products.
Collapse
Affiliation(s)
- Zaiqi Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Bin Sun
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Hongli Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Ying Dai
- School of Physics, Shandong University, 250100, Jinan, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| |
Collapse
|
14
|
Dai J, Zhu J, Xu Y, Liu X, Zhu D, Xu G, Liu H, Li G. Structural Regulating of Cu-Based Metallic Electrocatalysts for CO 2 to C 2+ Products Conversion. CHEMSUSCHEM 2024:e202402184. [PMID: 39714897 DOI: 10.1002/cssc.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) to highly value-added multi-carbon (C2+) fuels or chemicals is a promising pathway to address environment issues and energy crisis. In the periodic table, Cu as only the candidate can convert CO2 to C2+ products such as C2H4 and C2H5OH due to the suitable absorption energy to reaction intermediate. However, application of Cu is limited for its low activity and poor selectivity. The tandem catalytic strategy can effectively solve the problems caused by single copper catalyst. In tandem catalysis, how to promote the formation, transport, adsorption and coupling of the important intermediate CO is the key issue to improve the selectivity of C2+ products. Regulating the structure of Cu-based bimetallic can effectively promote these processes to Electrochemical CO2RR on account of its synergistic effect, electronic effect and interfacial interaction. In this review, we systematically summarized the relationship between structure of Cu-based bimetallic catalysts with performance of electrochemical CO2RR. More importantly, we reveal that different Cu-based bimetallic structures enhance the activity and selectivity of the catalysts by regulating the processes such as the transport and adsorption of the reaction intermediate CO. Then, we proposed well-effective strategies to rationally design Cu-based metallic catalysts. Finally, we put forward some challenges and opportunities that Cu-based bimetallic catalysts would face in the development of electrochemical CO2RR technology in the future.
Collapse
Affiliation(s)
- Jiawei Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - You Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaoling Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Deyu Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guichan Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
He X, Wang M, Wei Z, Wang Y, Wang J, Zang H, Zhang L. Dual-Anion-Stabilized Cu δ+ Sites in Cu 2(OH) 2CO 3 for High C 2+ Selectivity in the CO 2 Electroreduction Reaction. CHEMSUSCHEM 2024; 17:e202400871. [PMID: 38923833 DOI: 10.1002/cssc.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The excessive emission of CO2 has aroused increasingly serious environmental problems. Electrochemical CO2 reduction reaction (CO2RR) is an effective way to reduce CO2 concentration and simultaneously produce highly valued chemicals and fuels. Cuδ+ species are regarded as promising active sites to obtain multi-carbon compounds in CO2RR, however, they are easily reduced to Cu0 during the reaction and fail to retain the satisfying selectivity for C2+ products. Herein, via a one-step method, we synthesize Cu2(OH)2CO3 microspheres composed of nanosheets, which has achieved a superior Faraday efficiency for C2+ products as high as 76.29 % at -1.55 V vs. RHE in an H cell and 78.07 % at -100 mA cm-2 in a flow cell. Electrochemical measurements, in situ Raman spectra and attenuated total reflectance infrared spectra (ATR-IR) as well as the theoretic calculation unveil that, compared with Cu(OH)2 and CuO, the dual O-containing anionic groups (OH- and CO3 2-) in Cu2(OH)2CO3 can effectively stabilize the Cuδ+ species, promote the adsorption and activation of CO2, boost the coverage of *CO and the coupling of *CO-*COH, thus sustain the flourishment of C2+ products.
Collapse
Affiliation(s)
- Xin He
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Min Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zixuan Wei
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Yang Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Haojie Zang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Lingxia Zhang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
16
|
Liu W, Tang B, Huang K, Zhang Z, Wang Z, An G, Zhang M, Wang K, Fu S, Guo H, Han T, Lian C, Zhang B, Wu T, Lei Z, Wang L. Radiation-Synthesized Metal-Organic Frameworks with Ligand-Induced Lewis Pairs for Selective CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408688. [PMID: 39410729 DOI: 10.1002/smll.202408688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/28/2024]
Abstract
The electrochemical activation of inert CO2 molecules through C─C coupling reactions under ambient conditions remains a significant challenge but holds great promise for sustainable development and the reduction of CO2 emission. Lewis pairs can capture and react with CO2, offering a novel strategy for the electrosynthesis of high-value-added C2 products. Herein, an electron-beam irradiation strategy is presented for rapidly synthesizing a metal-organic framework (MOF) with well-defined Lewis pairs (i.e., Cu- Npyridinic). The synthesized MOFs exhibit a total C2 product faradic efficiency of 70.0% at -0.88 V versus RHE. In situ attenuated total reflection Fourier transform infrared and Raman spectra reveal that the electron-deficient Lewis acidic Cu sites and electron-rich Lewis basic pyridinic N sites in the ligand facilitate the targeted chemisorption, activation, and conversion of CO2 molecules. DFT calculations further elucidate the electronic interactions of key intermediates in the CO2 reduction reaction. The work not only advances Lewis pair-site MOFs as a new platform for CO2 electrochemical conversion, but also provides pioneering insights into the underlying mechanisms of electron-beam irradiated synthesis of advanced nanomaterials.
Collapse
Affiliation(s)
- Wenhui Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kai Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China
| | - Zhihui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Guangbin An
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Mingwan Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Shuai Fu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Tao Han
- Shanghai Institute of Applied Radiation, Shanghai University, Shanghai, 200444, P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Baohua Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Tong Wu
- College of Environmental & Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- College of Environmental & Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| |
Collapse
|
17
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
18
|
Shao B, Huang D, Huang RK, He XL, Luo Y, Xiang YL, Jiang LB, Dong M, Li S, Zhang Z, Huang J. Metal-Organic Framework Supported Low-Nuclearity Cluster Catalysts for Highly Selective Carbon Dioxide Electroreduction to Ethanol. Angew Chem Int Ed Engl 2024; 63:e202409270. [PMID: 38880988 DOI: 10.1002/anie.202409270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
It is still a great challenge to achieve high selectivity of ethanol in CO2 electroreduction reactions (CO2RR) because of the similar reduction potentials and lower energy barrier of possible other C2+ products. Here, we report a MOF-based supported low-nuclearity cluster catalysts (LNCCs), synthesized by electrochemical reduction of three-dimensional (3D) microporous Cu-based MOF, that achieves a single-product Faradaic efficiency (FE) of 82.5 % at -1.0 V (versus the reversible hydrogen electrode) corresponding to the effective current density is 8.66 mA cm-2. By investigating the relationship between the species of reduction products and the types of catalytic sites, it is confirmed that the multi-site synergism of Cu LNCCs can increase the C-C coupling effect, and thus achieve high FE of CO2-to-ethanol. In addition, density functional theory (DFT) calculation and operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy further confirmed the reaction path and mechanism of CO2-to-EtOH.
Collapse
Affiliation(s)
- Bing Shao
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Du Huang
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, P. R. China
| | - Rui-Kang Huang
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Xing-Lu He
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Yan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Yi-Lei Xiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Lin-Bin Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Shixiong Li
- School of Mechanical and Resource Engineering, Wuzhou University, Wuzhou, Guangxi, 543003, P. R. China
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal, University, Guilin, 541004, P.R. China
| | - Jin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| |
Collapse
|
19
|
Chen X, Jia S, Zhai J, Jiao J, Dong M, Xue C, Deng T, Cheng H, Xia Z, Chen C, Xing X, Zeng J, Wu H, He M, Han B. Multivalent Cu sites synergistically adjust carbonaceous intermediates adsorption for electrocatalytic ethanol production. Nat Commun 2024; 15:7691. [PMID: 39227576 PMCID: PMC11372146 DOI: 10.1038/s41467-024-51928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Copper (Cu)-based catalysts show promise for electrocatalytic CO2 reduction (CO2RR) to multi-carbon alcohols, but thermodynamic constraints lead to competitive hydrocarbon (e.g., ethylene) production. Achieving selective ethanol production with high Faradaic efficiency (FE) and current density is still challenging. Here we show a multivalent Cu-based catalyst, Cu-2,3,7,8-tetraaminophenazine-1,4,6,9-tetraone (Cu-TAPT) with Cu2+ and Cu+ atomic ratio of about 1:2 for CO2RR. Cu-TAPT exhibits an ethanol FE of 54.3 ± 3% at an industrial-scale current density of 429 mA cm-2, with the ethanol-to-ethylene ratio reaching 3.14:1. Experimental and theoretical calculations collectively unveil that the catalyst is stable during CO2RR, resulting from suitable coordination of the Cu2+ and Cu+ with the functional groups in TAPT. Additionally, mechanism studies show that the increased ethanol selectivity originates from synergy of multivalent Cu sites, which can promote asymmetric C-C coupling and adjust the adsorption strength of different carbonaceous intermediates, favoring hydroxy-containing C2 intermediate (*HCCHOH) formation and formation of ethanol.
Collapse
Affiliation(s)
- Xiao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China.
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Mengke Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Cheng Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Ting Deng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Hailian Cheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Zhanghui Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China.
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Huang Z, He D, Lu J, Han L, Li K, Chen D, Cao X, Li T, Luo Y. Modifying the Charge-Density of Tetrahedral Cobalt(II) Centers through Carbon-Layer Modulation Promotes C-H Activation in the Propane Dehydrogenation Reaction (PDH). Angew Chem Int Ed Engl 2024; 63:e202408391. [PMID: 39031836 DOI: 10.1002/anie.202408391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
The electronic structure of active metal centers plays an indispensable role in regulating catalytic reactivity in heterogeneous catalysis, developing other metals as promoters to decorate electronic state is a common strategy, while non-metal component of carbon as electronic additives to regulate d-band center has rarely been studied in thermal-catalysis field. Herein, we report electron-deficient tetrahedral Co(II) (Td-cobalt(II)) centers through carbon-layer modulation for propane dehydrogenation (PDH). It is indicated that bifunctional sites of both Td-cobalt(II) and metallic-cobalt are designed, and the in situ generated carbon through the disproportionation of CO on metallic-cobalt can cover the inactive metallic-cobalt and tailor d-band of active Td-cobalt(II) simultaneously. More importantly, the pre-deposited carbon-layer is proposed to decrease electron density of Td-cobalt(II) and make d-band center closer to Fermi level, consequently promotes C-H activation in PDH reaction. This study provides new perspective for the utilization of inactive carbon as electronic promoters and unlocks new opportunity to fabricate efficient PDH and other heterogeneous catalysts.
Collapse
Affiliation(s)
- Zijun Huang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of, Yunnan Province, Kunming, 650500, China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, China
| | - Dedong He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of, Yunnan Province, Kunming, 650500, China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of, Yunnan Province, Kunming, 650500, China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Dingkai Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of, Yunnan Province, Kunming, 650500, China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, China
| | - Xiaohua Cao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of, Yunnan Province, Kunming, 650500, China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, China
| | - Tan Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongming Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of, Yunnan Province, Kunming, 650500, China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, China
| |
Collapse
|
21
|
Zhang C, Lin Z, Jiao L, Jiang HL. Metal-Organic Frameworks for Electrocatalytic CO 2 Reduction: From Catalytic Site Design to Microenvironment Modulation. Angew Chem Int Ed Engl 2024:e202414506. [PMID: 39214860 DOI: 10.1002/anie.202414506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical reduction of CO2 to high-value carbon-based chemicals provides a sustainable approach to achieving an artificial carbon cycle. In the decade, metal-organic frameworks (MOFs), a kind of porous crystalline porous materials featuring well-defined structures, large surface area, high porosity, diverse components, easy tailorability, and controllable morphology, have attracted considerable research attention, serving as electrocatalysts to drive CO2 reduction. In this review, the reaction mechanisms of electrochemical CO2 reduction and the structure/component advantages of MOFs meeting the requirements of electrocatalysts for CO2 reduction are analyzed. After that, the representative progress for the precise fabrication of MOF-based electrocatalysts for CO2 reduction, focusing on catalytic site design and microenvironment modulation, are systemically summarized. Furthermore, the emerging applications and promising research for more practical scenarios related to electrochemical CO2 conversion are specifically proposed. Finally, the remaining challenges and future outlook of MOFs for electrochemical CO2 reduction are further discussed.
Collapse
Affiliation(s)
- Chengming Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
22
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
23
|
Mao Y, Zhang M, Zhai G, Si S, Liu D, Song K, Liu Y, Wang Z, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Asymmetric Cu(I)─W Dual-Atomic Sites Enable C─C Coupling for Selective Photocatalytic CO 2 Reduction to C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401933. [PMID: 38666482 PMCID: PMC11267401 DOI: 10.1002/advs.202401933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Indexed: 07/25/2024]
Abstract
Solar-driven CO2 reduction into value-added C2+ chemical fuels, such as C2H4, is promising in meeting the carbon-neutral future, yet the performance is usually hindered by the high energy barrier of the C─C coupling process. Here, an efficient and stabilized Cu(I) single atoms-modified W18O49 nanowires (Cu1/W18O49) photocatalyst with asymmetric Cu─W dual sites is reported for selective photocatalytic CO2 reduction to C2H4. The interconversion between W(V) and W(VI) in W18O49 ensures the stability of Cu(I) during the photocatalytic process. Under light irradiation, the optimal Cu1/W18O49 (3.6-Cu1/W18O49) catalyst exhibits concurrent high activity and selectivity toward C2H4 production, reaching a corresponding yield rate of 4.9 µmol g-1 h-1 and selectivity as high as 72.8%, respectively. Combined in situ spectroscopies and computational calculations reveal that Cu(I) single atoms stabilize the *CO intermediate, and the asymmetric Cu─W dual sites effectively reduce the energy barrier for the C─C coupling of two neighboring CO intermediates, enabling the highly selective C2H4 generation from CO2 photoreduction. This work demonstrates leveraging stabilized atomically-dispersed Cu(I) in asymmetric dual-sites for selective CO2-to-C2H4 conversion and can provide new insight into photocatalytic CO2 reduction to other targeted C2+ products through rational construction of active sites for C─C coupling.
Collapse
Affiliation(s)
- Yuyin Mao
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Minghui Zhang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Guangyao Zhai
- School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
| | - Shenghe Si
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Dong Liu
- School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
| | - Kepeng Song
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zeyan Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Peng Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Ying Dai
- School of PhysicsShandong UniversityJinan250100China
| | - Hefeng Cheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Baibiao Huang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
24
|
Wang Z, Xu L, Zhou Y, Liang Y, Yang J, Wu D, Zhang S, Han X, Shi X, Li J, Yuan Y, Deng P, Tian X. Stabilizing the oxidation state of catalysts for effective electrochemical carbon dioxide conversion. Chem Soc Rev 2024; 53:6295-6321. [PMID: 38722208 DOI: 10.1039/d3cs00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.
Collapse
Affiliation(s)
- Zhitong Wang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Lizhi Xu
- Hainan Provincial Ecological and Environmental Monitoring Centre, Haikou 571126, China
| | - Yansong Zhou
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ying Liang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jinlin Yang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Shuyu Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xingqi Han
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xiaodong Shi
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jing Li
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yuliang Yuan
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Zang Y, Wang S, Sang J, Wei P, Zhang X, Wang Q, Wang G. Illustration of the Intrinsic Mechanism of Reconstructed Cu Clusters for Enhanced CO 2 Electroreduction to Ethanol Production with Industrial Current Density. NANO LETTERS 2024. [PMID: 38856118 DOI: 10.1021/acs.nanolett.4c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Copper-based catalysts have been attracting increasing attention for CO2 electroreduction into value-added multicarbon chemicals. However, most Cu-based catalysts are designed for ethylene production, while ethanol production with high Faradaic efficiency at high current density still remains a great challenge. Herein, Cu clusters supported on single-atom Cu dispersed nitrogen-doped carbon (Cux/Cu-N/C) show ethanol Faradaic efficiency of ∼40% and partial current density of ∼350 mA cm-2. Quasi in situ X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy results suggest the generation of surface asymmetrical sites of Cu+ and Cu0 as well as Cu clusters by electrochemical reduction and reconstruction during the CO2 electroreduction process. Density functional theory calculations indicate that the interaction between Cu clusters and the Cu-N/C support enhances *CO adsorption, facilitates the C-C coupling step, and favors the hydrogenation rather than dehydroxylation of the critical intermediate *CHCOH toward ethanol in the bifurcation.
Collapse
Affiliation(s)
- Yipeng Zang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuo Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaqi Sang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Pengfei Wei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaomin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Wang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
26
|
Wang M, Chen C, Jia S, Han S, Dong X, Zhou D, Yao T, Fang M, He M, Xia W, Wu H, Han B. Enhancing C 2+ product selectivity in CO 2 electroreduction by enriching intermediates over carbon-based nanoreactors. Chem Sci 2024; 15:8451-8458. [PMID: 38846399 PMCID: PMC11151859 DOI: 10.1039/d4sc01735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to multicarbon (C2+) products faces challenges of unsatisfactory selectivity and stability. Guided by finite element method (FEM) simulation, a nanoreactor with cavity structure can facilitate C-C coupling by enriching *CO intermediates, thus enhancing the selectivity of C2+ products. We designed a stable carbon-based nanoreactor with cavity structure and Cu active sites. The unique geometric structure endows the carbon-based nanoreactor with a remarkable C2+ product faradaic efficiency (80.5%) and C2+-to-C1 selectivity (8.1) during the CO2 electroreduction. Furthermore, it shows that the carbon shell could efficiently stabilize and highly disperse the Cu active sites for above 20 hours of testing. A remarkable C2+ partial current density of-323 mA cm-2 was also achieved in a flow cell device. In situ Raman spectra and density functional theory (DFT) calculation studies validated that the *COatop intermediates are concentrated in the nanoreactor, which reduces the free energy of C-C coupling. This work unveiled a simple catalyst design strategy that would be applied to improve C2+ product selectivity and stability by rationalizing the geometric structures and components of catalysts.
Collapse
Affiliation(s)
- Min Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Xue Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Dawei Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Ting Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Minghui Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
27
|
Du X, Gao B, Xiao C, Ding S, Song Z, Nam KT. Promoting hydrophilic cupric oxide electrochemical carbon dioxide reduction to methanol via interfacial engineering modulation. J Colloid Interface Sci 2024; 662:893-902. [PMID: 38382373 DOI: 10.1016/j.jcis.2024.02.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Copper-based catalysts have been extensively investigated in electrochemical carbon dioxide (CO2) reduction to promote carbon products generated by requiring multiple electron transfer. However, hydrophilic electrodes are unfavourable for CO2 mass transfer and preferentially hydrogen (H2) evolution in electrochemical CO2 reduction. In this paper, a hydrophilic cupric oxide (CuO) electrode with a grassy morphology was prepared. CuO-derived Cu was confirmed as the active site for electrochemical CO2 reduction through wettability modulation. To enhance the intrinsic catalytic activity, a metal-oxide heterogeneous interface was created by engineering modulation at the interface, involving the loading of palladium (Pd) on CuO (CuO/Pd). Both the electrochemically active area and the electron transfer rate were enhanced by Pd loading, and significantly the reduced work function further facilitated the electron transfer between the electrode surface and the electrolyte. Consequently, the CuO/Pd electrode exhibited excellent excellent performance in electrochemical CO2 reduction, achieving a 54 % Faraday efficiency at -0.65 V for methanol (CH3OH). The metal-oxide interfacial effect potentially improves the intrinsic catalytic activity of hydrophilic CuO electrodes in electrochemical CO2 reduction, providing a conducive pathway for optimizing hydrophilic oxide electrodes in this process.
Collapse
Affiliation(s)
- Xiaoye Du
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Gao
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, Shandong 266525, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shujiang Ding
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhongxiao Song
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
28
|
Li Q, Wu J, Lv L, Zheng L, Zheng Q, Li S, Yang C, Long C, Chen S, Tang Z. Efficient CO 2 Electroreduction to Multicarbon Products at CuSiO 3/CuO Derived Interfaces in Ordered Pores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305508. [PMID: 37725694 DOI: 10.1002/adma.202305508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 conversion to value-added multicarbon (C2+) chemicals holds promise for reducing CO2 emissions and advancing carbon neutrality. However, achieving both high conversion rate and selectivity remains challenging due to the limited active sites on catalysts for carbon-carbon (C─C) coupling. Herein, porous CuO is coated with amorphous CuSiO3 (p-CuSiO3/CuO) to maximize the active interface sites, enabling efficient CO2 reduction to C2+ products. Significantly, the p-CuSiO3/CuO catalyst exhibits impressive C2+ Faradaic efficiency (FE) of 77.8% in an H-cell at -1.2 V versus reversible hydrogen electrode in 0.1 M KHCO3 and remarkable C2H4 and C2+ FEs of 82% and 91.7% in a flow cell at a current density of 400 mA cm-2 in 1 M KOH. In situ characterizations and theoretical calculations reveal that the active interfaces facilitate CO2 activation and lower the formation energy of the key intermediate *OCCOH, thus promoting CO2 conversion to C2+. This work provides a rational design for steering the active sites toward C2+ products.
Collapse
Affiliation(s)
- Qun Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Siyang Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Long
- Lab of Molecular Electrochemistry Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Sheng Chen
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
29
|
Jia S, Wu L, Tan X, Feng J, Ma X, Zhang L, Song X, Xu L, Zhu Q, Kang X, Sun X, Han B. Synthesis of Hydroxylamine via Ketone-Mediated Nitrate Electroreduction. J Am Chem Soc 2024; 146:10934-10942. [PMID: 38581437 DOI: 10.1021/jacs.4c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Hydroxylamine (HA, NH2OH) is a critical feedstock in the production of various chemicals and materials, and its efficient and sustainable synthesis is of great importance. Electroreduction of nitrate on Cu-based catalysts has emerged as a promising approach for green ammonia (NH3) production, but the electrosynthesis of HA remains challenging due to overreduction of HA to NH3. Herein, we report the first work on ketone-mediated HA synthesis using nitrate in water. A metal-organic-framework-derived Cu catalyst was developed to catalyze the reaction. Cyclopentanone (CP) was used to capture HA in situ to form CP oxime (CP-O) with C═N bonds, which is prone to hydrolysis. HA could be released easily after electrolysis, and CP was regenerated. It was demonstrated that CP-O could be formed with an excellent Faradaic efficiency of 47.8%, a corresponding formation rate of 34.9 mg h-1 cm-2, and a remarkable carbon selectivity of >99.9%. The hydrolysis of CP-O to release HA and CP regeneration was also optimized, resulting in 96.1 mmol L-1 of HA stabilized in the solution, which was significantly higher than direct nitrate reduction. Detailed in situ characterizations, control experiments, and theoretical calculations revealed the catalyst surface reconstruction and reaction mechanism, which showed that the coexistence of Cu0 and Cu+ facilitated the protonation and reduction of *NO2 and *NH2OH desorption, leading to the enhancement for HA production.
Collapse
Affiliation(s)
- Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liang Xu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
30
|
Xu F, Feng B, Shen Z, Chen Y, Jiao L, Zhang Y, Tian J, Zhang J, Wang X, Yang L, Wu Q, Hu Z. Oxygen-Bridged Cu Binuclear Sites for Efficient Electrocatalytic CO 2 Reduction to Ethanol at Ultralow Overpotential. J Am Chem Soc 2024; 146:9365-9374. [PMID: 38511947 DOI: 10.1021/jacs.4c01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electrocatalytic CO2 reduction (CO2RR) to alcohols offers a promising strategy for converting waste CO2 into valuable fuels/chemicals but usually requires large overpotentials. Herein, we report a catalyst comprising unique oxygen-bridged Cu binuclear sites (CuOCu-N4) with a Cu···Cu distance of 3.0-3.1 Å and concomitant conventional Cu-N4 mononuclear sites on hierarchical nitrogen-doped carbon nanocages (hNCNCs). The catalyst exhibits a state-of-the-art low overpotential of 0.19 V (versus reversible hydrogen electrode) for ethanol and an outstanding ethanol Faradaic efficiency of 56.3% at an ultralow potential of -0.30 V, with high-stable Cu active-site structures during the CO2RR as confirmed by operando X-ray adsorption fine structure characterization. Theoretical simulations reveal that CuOCu-N4 binuclear sites greatly enhance the C-C coupling at low potentials, while Cu-N4 mononuclear sites and the hNCNC support increase the local CO concentration and ethanol production on CuOCu-N4. This study provides a convenient approach to advanced Cu binuclear site catalysts for CO2RR to ethanol with a deep understanding of the mechanism.
Collapse
Affiliation(s)
- Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Biao Feng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Shen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liu Jiao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junru Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Chen Y, Lyu N, Zhang J, Yan S, Peng C, Yang C, Lv X, Hu C, Kuang M, Zheng G. Tailoring the *CO and *H Coverage for Selective CO 2 Electroreduction to CH 4 or C 2H 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308004. [PMID: 37992242 DOI: 10.1002/smll.202308004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Indexed: 11/24/2023]
Abstract
In the electrochemical CO2 reduction reaction (CO2RR), the coverages of *CO and *H intermediates on a catalyst surface are critical for the selective generation of C1 or C2 products. In this work, we have synthesized several CuxZnyMnz ternary alloy electrocatalysts, including Cu8ZnMn, Cu8Zn6Mn, and Cu8ZnMn2, by varying the doping compositions of Zn and Mn, which are efficient in binding *CO and *H adsorbates in the CO2 electroreduction process, respectively. The increase of *H coverage allows to promotion of the CH4 and H2 formation, while the increase of the *CO coverage facilitates the production of C2H4 and CO. As a result, the Cu8ZnMn catalyst presented a high CO2-to-CH4 partial current density (-418 ± 22 mA cm-2) with a Faradaic efficiency of 55 ± 2.8%, while the Cu8Zn6Mn catalyst exhibited a CO2-to-C2H4 partial current density (-440 ± 41 mA cm-2) with a Faradaic efficiency of 58 ± 4.5%. The study suggests a useful strategy for rational design and fabrication of Cu electrocatalysts with different doping for tailoring the reduction products.
Collapse
Affiliation(s)
- Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Naixin Lyu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Junbo Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Shuai Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Cejun Hu
- School of Materials Science and Engineering, Fuzhou University, Fujian, 350108, China
| | - Min Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
32
|
Wang Y, Zhao R, Liu Y, Zhang F, Wang Y, Wu Z, Han B, Liu Z. Alkyl sulfonate surfactant mediates electroreduction of carbon dioxide to ethylene or ethanol over hydroxide-derived copper catalysts. Chem Sci 2024; 15:4140-4145. [PMID: 38487226 PMCID: PMC10935724 DOI: 10.1039/d3sc06351h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
For CO2 electroreduction (CO2ER) to C2 compounds, it is generally accepted that the formation of ethylene and ethanol shares the same intermediate, *HCCOH. The majority of studies have achieved high faradaic efficiency (FE) towards ethylene, but faced challenges to get high ethanol FE. Herein, we present an alkyl sulfonate surfactant (e.g., sodium dodecyl sulfonate, SDS) mediated CO2ER to a C2 product over an in situ generated Cu catalyst (Cu@SDS) from SDS-modified Cu(OH)2. It achieves the CO2ER to ethylene as the sole C2 product at low applied voltages with a FE of 55% at -0.6 V vs. RHE and to ethanol as the main product at potentials ≥0.7 V with a maximum FE of 64% and a total C2 FE of 86% at -0.8 V, with a current density of 231 mA cm-2 in a flow cell. Mechanism investigation indicates that SDS modifies the oxidation state of the in situ formed Cu species in Cu@SDS, thus tuning the catalyst activity for CO2ER and lowering the C-C coupling energy barrier; meanwhile, it tunes the adsorption mode of the *HCCOH intermediates on the catalyst, thus mediating the selectivity of CO2ER towards C2 products.
Collapse
Affiliation(s)
- Yiding Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Runyao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yunpeng Liu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Fengtao Zhang
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuepeng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhonghua Wu
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
33
|
Zhang X, Tang J, Wang L, Wang C, Chen L, Chen X, Qian J, Pan B. Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction. Nat Commun 2024; 15:917. [PMID: 38296948 PMCID: PMC10831074 DOI: 10.1038/s41467-024-45106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Heterogeneous Fenton reaction represents one of the most reliable technologies to ensure water safety, but is currently challenged by the sluggish Fe(III) reduction, excessive input of chemicals for organic mineralization, and undesirable carbon emission. Current endeavors to improve the catalytic performance of Fenton reaction are mostly focused on how to accelerate Fe(III) reduction, while the pollutant degradation step is habitually overlooked. Here, we report a nanoconfinement strategy by using graphene aerogel (GA) to support UiO-66-NH2-(Zr) binding atomic Fe(III), which alters the carbon transfer route during phenol removal from kinetically favored ring-opening route to thermodynamically favored oligomerization route. GA nanoconfinement favors the Fe(III) reduction by enriching the reductive intermediates and allows much faster phenol removal than the unconfined analog (by 208 times in terms of first-order rate constant) and highly efficient removal of total organic carbon, i.e., 92.2 ± 3.7% versus 3.6 ± 0.3% in 60 min. Moreover, this oligomerization route reduces the oxidant consumption for phenol removal by more than 95% and carbon emission by 77.9%, compared to the mineralization route in homogeneous Fe2++H2O2 system. Our findings may upgrade the regulatory toolkit for Fenton reactions and provide an alternative carbon transfer route for the removal of aqueous pollutants.
Collapse
Affiliation(s)
- Xiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingjing Tang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lingling Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lei Chen
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xinqing Chen
- CAS key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
- School of Environmental Engineering, Wuxi University, Jiangsu, 214105, P. R. China.
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
34
|
Song J, Lei X, Mu J, Li J, Song X, Yan L, Ding Y. Boron-Doped Nickel-Nitrogen-Carbon Single-Atom Catalyst for Boosting Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305666. [PMID: 37635104 DOI: 10.1002/smll.202305666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Tuning the coordination environment of the metal center in metal-nitrogen-carbon (M-N-C) single-atom catalysts via heteroatom-doping (oxygen, phosphorus, sulfur, etc.) is effective for promoting electrocatalytic CO2 reduction reaction (CO2 RR). However, few studies are investigated establishing efficient CO2 reduction by introducing boron (B) atoms to regulate the M-N-C structure. Herein, a B-C3 N4 self-sacrifice strategy is developed to synthesize B, N co-coordinated Ni single atom catalyst (Ni-BNC). X-ray absorption spectroscopy and high-angle annular dark field scanning transmission electron microscopy confirm the structure (Ni-N3 B/C). The Ni-BNC catalyst presents a maximum CO Faradaic efficiency (FECO ) of 98.8% and a large CO current density (jCO ) of -62.9 mA cm-2 at -0.75 and -1.05 V versus reversible hydrogen electrode, respectively. Furthermore, FECO could be maintained above 95% in a wide range of potential windows from -0.65 to -1.05 V. In situ experiments and density functional theory calculations demonstrate the Ni-BNC catalyst with B atoms coordinated to the central Ni atoms could significantly reduce the energy barrier for the conversion of *CO2 to *COOH, leading to excellent CO2 RR performance.
Collapse
Affiliation(s)
- Jian Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Lei
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jiali Mu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jingwei Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiangen Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
35
|
Zhao ZH, Huang JR, Liao PQ, Chen XM. Highly Efficient Electroreduction of CO 2 to Ethanol via Asymmetric C-C Coupling by a Metal-Organic Framework with Heterodimetal Dual Sites. J Am Chem Soc 2023. [PMID: 38014883 DOI: 10.1021/jacs.3c08974] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The electroreduction of CO2 into value-added liquid fuels holds great promise for addressing global environmental and energy challenges. However, achieving highly selective yielding of multi-carbon oxygenates through the electrochemical CO2 reduction reaction (eCO2RR) is a formidable task, primarily due to the sluggish asymmetric C-C coupling reaction. In this study, a novel metal-organic framework (CuSn-HAB) with unprecedented heterometallic Sn···Cu dual sites (namely, a pair of SnN2O2 and CuN4 sites bridged by μ-N atoms) was designed to overcome this limitation. CuSn-HAB demonstrated an impressive Faradic efficiency (FE) of 56(2)% for eCO2RR to alcohols, achieving a current density of 68 mA cm-2 at a low potential of -0.57 V (vs RHE). Notably, no significant degradation was observed over a continuous 35 h operation at the specified current density. Mechanistic investigations revealed that, in comparison to the copper site, the SnN2O2 site exhibits a higher affinity for oxygen atoms. This enhanced affinity plays a pivotal role in facilitating the generation of the key intermediate *OCH2. Consequently, compared to homometallic Cu···Cu dual sites (generally yielding ethylene product), the heterometallic dual sites were proved to be more thermodynamically favorable for the asymmetric C-C coupling between *CO and *OCH2, leading to the formation of the key intermediate *CO-*OCH2, which is favorable for yielding ethanol product.
Collapse
Affiliation(s)
- Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
36
|
Gong Y, He T. Gaining Deep Understanding of Electrochemical CO 2 RR with In Situ/Operando Techniques. SMALL METHODS 2023; 7:e2300702. [PMID: 37608449 DOI: 10.1002/smtd.202300702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Electrocatalysis for CO2 conversion has been extensively studied to mitigate the energy shortage and environmental issues, which are gaining ever-increasing attention. However, the complicated CO2 reduction process and the dynamic evolution occurring on electrocatalyst surface make it hard to understand the catalytic mechanism. The development of advanced in situ/operando techniques intelligently coupled with electrochemical cells sheds light on the related study via capturing surface atomic rearrangement, tracing chemical state change of catalysts, monitoring the behavior of intermediates and products, and depicting microenvironment near the electrode surface. In this review, fundamentals of the state-of-the-art in situ/operando techniques are clarified first. Case studies on the in situ/operando techniques performed to probe the CO2 reduction reaction processes are then discussed in detail. Finally, conclusions and outlook on this field are presented.
Collapse
Affiliation(s)
- Yue Gong
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao He
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
37
|
Liang S, Xiao J, Zhang T, Zheng Y, Wang Q, Liu B. Sulfur Changes the Electrochemical CO 2 Reduction Pathway over Cu Electrocatalysts. Angew Chem Int Ed Engl 2023; 62:e202310740. [PMID: 37703214 DOI: 10.1002/anie.202310740] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Electrochemical CO2 reduction to value-added chemicals or fuels offers a promising approach to reduce carbon emissions and alleviate energy shortage. Cu-based electrocatalysts have been widely reported as capable of reducing CO2 to produce a variety of multicarbon products (e.g., ethylene and ethanol). In this work, we develop sulfur-doped Cu2 O electrocatalysts, which instead can electrochemically reduce CO2 to almost exclusively formate. We show that a dynamic equilibrium of S exists at the Cu2 O-electrolyte interface, and S-doped Cu2 O undergoes in situ surface reconstruction to generate active S-adsorbed metallic Cu sites during the CO2 reduction reaction (CO2 RR). Density functional theory (DFT) calculations together with in situ infrared absorption spectroscopy measurements show that the S-adsorbed metallic Cu surface can not only promote the formation of the *OCHO intermediate but also greatly suppress *H and *COOH adsorption, thus facilitating CO2 -to-formate conversion during the electrochemical CO2 RR.
Collapse
Affiliation(s)
- Shuyu Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jiewen Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Tianyu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yue Zheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Qiang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
38
|
Zhang MD, Huang JR, Shi W, Liao PQ, Chen XM. Self-Accelerating Effect in a Covalent-Organic Framework with Imidazole Groups Boosts Electroreduction of CO 2 to CO. Angew Chem Int Ed Engl 2023; 62:e202308195. [PMID: 37656139 DOI: 10.1002/anie.202308195] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Solvent effect plays an important role in catalytic reaction, but there is little research and attention on it in electrochemical CO2 reduction reaction (eCO2 RR). Herein, we report a stable covalent-organic framework (denoted as PcNi-im) with imidazole groups as a new electrocatalyst for eCO2 RR to CO. Interestingly, compared with neutral conditions, PcNi-im not only showed high Faraday efficiency of CO product (≈100 %) under acidic conditions (pH ≈ 1), but also the partial current density was increased from 258 to 320 mA cm-2 . No obvious degradation was observed over 10 hours of continuous operation at the current density of 250 mA cm-2 . The mechanism study shows that the imidazole group on the framework can be protonated to form an imidazole cation in acidic media, hence reducing the surface work function and charge density of the active metal center. As a result, CO poisoning effect is weakened and the key intermediate *COOH is also stabilized, thus accelerating the catalytic reaction rate.
Collapse
Affiliation(s)
- Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen Shi
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
39
|
Haaring R, Kang PW, Guo Z, Lee JW, Lee H. Developing Catalysts Integrated in Gas-Diffusion Electrodes for CO 2 Electrolyzers. Acc Chem Res 2023; 56:2595-2605. [PMID: 37698057 DOI: 10.1021/acs.accounts.3c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
ConspectusAs the demand for a carbon-neutral society grows rapidly, research on CO2 electrolysis has become very active. Many catalysts are reported for converting CO2 into value-added products by electrochemical reactions, which have to perform at high Faradaic and energy efficiency to become commercially viable. Various types of CO2 electrolyzers have been used in this effort, such as the H-cell, flow cell, and zero-gap membrane-electrode assembly (MEA) cell. H-cell studies are conducted with electrodes immersed in CO2-saturated electrolyte and have been used to elucidate reaction pathways and kinetic parameters of electrochemical CO2 reduction on many types of catalytic surfaces. From a transport phenomenological perspective, the low solubility and diffusion of CO2 to the electrode surface severely limit the maximum attainable current density, and this metric has been shown to have significant influence on the product spectrum. Flow and MEA cells provide a solution in the form of gas-diffusion electrodes (GDEs) that enable gaseous CO2 to closely reach the catalyst layer and yield record-high current densities. Because GDEs involve a complicated interface consisting of the catalyst surface, gaseous CO2, polymer overlayers, and liquid electrolyte, catalysts with high intrinsic activity might not show high performance in these GDE-based electrolyzers. Catalysts showing low overpotentials at low current densities may suffer from poor electron conductivity and mass transfer limitations at high current densities. Furthermore, the stability of the GDE-based catalysts is often compromised as CO2 electrolysis is pursued with high activity, most notoriously by electrolyte flooding.In this Account, we introduce recent examples where the electrocatalysts were integrated in GDEs, achieving high production rates. The performance of such systems is contingent on both GDE and cell design, and various parameters that affect the cell performance are discussed. Gaseous products, such as carbon monoxide, methane, and ethylene, and liquid products, such as formate and ethanol, have been mainly reported with high partial current density using the flow or MEA cells. Different strategies to this end are described, such as controlling microenvironments by the use of polymers mixed within the catalyst layer or the functionalization of catalyst surfaces with ligands to increase local concentrations of intermediates. Unique CO2 electrolyzer designs are also treated, including the incorporation of light-responsive plasmonic catalysts in the GDE, and combining the electrolyzer with a fermenter utilizing a microbial biocatalyst to synthesize complex multicarbon products. Basic conditions which the catalyst should satisfy to be adapted in the GDEs are listed, and our perspective is provided.
Collapse
Affiliation(s)
- Robert Haaring
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Phil Woong Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Zunmin Guo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae Won Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Wang C, Lv Z, Yang W, Feng X, Wang B. A rational design of functional porous frameworks for electrocatalytic CO 2 reduction reaction. Chem Soc Rev 2023; 52:1382-1427. [PMID: 36723190 DOI: 10.1039/d2cs00843b] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electrocatalytic CO2 reduction reaction (ECO2RR) is considered one of the approaches with the most potential to achieve lower carbon emissions in the future, but a huge gap still exists between the current ECO2RR technology and industrial applications. Therefore, the design and preparation of catalysts with satisfactory activity, selectivity and stability for the ECO2RR have attracted extensive attention. As a classic type of functional porous framework, crystalline porous materials (e.g., metal organic frameworks (MOFs) and covalent organic frameworks (COFs)) and derived porous materials (e.g., MOF/COF composites and pyrolysates) have been regarded as superior catalysts for the ECO2RR due to their advantages such as designable porosity, modifiable skeleton, flexible active site structure, regulable charge transfer pathway and controllable morphology. Meanwhile, with the rapid development of nano-characterization and theoretical calculation technologies, the structure-activity relationships of functional porous frameworks have been comprehensively considered, i.e., metallic element type, local coordination environment, and microstructure, corresponding to selectivity, activity and mass transfer efficiency for the ECO2RR, respectively. In this review, the rational design strategy for functional porous frameworks is briefly but precisely generalized based on three key factors including metallic element type, local coordination environment, and microstructure. Then, details about the structure-activity relationships for functional porous frameworks are illustrated in the order of MOFs, COFs, composites and pyrolysates to analyze the effect of the above-mentioned three factors on their ECO2RR performance. Finally, the challenges and perspectives of functional porous frameworks for the further development of the ECO2RR are reasonably proposed, aiming to offer insights for future studies in this intriguing and significant research field.
Collapse
Affiliation(s)
- Changli Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Zunhang Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| |
Collapse
|
41
|
The Progress of Metal-Organic Framework for Boosting CO2 Conversion. Catalysts 2022. [DOI: 10.3390/catal12121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With the rapid development of modern society, environmental problems, including excessive amounts of CO2 released in the atmosphere, are becoming more and more serious. It is necessary to develop new materials and technologies to reduce pollution. Among them, metal–organic frameworks (MOFs) have shown potential for application in the area of catalysis due to their ultra-high specific surface area, structural versatility, and designability as well as ease of modification and post-synthesis. Herein, we summarize recent research advances by use of MOFs for boosting CO2 conversion. Furthermore, challenges and possible research directions related to further exploration are also discussed.
Collapse
|